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Abstract

The Boundary Element Method (BEM) is a very effective technique for solving
complex domain and moving boundary problems, because it only involves calcu-
lations on the boundary thus reducing the processing time. For nonlinear and time
dependent problems the BEM method presents some domain integrals that can be
transformed into equivalent boundary integrals by the dual reciprocity approach
applied in a subdomain basis; this method is known as Multi Domain Dual Reci-
procity MD-DRM. In this paper some flow examples with moving boundaries will
be solved using the MD-DRM method to predict particle trajectories and in par-
ticular the simulation of a Savonius rotor with a more complex geometry will be
carried out to predict the velocity field, tractions and torque in this equipment.
Keywords: moving boundaries, tracking particles, savonius rotor, mixing.

1 Introduction

The recent energy crisis has required the world to look in the direction of alterna-
tive energy sources, wind power being the most widely used, mainly in coast line
and offshore applications with large scale horizontal axis turbines. Even though
these arrangements have high power outputs and efficiencies, they require large,
low populated areas, along with high initial investments. In light of this, the urban
generation market has shown to be a good possibility of development. But in urban
and suburban areas, wind is not as reliable, with low wind speeds and fluctuating
directions due to the interaction with the surrounding constructions. This panorama
does not allow for the use of horizontal axis turbines but is well suited for a vertical
axis turbine such as the Savonius rotor.
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Although this turbines have been in the market for several years, different sit-
uations have slowed their development, and, in today’s world, the experimental
design is not an option due to high costs involved and the slow rate of improve-
ment achievable. The obvious answer is to develop a computational method that
can accurately predict the behaviour of a given configuration under an specific set
of conditions, but there are certain difficulties involved in this process.

The first factor that must be taken into account is that the flow field around the
Savonius turbine is not constant as it rotates, because different parts of the configu-
ration face the flow at each angular position. Secondly, its operation characteristics
create a high index of vorticity around the configuration, requiring a strong numer-
ical method that can evaluate the flow under such extreme conditions.

Conventional numerical methods for fluid dynamics problems such as finite vol-
umes and finite elements are not very efficient because of excessive computational
time and high memory requirements. On the other hand, the boundary element
method BEM is faster and more reliable because it reduces all the calculations
to the boundary of the problem or at least to the boundary of each domain ele-
ment (cell) in which the original region is divided [12] rendering this method more
suitable for moving boundary problems.

In order to apply the BEM method to complex flow problems that involve iner-
tia terms and gravity, it is necessary to find a fundamental solution or Green func-
tion for the partial differential equations that govern the phenomenon. However,
since it is not possible to know such fundamental solution for a general model,
it is required to group all of the non-linear and non-homogeneous terms into a
pseudo-body force which leads to some domain integrals that might be evaluated
by cell integration [1] which consumes high computer time and it makes the BEM
lose it boundary only character. Therefore a few methods have been developed to
transform the domain integrals into equivalent boundary integrals such as the dual
reciprocity method (DRM) [11] that has greatly benefited from recent advances in
multidimensional interpolation with radial functions (RBF) [10]. The first compar-
ison of application between the usual conical function 1+r and the augmented thin
plate splines as well as report of improvement of accuracy in the DRM approach
when subdomains are used was reported by Popov and Power [12].

The greatest problem with DRM is that it requires many multiplications of fully
populated matrices and for complex non-linear problems it needs a large number
of notes for the interpolation of the non-homogenous terms. In order to solve these
problems and limitations it is usual to use domain decomposition together with
DRM, in which the original domain is divided into subregions and in each of them
the full integral formula is applied, this method is known as Multidomain Dual
Reciprocity (MD-DRM) [13, 2]. In the MD-DRM matrices are sparse alike the
finite element method and hence the solution is fast and efficient, and although
there is an internal mesh and domains cell integration is avoided altogether.

When simulating rotating machines such as a Savonius turbine the labor inten-
sity is amplified by the additional complexity of moving boundaries. There are two
kinds of moving boundaries: those related with free surfaces in fluids, and those
involving moving solid boundaries, this latter case will be analysed in this paper.
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An additional advantage of using the BEM is that it gives us as a direct result the
tractions on the moving boundaries, allowing for the calculation of the torque in
this equipment, which in terms for the design of a Savonius rotor.

The purpose of this research is to present a simulation that can accurately deal
with a moving boundary of a Savonius rotor based on the BEM technique. Several
examples will be solved to show the versatility the numerical method for complex
moving boundaries, and also to compare the performance of the traditional single
domain BEM with the MD-DRM when particle tracking is concerned.

