Hierarchical plate modelling by boundary elements

T. Westphal Jr. & E. Schnack
Institute of Solid Mechanics, Karlsruhe University, Kaiserstrasse 12, D76128 Karlsruhe, Germany

Abstract

We obtain a hierarchical formulation for the differential and integral equations of the twelfth-order plate bending model for homogeneous transversely isotropic materials (Poniatovskii [1], Reissner [2]). The hierarchical specification means that the direct reduction from the twelfth-order equation system furnishes corresponding systems of lower-order: a) the systems of sixth-order of Reissner [3] and Mindlin [4], and b) the system of fourth-order of Kirchhoff. By means of the selection of particular values of two coupling coefficients we obtain the sixth-order system of Reissner. The sixth-order system of Mindlin and the fourth-order system of Kirchhoff are included in the hierarchy by using the tensors of Westphal Jr. et al. [5]. The differential equations for the twelfth-order model are obtained by application of the Hellinger-Reissner mixed variational principle. We show that the system of differential equations gives a best approximation to the three-dimensional elasticity equations (Lur'e [6]) than displacement-based models (Schwab & Wright [7]). The hierarchical reduction of the twelfth-order integral equations furnishes the well known sixth-order equations of van der Weeën [8]. With the corresponding fundamental solutions the BEM can consequently be used to solve the hierarchy of problems.

1 Introduction

The present paper deals with a hierarchical derivation of the differential and integral equations of high-order plate bending models for homogeneous transversely isotropic materials. Concerning the order of the polynomial
used for approximation of the displacement field, a problem will be specified as a \((n_r, n_s)\) plate model, where \(n_r\) refers to the polynomial order of the in-plane displacements, whereas \(n_s\) is the polynomial order of the out-of-plane displacement. For displacement-based approaches the notation \(d-(n_r, n_s)\) will be used, while for approaches based on the mixed Hellinger-Reissner functional the notation \(s-(n_r, n_s)\) will be adopted. The hierarchy of models we are concerned is shown schematically in Figure 1.

![Figure 1: The hierarchy of plate models.](image)

Small Greek and Latin indices and capital Latin indices range over the intervals \(\alpha, \beta, \ldots = \{1, 2\}; \ i, j, \ldots = \{1, 2, 3\}; \) and \(I, J, \ldots = \{1, 2, 3, 4, 5, 6\}\), except when explicitly established, according to the rules of the indicial notation. The position of these indices, whether upper or lower, does not change the rule; the upper indices are enclosed in parentheses for clarity. The equations are treated within the framework of the linearized theory of elasticity.

Let \((\mathbf{x}) := (x_1, x_2, x_3) \in \mathbb{R}^3\) with \((\mathbf{\bar{x}}) := (x_1, x_2) \in \mathbb{R}^2\) be a Cartesian coordinate system. Consider an open multi-connected region \(V(\mathbf{x})\), defined by a constant thickness \(h = 2c > 0\) and a middle surface \(\Omega(\mathbf{\bar{x}})\) with a Lipschitz continuous boundary \(\Gamma(\mathbf{\bar{x}}), \ \bar{\Omega} := \Omega \cup \Gamma\). The geometry of the problem is shown in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>2-D</th>
<th>3-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>(\Omega)</td>
<td>(V := {\mathbf{x} \mid \mathbf{\bar{x}} \in \Omega, -c < x_3 < c})</td>
</tr>
<tr>
<td>boundary</td>
<td>(\Gamma)</td>
<td>(S := {\mathbf{x} \mid \mathbf{\bar{x}} \in \Gamma, -c \leq x_3 \leq c})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_\pm := {\mathbf{x} \mid \mathbf{\bar{x}} \in \bar{\Omega}, x_3 := \pm c})</td>
</tr>
<tr>
<td>closure</td>
<td>(\bar{\Omega} := \Omega \cup \Gamma)</td>
<td>(\bar{V} := V \cup S \cup R_\pm)</td>
</tr>
</tbody>
</table>

