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Abstract 

This paper formulates an upgrade of the classical meshless Kansa method. It 
overcomes the principal large-scale bottleneck problem of this method. The 
formulation copes with the non-linear transport equation, applicable in solutions 
of a broad spectrum of mass, momentum, energy and species transfer problems. 
The domain and boundary of interest are divided into overlapping influence 
areas. On each of them, the fields (direct version) or second partial derivatives 
(indirect version) are represented by the multiquadrics radial basis function 
collocation on a related sub-set of nodes. Time-stepping is performed in an 
explicit way. The governing equation is solved in its strong form, i.e. no 
integrations are performed. The polygonisation is not present and the method is 
practically independent of the problem dimension. The complicated geometry is 
easy to cope with. The method is simple to learn and to code. The method can be 
straightforwardly extended to tackle other types of partial differential equations. 

1 Introduction 

Problems in science and engineering are usually reduced to a set of coupled 
partial differential equations. It is not easy to obtain their analytical solution, 
particularly in non-linear and complex-shaped cases, and discrete approximate 
methods have to be employed accordingly. The finite volume (FVM), the finite 
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element (FEM), and the boundary element methods (BEM) are most widely used 
among them at the present. Despite the powerful features of these methods, there 
are often substantial difficulties in applying them to realistic, geometrically 
complex three-dimensional transient situations with moving and/or deforming 
boundaries. A common complication in the mentioned methods is the need to 
create a polygonisation, either in the domain and/or on its boundary. This type of 
(re)meshing is often the most time consuming part of the solution process and is 
far from being fully automated. In recent years, a new class of methods is in 
development that do not require polygonisation but use only a set of nodes to 
approximate the solution. The rapid development of these types of meshless 
(polygon-free) methods and their classification is elaborated in the very recent 
monographs [1,2,3,4]. A broad class of meshfree methods in development today 
are based on Radial Basis Functions (RBFs) [5]. The RBF collocation method or 
Kansa method [6] is the simplest of them. This method has been further 
upgraded to symmetric collocation [7], to modified collocation [8] and to 
indirect collocation [9]. The method has been already used in a broad spectrum 
of computational fluid dynamics problems [10] such as the solution of Navier-
Stokes equations [11] or porous media flow [12] and the solution of solid-liquid 
phase change problems [13]. In contrast to advantages over mesh generation, all 
the listed methods unfortunately fail to perform for large problems, because they 
produce fully populated matrices sensitive to the choice of the free parameters in 
RBFs. One of the possibilities for mitigating this problem is to employ the 
domain decomposition [14]. However, the domain decomposition re-introduces 
some sort of meshing which is not attractive. This paper formulates a simple 
meshfree solution procedure that overcomes the difficulty of having to solve 
fully populated large matrices through the local collocation technique. Two 
variants of the method are described, the direct and the indirect one. 

2 Governing equations 

Let us limit our discussion to solution of the general transport equation, defined 
on a fixed domain Ω  with boundary Γ , standing for a reasonably broad 
spectrum of mass, energy, momentum, and species transfer problems  
 

( ) ( ) ( ) S
t
ρ ρ∂

Φ +∇⋅ Φ = ∇⋅ ∇Φ +      ∂
v DA A                               (1) 

 
with , , , , ,tρ Φ v D  and S  standing for density, transport variable, time, velocity, 
diffusion matrix and source, respectively. The scalar function A  stands for 
possible more involved constitutive relations between the conserved ( )ΦA  and 
the diffused Φ  quantities (such as for example the relation between the enthalpy 
and the temperature). The solution of the governing equation for the transport 
variable at the final time 0t t+∆  is sought, where 0t represents the initial time 
and t∆  the positive time increment. The solution is constructed by the initial and 
boundary conditions that follow. The initial value of the transport variable 
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( ), tΦ p  at a point with position vector p  and time 0t  is defined through the 
known function 0Φ  
 

( ) ( )0, , ;t tΦ =Φ ∈Ω+Γp p p                                     (2) 
 
     The boundary Γ  is divided into not necessarily connected parts 

D N RΓ = Γ ∪Γ ∪Γ  with Dirichlet, Neumann and Robin type boundary 
conditions, respectively. At the boundary point p  with normal Γn  and time 

0 0t t t t≤ ≤ + ∆ , these boundary conditions are defined through known functions 
D
ΓΦ , N