2 Mathematical model

2.1 Governing equations

The system of mass and momentum conservation equations for the unsteady state
flow of an isothermal fluid are given in tensor notation by

∂ui

∂xi
= 0, x ∈ Ω (1)

− ∂p

∂xi
+ µ

∂2ui

∂xj∂xj
= ρ

∂ui

∂t
+ ρuj

∂ui

∂xj
, x ∈ Ω (2)

with boundary conditions
ui = ui0, x ∈ Γu (3)

ti = σijnj = ti0, x ∈ Γt (4)

where σij is the total stress tensor; ui is the velocity vector; ti is the traction
vector; ni is the outward unit normal to the boundary Γ = Γu + Γt of the volume
Ω and p the pressure. The thermophysical properties are: ρ the fluid density, µ the
viscosity.

The total stress tensor is obtained by, σij = −pδij + µεij , with εij = 1
2(

∂ui

∂xj
+ ∂uj

∂xi

)
being the strain rate tensor.

For the Savonius turbine, the torque T can be calculated from the traction field
on the rotor’s boundary by integrating along the boundary, the product

−→
R × −→

t ,
where

−→
R is the position vector of each point.

2.2 Multi-domain integral formulation

In the multi-domain BEM approach, the original domain is divided into smaller
subregions or domain elements, each of them enclosed by a certain number of
boundary elements. The solution of the partial differential equations Eq. (1)-(2)
in each subdomain is given in terms of the corresponding integral representation
formula. Also, adjacent domain-elements have to be matched according to some
continuity or compatibility conditions for all the variables namely velocity and
traction [3].
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From the integral representation of Eq. (2) given in [7], it is found that the i
component of the velocity field at a point x of the n-th subregion bounded by the
contour Γn that encloses the sub-domain Ωn is given by

cikui(x) =
∫

Γn

Kkj(x, y)uj(y)dΓy −
∫

Γn

Uk
i (x, y)ti(y)dΓy

−
∫

Ωn

Uk
i (x, y)gi(y)dΩy (5)

for n = 1, 2, . . . , M where M is the total number of subregions.
In the above equations ti(y) is the i component of the traction due to the flow

field (�u, p). The kernel Uk
i (x, y) is the fundamental singular solution of the New-

tonian Stokes system of equations (Stokeslet), where r is the distance from point y
to any other point x, i.e. r = |x − y|, and Kik(x, y) is the traction corresponding
to the flow field

(−→u k(x, y), qk(x, y)
)
. The coefficients cik have values between

δik and 0, being equal to 1
2δik for smooth boundaries, and equal to cik = δik for

points inside the domain Ωn.
The final set of equations is completed by assembling the integral equations

Eq. (5) for each domain element, using the traction equilibrium and velocity com-
patibility at the common interfaces between subregions, i.e. u

(+)
i = u

(−)
i and

σ
(+)
ij nj + σ

(−)
ij nj = 0.

The domain integrals in expression (5) account for all the nonhomogeneous
terms in the original partial differential equations (2). Where gi stands for the
term ρ∂ui

∂t + ρuj
∂ui

∂xj
, and all together can be converted into equivalent boundary

integrals in each subdomain by the Multi-Domain Dual Reciprocity or MD-DRM.
To express the domain integral in Eq. (5) in terms of equivalent boundary inte-

grals, the Dual Reciprocity Method (DRM) approximation is introduced. The basic
idea is to expand the �g(x) term using radial interpolation functions at each sub-
region.

An augmented spline consists of a radial basis function (RBF) plus a series of
additional global functions[6]. In this particular case, it will be considered that
there are A = 3 augmentation global functions from the set {1, x1, x2}. The RBF
used in this work is the thin-plate spline. Although many different RBFs are dis-
cussed in the literature [6], the thin plate spline has features of optimality and
convergence that make it the recommended choice [9].

The expansion of the �g(x) term, when applied to the N + L collocation nodes,
with N being the number of nodes on the boundary and L the number of internal
nodes, will generate 2(N + L) linear equations with 2(N + L + A) unknowns
and therefore 2A additional conditions are necessary which basically guarantee an
optimum interpolant [6].

Now, it is necessary to define an auxiliary velocity field
(
Û lm

i (x), p̂lm(x)
)

[14],

as obtained in previous works [9, 3]. At this point we can apply Green´s identities
to the auxiliary velocity field to obtain integral representation formulae only in
terms of boundary integrals [14, 11, 2, 5], thus
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ckj(x)uk(x) −
∫

Γn

Kkj(x, y)uj(y)dΓy +
∫

Γn

Uk
i (x, y)tj(y)dΓy

=
N+L+A∑

m=1

αm
l

{
ckj(x)Û lm

k (x) −
∫

Γn

Kkj(x, y)Û lm
j (y)dΓy (6)

+
∫

Γn

Uk
i (x, y)t̂lmj (y)dΓy

}

3 Discretization of the integral equations

For the numerical solution of the problem the surface Γn of each subregion or
domain element can be discretised by means of isoparametric linear boundary ele-
ments. Along each element the integrals are calculated in terms of the nodal values
of the velocity and tractions and using linear interpolation functions. In this way
Eq.(6) can be written in matrix from as:

(cu)i − Hikuk + GiktN
k =

N+P∑
m=1

αj(Hik t̂kj−Gikûkj + (cûij)) (7)

where Hik and Gik are the standard influence matrices resulting from the inte-
grations over the boundary elements, the index i represents de collocation nodes,
k the nodes at the integration elements and j the DRM collocation points. In the
present case, these matrices result from the integration over the four elements that
form each subdomain.