Table 1: Geometry of the problem.
2 General 2-D Formulation

The 3-D equilibrium equations are

$$\sigma_{ij,j}(x) + b_i(x) = 0,$$ \hspace{1cm} (1)

where $b_i(x)$ are the volume forces, with loadings on the faces R_\pm

$$\sigma_{\alpha 3}(x) |_{x_3=\pm c} := 0 \quad \text{and} \quad \sigma_{33}(x) |_{x_3=\pm c} := \pm \frac{1}{2} q_3(x).$$ \hspace{1cm} (2)

A plate bending problem is specified by the following ansatz: Given a pair $\{r, s\}$, $r, s = 1, 2, \ldots \in \mathbb{N}$, the variation of displacements across the plate thickness is approximated by

$$u_\alpha(x) := \sum_{k=1}^{M} a_{2k-1}\phi^{(k)}_{\alpha}(\overline{x}) c P_{2k-1}(\xi),$$ \hspace{1cm} (3a)

$$u_3(x) := \sum_{k=1}^{M} a_{2(k-1)}\phi^{(k)}_{3}(\overline{x}) \frac{d P_{2k-1}(\xi)}{d \xi},$$ \hspace{1cm} (3b)

where $\phi^{(k)}_{i}(\overline{x})$ are the plate displacements, $\xi := x_3/c$, $M := \max\{r, s\}$, $P_n(\xi)$ are Legendre polynomials of order n, and $a_n \in \mathbb{R}$, $n = 0, \ldots, 2M - 1$. Additionally we define $n_r := 2r - 1$ and $n_s := 2(s - 1)$. In this work we consider only the case $r := s$.

The plate stresses are given by

$$\sigma_{\alpha \beta}^{(k)}(\overline{x}) := \int_{-c}^{c} a_{2k-1}\sigma_{\alpha \beta}(x) c P_{2k-1}(\xi) \, dx_3, \quad k = 1, \ldots, r,$$ \hspace{1cm} (4a)

$$\sigma_{\alpha 3}^{(k)}(\overline{x}) := \int_{-c}^{c} a_{2(k-1)}\sigma_{\alpha 3}(x) \frac{d P_{2k-1}(\xi)}{d \xi} \, dx_3, \quad k = 1, \ldots, s,$$ \hspace{1cm} (4b)

$$\sigma_{33}^{(k-r)}(\overline{x}) := \int_{-c}^{c} a_{2k-1}\sigma_{33}(x) c P_{2k-1}(\xi) \, dx_3, \quad k - r = 1, \ldots, s - 1.$$ \hspace{1cm} (4c)

For the transverse plate stresses we use the alternative notations

$$\sigma^{(k)}_\alpha(\overline{x}) \equiv \sigma_{\alpha 3}^{(k)}(\overline{x}), \quad \sigma^{(k-r+1)}(\overline{x}) \equiv \sigma_{33}^{(k-r)}(\overline{x})$$ \hspace{1cm} (5)

The 2-D displacement and stress components are grouped in the following arrays...
We added 1 to the index of the left variable in eqn (5b) and defined
\[\sigma^{(1)}(x) := q_3(x) \] (7)
and included consequently the loading in \(\tau^{(1)}_3(x) \), eqn (6b).

Considering the equations of the 3-D theory of elasticity it results from the displacement ansatz (3) (see Westphal Jr. [9]):

The distribution of volume forces \(b_i(x) \) along the thickness direction are

\[b_\alpha(x) = \frac{1}{2c^2} \sum_{k=1}^{M} \frac{4k-1}{a_{2k-1}} m^{(k)}_\alpha(x) P_{2k-1}(\xi) \], \hspace{1cm} (9a)

\[b_3(x) = \frac{1}{2c} \sum_{k=1}^{M} \frac{1}{a_{2k-1}} m^{(k)}_3(x) \left[P_{2(k-1)}(\xi) - P_{2k}(\xi) \right] \], \hspace{1cm} (9b)

with the 2-D corresponding forces \(m^{(k)}_i(x) \)

\[m^{(k)}_\alpha(x) = \int_{-c}^{c} a_{2k-1} b_\alpha(x) c P_{2k-1}(\xi) \, dx_3 \], \hspace{1cm} (10a)