ΓΦ , R
ΓΦ , R

refΓΦ  
 

;D D
ΓΦ = Φ ∈Γp ,   ;N N

n Γ
Γ

∂
Φ =Φ ∈Γ

∂
p ,   ( );R R R

refn Γ Γ
Γ

∂
Φ =Φ Φ−Φ ∈Γ

∂
p     (3,4,5) 

3 Solution procedure 

The representation of function over a set l  of (in general) non-equally spaced 
l N  nodes ; 1,2,...,l n ln N=p  is made in the following way 
 

( ) ( )
1

l K

l k l k
k

ψ α
=

Φ ≈∑p p                                           (6) 

 
l kψ  stands for the shape functions, l kα  for the coefficients of the shape 
functions, and l K  represents the number of the shape functions. The left lower 
index on entries of expression (6) represents the sub-domain lω  on which the 
coefficients l kα  are determined. The sub-domains lω  can in general be 
contiguous (overlapping) or non-contiguous (non-overlapping). Each of the sub-
domains lω  includes l N  grid-points of which l NΩ  are in the domain and l NΓ  
are on the boundary. The coefficients can be calculated from the sub-domain 
nodes in two distinct ways. The first way is collocation (interpolation) and the 
second way is approximation by the least squares method. Only the simpler 
collocation version for calculation of the coefficients is considered in this text. 
Let us assume the known function values l nΦ  in the nodes l np  of the 
subdomain lω . The collocation implies 
 

( ) ( )
1

l N

l n l k l n l k
k

ψ α
=

Φ =∑p p                                         (7) 

 
     For the coefficients to be computable, the number of the shape functions has 
to match the number of the collocation points l lK N= , and the collocation 
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matrix has to be non-singular. The system of equations (7) can be written in a 
matrix-vector notation 
 

( ) ( ); ,l l l l kn l k l n l n l nψ ψ= = Φ = Φψ α Φ p p                              (8) 
 
     The coefficients lα  can be computed by inverting the system (8) 
 

1
l l l

−=α ψ Φ                                                          (9) 
 
     By taking into account the expressions for the calculation of the coefficients 
lα , the collocation representation of function ( )Φ p  on subdomain lω  can be 
expressed as 
 

( ) ( )
1 1

l lN N
-1

l k l kn l n
k n

ψψ
= =

Φ ≈ Φ∑ ∑p p .                                       (10) 

 
     Let us introduce the Cartesian coordinate system with base vectors 

; , ,x y zς ς =i  and coordinates ; , ,p x y zς ς = , i.e. ; , ,p x y zς ς ς= =p i . The first 

partial spatial derivatives of ( )Φ p  on subdomain lω  can be expressed as 
 

( ) ( )
1 1

; , ,
l lN N

-1
l k l kn l n

k n

ψ x y z
p pς ς

ψ ς
= =

∂ ∂
Φ ≈ Φ =

∂ ∂∑ ∑p p .                     (11) 

 
     The second partial spatial derivatives of ( )Φ p  on subdomain lω  can be 
expressed as 
 

( ) ( )
2 2

1 1

; , , ,
l lN N

-1
l k l kn l n

k n

ψ x y z
p p p pς ξ ς ξ

ψ ς ξ
= =

∂ ∂
Φ ≈ Φ =

∂ ∂∑ ∑p p .               (12) 

3.1 The direct approach 

The radial basis functions, such as multiquadrics, can be used for the shape 
function 
 

( ) ( ) ( )1/ 22 2 2;l k l k l k l k l kr c rψ  = + = − ⋅ − p p p p p                      (13) 
 
where c  represents the shape parameter. The explicit values of the first and the 
second derivatives of ( )kψ p  (in 2D, because of the space limitations) are 
 

( )
( )1/ 22 2

x l kx
l k

x l k

p p
p r c

ψ −∂
=

∂ +
p ,   ( )

( )1/ 22 2

y l ky
l k

y l k

p p
p r c

ψ
−∂

=
∂ +

p          (14,15) 
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( ) ( )
( )

2 22

3/ 22 2

y l ky
l k

x x l k

p p c
p p r c

ψ
− +∂

=
∂ +

p ,   ( ) ( )
( )

2 22

3/ 22 2

x l kx
l k

y y l k

p p c
p p r c

ψ
− +∂

=
∂ +

p   (16,17) 

 

( ) ( )
( )( )

( )
2 2

3/ 22 2

x l kx y l ky
l k l k

x y y x l k

p p p p
p p p p r c

ψ ψ
− −∂ ∂

= = −
∂ ∂ +

p p                  (18) 

3.2 The indirect approach 

In the indirect approach, the formulation of the problem starts with the 
representation of the second derivatives of the function with RBFs. The 
derivative expression is then integrated to yield an expression for the original 
function. 
 

