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Abstract 

This work deals with non-linear geometrical plates in the context of von Kármán 
theory. The formulation is written in a way to require only boundary in-plane 
displacement and deflection integral equation for boundary collocations. At 
internal points only out of plane rotation, curvature and in-plane internal force 
representations are used. The non-linear system of algebraic equations to be 
solved is reduced to internal point collocation relations. The solution is solved by 
using a Newton scheme for which a consistent tangent operator was derived. 
Keywords: bending plates, geometrical nonlinearities. 

1 Introduction 

The boundary element method (BEM) applied to solve plate-bending problems 
has been successfully used many times so far. An important characteristic of the 
boundary methods applied to plate bending is approximating all boundary values 
by the same shape function, avoiding therefore using higher order derivatives of 
displacement approximation to compute internal forces. Thus, bending and 
twisting moments and also shear forces are precisely evaluated. The method has 
already proved to be enough accurate and reliable for this kind of application.  

The plate bending numerical formulation is a very important subject in 
engineering due to be applied to a large number of complex problems such as 
aircraft, ship, car, pressure vessel, off shore structures among others. Usually 
these complex problems require accurate plate bending models as those that take 
into account the geometrical non-linear effects. In this context, several BEM 
formulations have already been proposed so far. One of the first works treating 
this subject is due to Morjaria [1]. Kamiya and Sawaki [2] have proposed a BEM 
formulation for elastic plates governed by the Berger equation. The first BEM 
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formulation to analyze plate-bending problems within the context of von Kármán 
hypothesis is due to Ye and Liu [3], who have used a fictitious loading 
distributed over the domain to model the non-linear effects. Von Kármán 
hypothesis was also adopted by Tanaka et al [4] to develop a more elaborated 
BEM incremental formulation to deal with finite deflections of thin elastic 
plates. Wang et al [5] have also worked on von Kármán plates introducing the 
dual reciprocity approach based on global radial functions to approximate the 
correcting integral term.  

All works reported above were proposed in the context of thin plates. Several 
other important works have appeared more recently pointing out the efficiency of 
BEM formulations to deal with shear deformable plate based on the Reissner-
Mindlin hypothesis: Wen et al [6], Purbolaksono and Aliabadi [7]. 

In this work we came back to the BEM formulation based on the von 
Kármán’s theory. Emphasis is given to the accurate evaluation of the domain 
integrals approximated by using cells and to the solution technique for which a 
tangent consistent operator is proposed. Examples of plate with finite deflection 
is analysed and the results compared with other numerical solutions. 

2 Basic equations  

Without loss of generality, let us consider a single thin plate region Ω  with 
boundary Γ  over which a distributed load q is applied orthogonal to the middle 
surface, (direction 3x ), as shown in figure 1. This plate region can also be 
subjected to in plane forces (directions 1x  and 2x ) either distributed over the 
domain or applied along the boundary. In order to write the field equations of 
this plate problems following the hypothesis can be assumed according to the 
von Kármán theory, for which the strains are assumed to be enough small and 
the final deflection of order of the plate thickness h. 

Ωg

Γ
x1

x3
x2

Ω

 
Figure 1: General plate domain. 

 
For any point defined in Ω  the following basic relationships are defined: 
   - Equilibrium equations for the bending problem: 

ij ij ij ij i i i im , +N w, -b w, +m , +q = 0                                  (1) 
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where mij are bending and twisting moments, ijN  is the in-plane internal forces, 

ib  represents the in-plane domain loads applied and im  is the applied moment 
over the plate domain; the subscripts are in the range i,j={1, 2}. 
   - The in-plane equilibrium equation:  

,ij j iN b 0+ =                                                         (2) 

     Assuming linear elastic material eqns (1) and (2) can be written in terms of 
in-plane and out of plane displacements as follows: 

iijj ij ijDw, = g + N w, (i, j = 1,2)                  (3) 

( , , , ) ( , , , ) /( )
( ) ( )j ij j ij i jj i jj i

1 1u w w u w w b Eh
2 1- ν 2 1+ν

+ + + +                   (4) 

where 3 2/( )D Eh 1- ν=  is the flexural rigidity, E and ν  are the material Young 
modulus and Poisson’s ratio. 
     The problem definition is then completed by assuming the following 
boundary conditions over Γ : 

i iu u=  on 
1Γ (generalised displacements, in plane 

displacements, deflections and rotations) and 
i ip p=  on 

2Γ (generalised 
tractions, in-plane tractions normal bending moment and effective shear forces), 
where 

1 2Γ Γ = Γ∪ .  