\[m^{(k)}_3(x) = \int_{-c}^{c} a_{2k-1} b_3(x) \frac{dP_{2k-1}(\xi)}{d\xi} \, dx_3 \]. \hspace{1cm} (10b)
For the fundamental solution 3-D loadings \(b_i^*(x) \), acting on a point \(\bar{x} \equiv P \), are of the same form as given by eqn (9), with plate concentrated loadings \(m_i^{*k}(\bar{x}) \equiv m_i^{*k}(P) \) of the same form as eqns (10). For an arbitrary observation point \(\bar{x} \equiv Q \) it follows

\[
m_i^{*k}(Q) := \delta(P,Q)m_i^{*k}(P),
\]

with a Dirac distribution \(\delta(P,Q) \) with singularity on collocation point \(P \).

3 s-(3,2) hierarchical differential equations

Setting \(r := 2 \) (\(r := s \), see above) we obtain from the general formulation the equations of the twelfth-order Poniatovskii/Reissner model. For \(a_0 = a_1 := 1 \), \(a_2 = a_3 := -\frac{7}{2} \), and \(a_5 := \frac{799}{2c^2} \) it results

- **displacements** (Lewiński [10]):

 \[
 u_\alpha(x) = \phi_\alpha^{(1)}(\bar{x})x_3 + \phi_\alpha^{(2)}(\bar{x})\frac{21}{4} \left(1 - \frac{5}{3}\xi^2\right)x_3, \quad (12a)

 u_3(x) = \phi_3^{(1)}(\bar{x}) + \phi_3^{(2)}(\bar{x})\frac{21}{4} \left(1 - 5\xi^2\right); \quad (12b)

- **stresses** (Reissner [2]):

 \[
 \sigma_{\alpha\beta}(x) = \frac{3}{2c^2} \left[\sigma_{\alpha\beta}^{(1)}(\bar{x}) + \sigma_{\alpha\beta}^{(2)}(\bar{x}) \left(1 - \frac{5}{3}\xi^2\right) \right] \xi, \quad (13a)

 \sigma_{\alpha3}(x) = \frac{1}{8c} \left[6\sigma_{\alpha}^{(1)}(\bar{x}) (1 - \xi^2) + \sigma_{\alpha}^{(2)}(\bar{x}) (1 - 6\xi^2 + 5\xi^4) \right], \quad (13b)

 \sigma_{33}(x) = \frac{1}{8} \left[2\sigma^{(1)}(\bar{x}) (3 - \xi^2) + \sigma^{(2)}(\bar{x}) (1 - 2\xi^2 + \xi^4) \right] \xi; \quad (13c)

- **plate stresses**:

 \[
 \sigma_{\alpha\beta}^{(1)}(\bar{x}) := \int_{-c}^{c} \sigma_{\alpha\beta}(x)x_3 \, dx_3, \quad (14a)

 \sigma_{\alpha\beta}^{(2)}(\bar{x}) := \int_{-c}^{c} \sigma_{\alpha\beta}(x)\frac{21}{4} \left(1 - \frac{5}{3}\xi^2\right)x_3 \, dx_3, \quad (14b)

 \sigma_{\alpha}^{(1)}(\bar{x}) := \int_{-c}^{c} \sigma_{\alpha3}(x) \, dx_3, \quad (14c)

 \sigma_{\alpha}^{(2)}(\bar{x}) := \int_{-c}^{c} \sigma_{\alpha3}(x)\frac{21}{4} \left(1 - 5\xi^2\right) \, dx_3, \quad (14d)

 \sigma^{(2)}(\bar{x}) := \int_{-c}^{c} \sigma_{33}(x)\frac{693}{16c^2} (15 - 70\xi^2 + 63\xi^4) \, dx_3; \quad (14e)
2-D equilibrium equations:

\[\sigma_{\alpha\beta}(\bar{\mathbf{x}}) - \sigma^s_{\alpha}(\bar{\mathbf{x}}) + m^s_{\alpha}(\bar{\mathbf{x}}) = 0, \quad \sigma^s_{\alpha}(\bar{\mathbf{x}}) + \sigma^s_{\alpha}(\bar{\mathbf{x}}) = 0; \quad (15) \]