( ) ( ) ( )
2 1/ 22 2

l k l k l kr c
p p

ξς

ξ ς

ψ ψ∂
= = +

∂
p p ,   ( ) ( )l k l k dp

p
ξς

ξ
ς

ψ ψ∂
=

∂ ∫p p   (19,20) 

 

( ) ( )( )l k l k dp dpξς
ξ ςψ ψ= ∫ ∫p p                                     (21) 

 

     The explicit values of the involved integrals are for the case with 
multiquadrics (in 2D, because of the space limitations) 
 

( )
( )( )

( ) ( ) ( )

1/ 22 2

2 2
1/ 22 2

2

ln
2

x l kx l k
l k x

y l ky
l k x l kx

p p r c
dp

p p c
r c p p

ψ
− +

=

− +  + + + −  

∫ p
                    (22) 

 

( ) ( )( )

( ) ( ) ( )

1/ 22 2

2 2
1/ 22 2

2

ln
2

y l ky l k
l k y

x l kx
l k y l ky

p p r c
dp

p p c
r c p p

ψ
− +

=

− +  + + + −  

∫ p
                    (23) 

 

( )( ) ( ) ( ) ( )

( ) ( )
( ) ( )

22 2
1/ 22 2

2 2
1/ 22 2

2 2
6

ln
2

x l kx y l ky
l k x x l k

x l kx y l ky

l k x l kx

p p p p c
dp dp r c

p p p p c
r c p p

ψ
− − − −

= + +

 − − +    + + −  

∫ ∫ p
    (24) 

 

( )( ) ( ) ( ) ( )
( ) ( )

( ) ( )

2 2 2
1/ 22 2

2 2
1/ 22 2

2 2
6

ln
2

y l ky x l kx
l k y y l k

y l ky x l kx

l k y l ky

p p p p c
dp dp r c

p p p p c
r c p p

ψ
− − − −

= + +

 − − +   + + −  

∫ ∫ p
   (25) 
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( )( ) ( )( )
( ) ( ) ( )( )

( )( )
( )

( ) ( ) ( ) ( )

( )

1/ 22 2 2 2

3

1/ 22 2 2

1/ 22 2 2 2

6 6
18

6 2

1 3 ln
6
1
6

l k x y l k y x

y l ky
y l ky x l kx l k

x l kx y l kyy l ky

l k

y l ky y l ky l k x l kx

x l kx x l

dp dp dp dp

p p
p p c p p r c

p p p pp pc arctan arctan
c r c

p p p p c r c p p

p p p

ψ ψ= =

−  − − + − − +  

 − −− + −
 + 

  + − − + + + −      

+ − −

∫ ∫ ∫ ∫p p

( ) ( ) ( )1/ 22 2 2 23 lnkx l k y l kyp c r c p p  + + + −    

         (26) 

 
     The collocation in indirect approach implies 
 

( ) ( )
1

l N

l n l k l n l k
k

ξς ξςψ α
=

Φ =∑p p                                        (27) 

 
     This can be performed in 6 different ways, depending on the choice of ξ  and 
ς , i.e. xξ ς= = , yξ ς= = , zξ ς= = , ,x yξ ς= =  or ,y xξ ς= = , 

,x zξ ς= =  or ,z xξ ς= = , ,y zξ ς= =  or ,z yξ ς= = . The system of 
equations (27) can be written in a matrix vector notation  
 

( ) ( ); ,l l l l kn l k l n l n l n
ξς ξς ξς ξςψ ψ= = Φ = Φψ α Φ p p                      (28) 

 
     The coefficients l

ξςα  can be computed by inverting the system (28) 
 

1
l l l

ξς ξς −=α ψ Φ                                                     (29) 
 

     By taking into account the expressions for the calculation of the coefficients 
l

ξςα  the indirect collocation representation of function ( )Φ p  on subdomain lω  
can be expressed as 
 

( ) ( )
1 1

l lN N
-1

l k l kn l n
k n

ψξς ξςψ
= =

Φ ≈ Φ∑ ∑p p                                  (30) 

 
     The first spatial partial derivatives of ( )Φ p  on subdomain lω  can be 
expressed as 
 