3 Integral representations 

In this section, we are going to derive the integral equations of the plate bending 
and stretching problems considering geometrical non-linearities within the 
context previously defined. To obtain the integral equations of both problems 
one can apply the Betti’s reciprocity to the linear parts of the stress and strain 
fields. Thus, for the bending problem the general reciprocity relation written for 
the 3D case can be integrated across the plate thickness to give:  

* *, ,
m m

ij ij ij ij
Ω Ω

w m dΩ m w dΩ=∫ ∫                                      (5) 

where *w  and *
ijm  are the well-known fundamental solutions of the plate 

problem given in terms of deflection and internal moments. These fundamental 
values and the other resulting required values are given in the specialized 
literature [8]. 
     By integrating eqn (5) by parts twice and replacing the second derivative of 
the internal, ij ijm , , according to eqn (1) one has: 
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Γ =

Ω Ω

+ − Γ +

= − Γ + +

Ω + Ω

∑∫
∑∫

∫ ∫

  (6) 

where nV  and nM  are effective shear forces, and moments applied along the 

boundary, respectively, ciR  represents the corner reactions, *
nV , *

nM  and *
ciR  the 

corresponding values obtained from the fundamental solution *w  according to 
their definition. 
     For any internal collocation s one can differentiate eqn (6) to obtain the 
integral representations of rotations and curvatures, as follows: 

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )

( ) ( ){ ( ) ( )} ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

* * *

* * *

* *
,

, , , , , , , ,

, , , , , ,

, , , ,

c

c

g

N

i n i n i n ck i ck
k=1

N

n i n ni ck ck i
k=1

i jk jk i

w s V s P w P M s P w P d P R s P w P

V P w q P M P w s P d P R P w s P

g p w s p d p N p w p w s p d p

= − − Γ −

+ − Γ + +

+ Ω + Ω

∑∫

∑∫

∫ ∫

Γ

Γ

Ω Ω

(7) 

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )
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V P w s P M P w s P d P R P w s P

g p w s p d p N p w p w s p d p

Γ
=

Γ
=

Ω Ω

= − − Γ −

+ − Γ + +

+ Ω + Ω

∑∫

∑∫

∫ ∫

 (8) 

     Analogously, the Betti’s reciprocity relation for can be in applied to the linear 
parts of the 2D stretching problem to give: 

* *
ij ij ij ijN d N d

Ω Ω

ε Ω = ε Ω∫ ∫                      (9) 

where ijN  represents the linear parts of the stretching problem internal forces, 
therefore given by: 

2

1, ( , , )
2(1 )ij k k ij i j j i

EhN u u u−ν = ν δ + + − ν  
                    (10) 

After replacing ijN  in eqn (13) and integrating it by parts the following 
integral representation is obtained for the in-plane boundary displacements: 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* *

* *

, ,

1, , , ,
2

ij j ij j ij j

ij j ijk j k

C S u S P S P u P d u S P p P d

u S p b p d N S p w p w p d

Γ Γ

Ω Ω

= − Γ + Γ +

+ Ω− Ω

∫ ∫

∫ ∫
       (11) 

 
     By differentiating eqn (11) and then applying the Hooke’s law at the 
collocation point s accordingly, one has:  

( )

( ) ( )
ij ijk k ijk k ijk k

ijkl ,k ,l ,i , j ,k ,k ij

N s D ( s,P )p ( P )d S ( s,P )u ( P )d D ( s, p )b ( p )d

1 GhT ( s, p )w ( p )w ( p )d 2w ( s )w ( s ) w ( s )w ( s )
2 8 1- υ

= − +

− + +

∫ ∫ ∫

∫
Γ Γ Ω

Ω

Γ Γ Ω

Ω δ
(12) 

where ν = ν/(1+ν)  is used to simulate the plane stress conditions. 

4 Algebraic equations 

Before transforming the integral representations derived in the previous section 
to algebraic equations let us replace the rate values by the corresponding 
increments. Let 1n nt t t+= −∆  be a typical time-step in the time discretization. 
Any rate quantity x  integrated along the time interval t∆  becomes 

n+1 nx x x= −∆  that will replace x  in all integral representations already derived. 
     As usual for any BEM formulation, the integral representations (6), (7), (8), 
(11) and (12) have to be transformed into algebraic expressions after discretizing 
the boundary and the domain. The plate boundary Γ  is then discretized into 
elements, sΓ , along which generalized displacements and tractions are 
approximated using continuous and discontinuous linear boundary elements. In 
plate stretching-bending problems discontinuities are always present, particularly 
at corners and traction jumps. The discontinuity is always introduced by defining 
the collocation along the element or at any outside point near the boundary. 
Before transforming the integral representations, we decided replacing the 
density of the domain integrals into single values. The domain value 