2-D equilibrium equations for the fundamental solution:

\[\sigma^{s*}_{\alpha\beta}(\bar{\mathbf{x}}) - \sigma^{s*}_{\alpha}(\bar{\mathbf{x}}) + m^{s*}_{\alpha}(\bar{\mathbf{x}}) = 0, \quad (16a) \]

\[\sigma^{s*}_{\alpha\alpha}(\bar{\mathbf{x}}) + \sigma^{s*}_{\alpha}(\bar{\mathbf{x}}) + m^{s*}_{\alpha}(\bar{\mathbf{x}}) = 0, \quad (16b) \]

with \(\sigma^{s*}(\bar{\mathbf{x}}) = 0 \) (observe that \(\sigma^{(1)}(\bar{\mathbf{x}}) \) is the loading!).

The equations corresponding to the \(s,(1,0) \) sixth-order model of Reissner [3] are obtained by discarding the 2-D variables with an upper index (2). The key idea of the hierarchical derivation is to identify explicitly all the contributions of these variables on the equations that follow.

To obtain a system of 2-D differential equations we use the Hellinger-Reissner variational principle. As constitutive equation we consider a transversely isotropic material with elasticity modulus \(E \), Poisson coefficient \(\nu \) and parameters (see Westphal Jr. et al. [5])

\[k_E := \sqrt{\frac{E_3}{E}}, \quad k_G := \frac{G_3}{G}, \quad k_\nu := \frac{\nu_3}{\nu}, \quad (17) \]

with \(\nu_3 := \sqrt{\nu_1 \nu_2} \). For isotropy \(k_E = k_G = k_\nu := 1 \). After integration along the plate thickness we obtain the principle as a function of 2-D variables (Reissner [2], Westphal Jr. [9])

\[-\Pi_R(\tau, \varphi) := \iint_\Omega \left\{ \frac{1}{2(1-\nu^2)} D(\psi) \left[(1+\nu)\sigma^{(\psi)}_{\gamma\gamma}(\psi) \sigma^{(n)}_{\gamma\gamma} - \nu \sigma^{(\psi)}_{\gamma\gamma}(\psi) \right] \right. \]

\[-E(\psi)\sigma^{(\psi)}_{\gamma\gamma}(\psi) \sigma^{(n)}(\psi) + \frac{1}{2} G(\psi) \sigma^{(\psi)}_{\gamma\gamma}(\psi) \sigma^{(n)}(\psi) + \frac{1}{2} C(\psi) \sigma^{(\psi)}(\psi) \sigma^{(n)}(\psi) \]

\[+ \left[\sigma^{(\psi)}_{\gamma\gamma} - \sigma^{(\psi)}(\psi) \right] \varphi^{(\psi)}(\psi) + \left[\sigma^{(\psi)}_{\gamma\gamma} + \sigma^{(\psi)}(\psi) \right] \varphi^{(\psi)}(\psi) \right\} \right. \]

\[d\bar{x}_1 d\bar{x}_2 \]

\[- \int_{\Gamma_1} \psi_{\nu} \psi_{\nu} d\Gamma, \quad (18) \]

where \(\tau \) is a 3 \times 6 matrix with the plate stresses as components, see eqn (6d) for \(M := 2 \), and \(\varphi \) is the vector of plate displacements

\[\varphi(\bar{\mathbf{x}}) := \left(\varphi^{(1)}_1(\bar{\mathbf{x}}), \varphi^{(1)}_2(\bar{\mathbf{x}}), \varphi^{(1)}_3(\bar{\mathbf{x}}), \varphi^{(2)}_1(\bar{\mathbf{x}}), \varphi^{(2)}_2(\bar{\mathbf{x}}), \varphi^{(2)}_3(\bar{\mathbf{x}}) \right)^T, \quad (19) \]
with the "new" plate displacements resulting from the variational principle