( ) ( )
1 1

; , ,
l lN N

-1
k l kn l n

k n

ψ x y z
p p

ξς ξς

ς ς

ψ ς
= =

∂ ∂
Φ ≈ Φ =

∂ ∂∑ ∑p p                    (31) 
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     The second spatial partial special derivatives of ( )Φ p  on subdomain lω  can 
be expressed as 
 

( ) ( )
2

1 1

; , , ,
l lN N

-1
l k l kn l n

k n

ψ x y z
p p

ξς

ς ξ

ψ ς ξ
= =

∂
Φ ≈ Φ = =

∂ ∑ ∑p p                    (32) 

3.3 Governing equation manipulations 

What follows elaborates the semi-explicit solution of the general transport 
equation (1), subject to the initial condition (2), and the boundary conditions 
(3,4,5). The general transport equation can be transformed into the following 
expression by taking into account the explicit time discretisation 
 

( ) [ ] ( )0 0
0 0 0 0 0 S

t
ρ ρ

ρ
Φ −

+∇⋅ = ∇⋅ ∇Φ +
∆

v D
A A

A .                      (33) 

 
     At time 0t t t= + ∆ , the functions ( )ΦA  and ( )S Φ  can be expanded as 
 

( ) ( )∂
Φ ≈ + Φ−Φ

∂Φ
A

A A ,   ( ) ( )SS S ∂
Φ ≈ + Φ−Φ

∂Φ
,             (34,35) 

 
( ) [ ] ( ) ( )0 0

0 0 0 0 0 S S
t

ρ ρ ρ
ρΦ

Φ

+ Φ−Φ −
+∇⋅ = ∇⋅ ∇Φ + + Φ−Φ

∆
v D

A A, A
A ,    (36) 

 
     Since the problem is non-linear, timestep iterations have to be employed. The 
over-bar denotes value from previous iteration. The unknown function value nΦ  
in grid-point np  can be calculated as 
 

( ) ( )0 0 0 0 0 0 0

n

n n n n n n n n n n n n n
n n

n n

St S

St

ρ ρ ρ ρ

ρ

Φ =

 ∂ ∂− Φ +∆ ∇⋅ ∇Φ −∇⋅ + − Φ ∂Φ ∂Φ 
∂ ∂−∆
∂Φ ∂Φ

D vA
A A + A

A

 

                                                                                                                           (37) 
 

     The calculation of the convective and diffusive terms use expressions (11,12) 
in the direct approach and (31,32) in the indirect approach, respectively. The 
complete solution procedure follows the below defined steps 1-5. Step 1: First, 
the initial conditions are set in the domain and boundary nodes and the 
derivatives required in the convective and diffusive terms are calculated from the 
known nodal values. Step 2: The equation (37) is used to calculate the new 
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values of the variable l nΦ  at time 0t t+ ∆  in the domain nodes. Step 3: What 
follows in the steps 3 and 4 defines variable l nΦ  at time 0t t+ ∆  in the Dirichlet, 
Neumann, and Robin boundary nodes. For this purpose, in the step 3, the 
coefficients lα  have to be determined from the new values in the domain and 
from the information on the boundary conditions. Let us introduce domain, 
Dirichlet, Neumann, and Robin boundary indicators for this purpose. These 
indicators are defined as 
 

1;
0;

n
n

n
Ω

∈Ω
ϒ =  ∉Ω

p
p

,  
1;
0;

D
D n

n D
n

Γ

 ∈Γ
ϒ = 

∉Γ

p
p

,  
1;
0;

N
N n

n N
n

Γ

 ∈Γ
ϒ = 

∉Γ

p
p

,  
1;
0;

R
R n

n R
n

Γ

 ∈Γ
ϒ = 

∉Γ

p
p

  (38) 

 
     The coefficients lα  are in the direct approach calculated from the system of 
equations 
 

( ) ( )

( ) ( )

( )

1 1

1 1

1

l l

l l

l

N N
D

l n l k l n l k l n l k l n l k
k k

N N
N R

l n l k l n l k l n l k l n l k
k k

N
D D N N R R R

l n l n l n l n l n l n l n l n l k l n l k l ref n
k

n n

ψ α ψ α

ψ α ψ α

ψ α

Ω Γ
= =

Γ Γ
= =Γ Γ

Ω Γ Γ Γ Γ Γ
=

ϒ + ϒ

∂ ∂
+ ϒ + ϒ =

∂ ∂


= ϒ Φ + ϒ Φ + ϒ Φ + ϒ Φ − Φ 

 

∑ ∑

∑ ∑

∑

p p

p p

p

  (39) 