( ) ( ),ij ijN p w p  at a field point p will be replaced by a scalar value ( )T p . 
Similarly, for the stretching problem, we replaced the domain value 

( ) ( ), ,j kw p w p  by domain tensor ( )jkW p . The approximation over the cells are 

now applied to these new domain values ( )T p  and ( )jkW p . Triangular internal 
cells with linear shape functions are used with nodes always defined at internal 
points. Thus, discontinuous cells are required for cells adjacent to the boundary. 
The cell integrals are first transformed to integral over their sides and carried out 
as boundary elements using either analytical or appropriate numerical integration 
scheme with sub-elementation [9]. 
     Carrying out the boundary and cell integrals eqn (6) written for all boundary 
nodes leads to the following incremental matrix equation: 
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χw b w b w w
b b b bN∆ = ∆ + ∆ + ∆H U G P S T B                 (13) 

where b∆U  and b∆P  contains all boundary displacement and traction nodal 
values of the bending problem plus the additional corner displacements and 
reactions, χ

N∆T  represents the condensate summation of the in-plane forces 

multiplied by curvatures, w
bS  is the corresponding matrices obtained by 

integrating all domain cells and w
b∆B  gives the domain load effects. 

     Similarly one can also transform the in-plane displacement integral 
representation, equation (7), into its incremental matrix form: 

u s u s u θ u
s s s θ s∆ ∆ + ∆ + ∆H U = G P S W B                          (14) 

where s∆U  and s∆P  contains all incremental boundary displacement and 
traction nodal values of the stretching problem, θ

θ∆W  represents the increment 
of the rotation product defined at each domain node, u

sS  is the corresponding 
matrices obtained by integrating all domain cells and u

s∆B  gives the in-plane 
domain incremental load effects. 
     To complete the necessary algebraic relations one has to obtain the algebraic 
forms of the integral equations (7), (8) and (12), as follows: 
 

χθ b θ b θ θ
b b b bN∆ ∆ + ∆ + ∆ + ∆θ = -H U  G P S T B                       (15) 
χ b χ b χ χ χ

b b b N b∆ = - ∆ + ∆ + ∆ + ∆χ H U  G P S T B                     (16) 
N s N s N θ N
s s s θ s∆ = - ∆ + ∆ + ∆ + ∆N H U G P S W B                       (17) 

 
where ∆θ , ∆χ and ∆N  are vectors containing rotation, curvature and 
membrane internal force increments at the domain nodes defined by the adopted 
discretization. 
     After applying the boundary conditions equations (13), (14) and (15)–(17) 
become: 

w b w w χ
b b b N∆ = ∆ + ∆A X F S T                      (18) 
u s u u θ
s s s θ∆ = ∆ + ∆A X F S W                                    (19) 

χθ b θ θ
b b b N∆ = - ∆ + ∆ + ∆θ A X F S T                              (20) 
χ χ χ χb

Nb b b∆ = - ∆ + ∆ + ∆χ A X F S T                    (21) 
N b N N θ
s s s θ∆ = - ∆ + ∆ + ∆N A U F S W                      (22) 

where the matrices y
xA  are conveniently built up using columns of y

xH  and y
xG  

corresponding to unknown boundary values, and y
x∆F  is a vector collecting all 

contributions of prescribed domain and boundary values.  
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     Solving eqns (18) and (19) and replacing into eqns (20) – (22) gives: 

χθ θ
b b N∆ = ∆ + ∆θ N Q T                                (23) 
χ χ χ

Nb b∆ = ∆ + ∆χ N Q T                                (24) 

N N θ
s s θ∆ = ∆ + ∆N N Q W                                     (25) 

where y y z y
x x x x∆ = - ∆ + ∆N A M F  and y y z y

x x x x= - +Q A Q S , with 
-1z z z

x x x∆ = ∆  M A F  and 
-1z z z

x x x=   Q A S  and z given by the superscript of the 

corresponding boundary algebraic equation used to compute z
xQ , i.e. w

xQ  from 

eqn (18) or u
xQ  from eqn (19). 