\[\varphi^{(1)}_{\alpha}(\bar{x}) := \frac{3}{2c^2} \int_{-c}^{c} u_{\alpha}(x) \xi \, dx, \quad (20a) \]

\[\varphi^{(1)}_{3}(\bar{x}) := \frac{3}{4c} \int_{-c}^{c} u_{3}(x) (1 - \xi^2) \, dx, \quad (20b) \]

\[\varphi^{(2)}_{\alpha}(\bar{x}) := \frac{3}{2c^2} \int_{-c}^{c} u_{\alpha}(x) \left(1 - \frac{5}{3} \xi^2\right) \xi \, dx, \quad (20c) \]

\[\varphi^{(2)}_{3}(\bar{x}) := \frac{1}{8c} \int_{-c}^{c} u_{3}(x) (1 - 6\xi^2 + 5\xi^4) \, dx. \quad (20d) \]

With 3-D displacements \(u_i \) as given in (12) it follows \(\varphi^{(s)}_{i} = \varphi^{(d)}_{i} \), showing that 2-D displacements of s-based models are a better representation of a corresponding 3-D problem than d-based models. The 2-D displacements \(\varphi^{(s)}_{i} \) are weighted averages across the thickness, see Reissner [11]. The constitutive constants appearing in eqn (18) are

\[D^{(11)} := \frac{2Ec^3}{3(1 - \nu^2)}, \quad D^{(12)} = D^{(21)} := 0, \quad D^{(22)} := \frac{21}{4} D^{(11)}, \quad (21a) \]

\[G^{(11)} := \frac{3}{5G_{3c}}, \quad G^{(12)} = G^{(21)} := \frac{1}{21} G^{(11)}, \quad G^{(22)} := \frac{4}{189} G^{(11)}, \quad (21b) \]

\[E^{(11)} := \frac{3
u_3}{5c\sqrt{E_3E}}, \quad E^{(12)} = E^{(21)} := \frac{1}{21} E^{(11)}, \quad E^{(22)} := \frac{4}{189} E^{(11)}, \quad (21c) \]

\[C^{(11)} := \frac{17c}{70E_3}, \quad C^{(12)} = C^{(21)} := \frac{8}{153} C^{(11)}, \quad C^{(22)} := \frac{8}{1683} C^{(11)}. \quad (21d) \]

From the variational principle it follows:

- 2-D differential equations

\[\sigma^{(\xi)}_{\alpha\beta} = D^{(\xi\eta)} \frac{1 - \nu}{2} \left[\varphi^{(\eta)}_{\alpha,\beta} + \varphi^{(\eta)}_{\beta,\alpha} + \frac{2\nu}{1 - \nu} \varphi^{(\eta)}_{\gamma,\gamma} \delta_{\alpha\beta} \right] + (1 + \nu) D^{(\xi\eta)} E^{(\eta\gamma)} \sigma^{(\gamma)} \delta_{\alpha\beta}, \quad (22a) \]

\[\sigma^{(1)}_{\alpha} = D^{(11)} \frac{1 - \nu}{2} \lambda^2 \left[\varphi^{(1)}_{\alpha} + \varphi^{(1)}_{3,\alpha} - \frac{9}{4} \left(\varphi^{(2)}_{\alpha} + \varphi^{(2)}_{3,\alpha} \right) \right], \quad (22b) \]

\[\sigma^{(2)}_{\alpha} = 9 D^{(22)} \frac{1 - \nu}{2} \lambda^2 \left[\varphi^{(2)}_{\alpha} + \varphi^{(2)}_{3,\alpha} - \frac{1}{21} \left(\varphi^{(1)}_{\alpha} + \varphi^{(1)}_{3,\alpha} \right) \right], \quad (22c) \]

\[\sigma^{(2)} = \frac{1}{C^{(22)}} \left[E^{(21)} \sigma^{(2)}_{\beta\beta} - C^{(21)} \sigma^{(1)} - \varphi^{(2)}_{3} \right]; \quad (22d) \]
- 2-D equilibrium equations (see eqns (15) with \(m_{0}^{(\xi)} := 0 \))

\[
\sigma_{\alpha\beta,\beta}^{(\xi)} - \sigma_{\alpha}^{(\xi)} = 0 , \quad \sigma_{\alpha,\alpha}^{(\xi)} + \sigma_{\xi}^{(\xi)} = 0 ;
\] (23)