 
     The calculation of the coefficients lα  follows from the following system of 
linear equations in the direct approach 
 

l l l=Ψ α b                                                   (40) 
 
with the following explicit form of the system matrix coefficients 
 

( ) ( )

( ) ( ) ( )
1

l

D
l nk l n l k l n l n l k l n

N
N R R

l n l k l n l n l k l n l n l k l n
kn n

ψ ψ

ψ ψ ψ

Ω Γ

Γ Γ Γ
=Γ Γ

Ψ = ϒ + ϒ

 ∂ ∂
+ ϒ + ϒ − Φ ∂ ∂ 

∑

p p

p p p
      (41) 

 
and with the following explicit form of the augmented right hand side vector 
 

D D N N R R R
l n l n n l n n l n n l n l n l ref nΩ Γ Γ Γ Γ Γ= ϒ Φ + ϒ Φ + ϒ Φ − ϒ Φ Φb                  (42) 

 
     The coefficients l

ξςα  are in the indirect approach calculated from the system 
of equations 
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( ) ( )

( ) ( )

( )

1 1

1 1

1

l l

l l

l

N N
D

l n l k l n l k l n l k l n l k
k k

N N
N R

l n l k l n l k l n l k l n l k
k k

N
D D N N R R R

l n l n l n l n l n l n l n l n l k l n l k l ref n
k

n n

ξς ξς ξς ξς

ξς ξς ξς ξς

ξς ξς

ψ α ψ α

ψ α ψ α

ψ α

Ω Γ
= =

Γ Γ
= =Γ Γ

Ω Γ Γ Γ Γ Γ
=

ϒ + ϒ

∂ ∂
+ ϒ + ϒ =

∂ ∂


= ϒ Φ + ϒ Φ + ϒ Φ + ϒ Φ − Φ 

 

∑ ∑

∑ ∑

∑

p p

p p

p

 (43) 

 
     The calculation of the coefficients l

ξςα  follows from the following system of 
linear equations in the indirect approach 
 

l l l
ξς ξς =Ψ α b                                                    (44) 

 
with the following explicit form of the system matrix coefficients 
 

( ) ( )

( ) ( ) ( )
1

l

D
l nk l n l k l n l n l k l n

N
N R R

l n l k l n l n l k l n l n l k l n
kn n

ξς ξς ξς

ξς ξς ξς

ψ ψ

ψ ψ ψ

Ω Γ

Γ Γ Γ
=Γ Γ

Ψ = ϒ + ϒ

 ∂ ∂
+ ϒ + ϒ − Φ ∂ ∂ 

∑

p p

p p p
   (45) 

 
and with the augmented right hand side vector equal to the one in the direct 
approach. The following coefficients need to be calculated in the general three-
dimensional case in the indirect approach xx

lα , yy
lα , zz

lα , xy
lα  or yx

lα , xy
lα  or 

yx
lα , xz

lα  or zx
lα , yz

lα  or zy
lα . The indirect approach is thus computationally 

more demanding (6 systems of equations have to be solved in contrast to only 
one in direct approach), however it gives more accurate results as reported in [9]. 
Step 4: The unknown boundary values are set from equation (10) in the direct 
approach and from the equation (40) in the indirect approach. Step 5: The 
iterations over one time-step are completed when the criterion (46) is satisfied in 
all computational nodes 1,2,...,n N=  
 

max n n itrΦ −Φ ≤Φ                                            (46) 
 
     The steady-state is achieved when the criterion (47) is satisfied in all 
computational nodes 1,2,...,n N=  
 

0max n steΦ −Φ ≤Φ                                            (47) 
 
     The parameters itrΦ and steΦ  are defined as the iteration and the steady-state 
convergence margins. In case the iteration criterion is passed, calculation of the 
new time-step is performed. In case the steady-state criterion is passed or the 
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time of calculation exceeds the foreseen time of interest, the calculation is 
stopped. 

4 Conclusions 

This paper represents a new meshfree formulation for solving a wide range of 
transport phenomena. The governing equation is solved in its strong form. The 
developments are almost independent on the problem dimension. The 
complicated geometry is easy to cope with. No polygonisation is needed. No 
integrations are needed. The method appears efficient, because it does not 
require a solution of the large systems of equations like the original Kansa 
method. Instead, small systems of linear equations have to be solved in each 
timestep for each node and associated sub-domain, representing the most natural 
and automatic domain decomposition. The method is simple to learn and simple 
to code. The method can cope with large problems. A detailed comparative 
numerical study of both approaches will appear in one of our future publications. 
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