Equations (23) – (25) are the necessary relations to solve a geometrical non-
linear plate problem. However, one has to treat correctly the increments 

( )jk∆W p  and ( )T p∆ . We can first find the rates of the densities in eqns (6) 
and (11) and obtain the incremental forms of ∆T  and ∆W  for a given time 
interval nt∆ , as follows: 

= • + •∆ ∆ ∆T N Nχ χ                                  (26) 

= ⊗ + ⊗∆ ∆ ∆W θ θ θ θ                                  (27) 

5 System solution  

Equations (23) - (25) represent the non-linear system to be solved in terms of the 
increments ∆θ , ∆χ and ∆N . Replacing the increments ∆T and ∆W  
according to eqns (26) and (27) one has: 

θ θ θ
θ b b bF (∆ , ∆ , ∆ )= -∆ + ∆ +Q ∆ • +Q • ∆ = 0θ χ N θ N N χ N χ            (28) 

χ χ χ
χ b b bF (∆ ,∆ ,∆ )= -∆ + ∆ +Q ∆ • +Q • ∆θ χ N χ N N χ N χ                (29) 

N N N
N s s sF (∆ , ∆ , ∆ )= -∆ + ∆ +Q ∆ +Q ∆⊗ ⊗θ χ N N N θ θ θ θ             (30) 

     The above non-linear system of equations is solved by applying the Newton-
Raphson’s scheme. Within a time increment n n+1 nt t t∆ = −  an iterative process 
may be required to achieve the equilibrium. Then, from the solution at iteration i 
the next try at iteration (i+1) is given by: 

{ } { } { }i+1 i i
n n n∆ = ∆ + δ∆N N N                           (31) 

{ } { } { }i+1 i i
n n n∆ = ∆ + δ∆θ θ θ                                    (32) 
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{ } { } { }i+1 i i
n n n∆ = ∆ + δ∆χ χ χ                          (33) 

     By linearizing eqns (28) - (30), using the first term of the Taylor’s expansion, 

gives: 

( )
( )
( )

 ∂ ∂ ∂
   ∂ ∂ ∂        ∂ ∂ ∂       
 ∂ ∂ ∂   
     ∂ ∂ ∂  
 ∂ ∂ ∂ 

θ θ θ
i i ii i i

in n nθ n n n
n

χ χ χi i i i
χ n n n ni i i

n n n i
i i i n

N n n n N N N
i i i
n n n

F F F
∆ ∆ ∆F ∆ ,∆ ,∆ δ∆
F F F

F ∆ ,∆ ,∆ + δ∆ +...= 0
∆ ∆ ∆

δ∆F ∆ ,∆ ,∆ F F F
∆ ∆ ∆

θ χ Nθ χ N θ

θ χ N χ
θ χ N

Nθ χ N

θ χ N

               (34) 

where each term of the tangent matrix is given by: 

[ ]C =

)

θ i θ i
b n b n
χ χi i

n nb b
N i i
s n n

 • •χ
 
 • •
 
 ⊗ + ⊗ 

- I Q N II Q II

0 - II + Q N II Q II χ

Q (I θ θ I 0  - II

                   (35) 

     Thus, the corrections to be cumulated during the iterations are obtained by 
solving eqn (34), as follows: 

[ ]
( )
( )
( )

1

i i ii θ n n nn
i i i i
n χ n n n
i i i in N n n n

F , ,δ∆

δ∆ = - F , ,

δ∆ F , ,

−

        
   
   
      

∆θ ∆χ ∆Nθ

χ C ∆θ ∆χ ∆N

N ∆θ ∆χ ∆N

                            (36) 

6 Numerical application 

To check the performance of the proposed formulation we have chosen a square 
plate subjected to a uniform load (figure 2). The plate side length is a, the 
thickness is t, with the ration t/a = 0.0.1. The Poisson’s ration was assumed 

0.3ν=  while q is the uniform applied load. 
     Several boundary conditions have been analyzed. We started by assuming 
simple supported and clamped plate conditions. For each of this case the in-plane 
boundary displacements could also be prescribed equal to zero (IE) or kept free 
(ME).  
     The results obtained are shown in figures 3 and 4, for the simply supported 
plate and clamped plate respectively. As can be seen the results are in total 
agreement with the one given by Ye and Liu [3].  
     The obtained results, compared with other numerical and analytical solutions 
demonstrated that the proposed formulation is accurate. Running several other 
internal and boundary meshes has also demonstrated that the convergence is 
obtained quickly. With a rather coarse mesh, particularly to integrate the domain 
integrals, the results are already accurate. The presented results were obtained by 
using a 160 boundary elements and only 8 domain cells 
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Figure 2: Square plate with uniform load. 
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Figure 3: Simply supported plate – load displacement curve. 
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Figure 4: Clamped plate – load displacement curve. 
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7 Conclusions 

A boundary element formulation to analyse von Kármán plates was proposed. 
The domain approximations were simplified by reducing the density of domain 
integrals into simple equivalent values reducing the computational effort to 
compute the matrices related with the domain values. A consistent tangent 
operator has been derived and the Newton process has been implement leading 
accurate and reliable solutions using a very small number of iterations. 
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