To find the value of the coefficients αm
l in Eq.(7), we expand the �g(x) term

using radial interpolation functions at each of the N chosen collocation nodes. In
this way the following systems of equations are obtained,

Fα = g (8)

that can be inverted to get the values of the unknown coefficients.When the nodal
points are all distinct, the matrix resulting from any of the radial basis function
interpolation given before is always non singular [8].

When the discrete integral equations for each domain-element Eq.(7) are put
together, the final systems of equations are written in matrix notation as,

Hu− Gt = −(Hû− Gt̂)α (9)

As shown in [4] the vector α is expressed in terms of velocities at the colloca-
tion nodes,and Eq. (9) is a nonlinear system that can be solved using the Newton-
Raphson scheme combined with a line-search algorithm intended to reduce the
error at each iteration.

Because the term g in 5 includes time derivatives of the velocity, the most
straightforward procedure to approximate them was finite differences:
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∂ui

∂t
≈

u
(k+1)
i − u

(k)
i

∆t
(10)

Since the boundaries rotate, domain geometry changes at each time step, and a
new mesh would have to be generated at each instant. To avoid the calculations
involved in the remeshing, the original mesh is rotated around the turbine’s axis an
angular step in accordance with the time step and the angular velocity for which
the velocity field is being calculated. In order to obtain the time derivative (10)
it is necessary to calculate the velocity of each node of the mesh at the previous
instant. Knowing that the positions of the nodes changed from the last time step,
a multidimensional interpolation with radial functions and the colocation method
on each of the previous positions of the mesh nodes is employed.

Once the velocity field is calculated, the velocities of a different set of points
contained in the general domain are obtained by a second multidimensional inter-
polation with radial functions using each of the mesh nodes for the colocation
method. The previous procedure is done globally performing the colocation on
the entire set of mesh nodes, and redone at each step. After obtaining the velocity
by interpolation, the displacement of each point is calculated by a simple Euler
method and the new position of each point will be generated for the next time step
and new configuration of the mesh.

It must be noted that the boundary element method is ideally suited to track
particles in the flow since the solution at any internal location can be obtained
quite easily from the geometry matrices that define the radial interpolation (8).
Numerically tracking tracer points through out the rotation of the Savonius turbine
allows the user not only to visualize the deformation of tracer lines, in different
regions but also to calculate strain rates and tractions at every time step because
the tracer points carry information of velocity and velocity gradients.

Figure 1: Excentrical cylinder mixer. Numerical results.
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Figure 2: Excentrical cylinder mixer. Experimental results.

Figure 3: Multidomain quadrilateral mesh.

3.1 Numerical results

To test the effectiveness of the proposed numerical method for the analysis of rota-
tory configurations, an excentrical cylinder mixer was simulated, and the results
were compared with an experimental study developed by Professor James Ottino.
The numerical results obtained by the MD-DRM method are shown in figure 1,
while the experimental results by professor Ottino can be seen in figure 2 (from
website of Prof. J.M. Ottino, Dep. of Chemical Engineering, Northwestern U.),
and from the comparison it is evident the high accuracy of the numerical method
for simulation of complex fluid configurations. Each domain element is made up
of four boundary elements. The mixing protocol for the experiment involves a
counter-clockwise rotation of the inner cylinder throughout 1080◦, followed by a
clockwise rotation of the outer cylinder throughout 240◦, and finally a repetition
of the same movement in the inner cylinder.

The second numerical example is a Savonius rotor. The meshed general domain
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Figure 4: Tracer point trajectories.

Figure 5: Velocity field.

and the geometry are shown in figure 3. The mesh is structured and it has a higher
density near the rotor. A 4.5 m/s wind speed and a 0.8 wing tip speed ratio (ratio
of the wing tip tangential speed to wind speed) was used in the analysis as it cor-
responds to an actual practical situation; 22 tracer point were used and their tra-
jectories are shown in figure 4. The velocity field for specific position is shown in
figure 5. The torque of the configuration is shown in figure 6. In it, a high variation
of the torque can be seen as the turbine rotates. Another important aspect is the
symmetry of the profile relative to a 180◦ position. Both situations go along with
the physical characteristics of the rotor.
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Figure 6: Torque history.

3.2 Conclusions

The MD-DRM was modified to model particle trajectories in a complex flow prob-
lem with rotating elements. The updating of positions and instant velocities of each
tracer point was conducted by multidimensional interpolation with radial func-
tions and an Euler method. The results obtained by this method agree with the
experimental results and the expected physical characteristics of complex rotatory
machinery.
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