- tractions

\[
t_{\alpha}^{(\xi)} := \sigma_{\alpha\beta}^{(\xi)} n_{\beta} , \quad t_{3}^{(\xi)} := \sigma_{\beta}^{(\xi)} n_{\beta} ;
\] (24)

- boundary conditions

\[
\varphi_{i}^{(\xi)} = \varphi_{i}^{(\xi)} \quad \text{on } \Gamma_{u} , \quad t_{i}^{(\xi)} = t_{i}^{(\xi)} \quad \text{on } \Gamma_{t} ,
\] (25a)

with

\[
t_{\alpha}^{(\xi)} = \sigma_{\alpha\beta}^{(\xi)} n_{\beta} , \quad t_{3}^{(\xi)} = \sigma_{\alpha}^{(\xi)} n_{\alpha} .
\] (25b)

The first coupling variable, related to shear quantities, is given by

\[
k_{R} := \begin{cases}
1 & \text{for the model } s-(1,0) \\
\frac{28}{25} & \text{for the model } s-(3,2)
\end{cases},
\] (26)

entering into eqn (22) through the variable

\[
\lambda^{2} \equiv \lambda^{2}(k_{R}, G_{3}, c) := k_{R}k_{G} \frac{5}{2c^{2}}.
\] (27)

The Lamé/Navier equations of the model s-(3,2) are

\[
L_{i,j} u_{j} = -F_{i} \sigma_{1}^{(1)}
\] (28)

with

\[
u := \begin{pmatrix} \varphi_{1}^{(1)} , \varphi_{2}^{(1)} , -\varphi_{3}^{(1)} , \varphi_{1}^{(2)} , \varphi_{2}^{(2)} , -\varphi_{3}^{(2)} \end{pmatrix}^{T}
\] (29a)

\[
F := \begin{pmatrix} B^{(1)} \partial_{1} , B^{(1)} \partial_{2} , F^{(1)} , B^{(2)} \partial_{1} , B^{(2)} \partial_{2} , F^{(2)} \end{pmatrix}^{T},
\] (29b)

\[
L := \begin{bmatrix} L_{A} \& L_{AB} \& L_{B} \end{bmatrix}_{3 \times 3}^{sym}
\] (29c)

The 3 \times 3 sub-matrices above are

\[
L_{A} := D \frac{1 - \nu}{2} \begin{bmatrix}
\Delta - \lambda^{2} + \nu_{A} \partial_{11}^{2} & \nu_{A} \partial_{12}^{2} & \lambda^{2} \partial_{1} \\
\nu_{A} \partial_{12}^{2} & \Delta - \lambda^{2} + \nu_{A} \partial_{22}^{2} & \lambda^{2} \partial_{2} \\
-\lambda^{2} \partial_{1} & -\lambda^{2} \partial_{2} & -\lambda^{2} \Delta
\end{bmatrix}_{sym}
\] (30a)

\[
L_{AB} := \frac{9D}{4} \frac{1 - \nu}{2} \begin{bmatrix}
\lambda^{2} + \nu_{AB} \partial_{11}^{2} & \nu_{AB} \partial_{12}^{2} & (9\eta - \lambda^{2}) \partial_{1} \\
\nu_{AB} \partial_{12}^{2} & \lambda^{2} + \nu_{AB} \partial_{22}^{2} & (9\eta - \lambda^{2}) \partial_{2} \\
-\lambda^{2} \partial_{1} & -\lambda^{2} \partial_{2} & \lambda^{2} \Delta
\end{bmatrix}
\] (30b)

\[
L_{B} := \frac{21D}{4} \frac{1 - \nu}{2} \begin{bmatrix}
\Delta - 9\lambda^{2} + \nu_{B} \partial_{11}^{2} & \nu_{B} \partial_{12}^{2} & 9(\lambda^{2} + \eta) \partial_{1} \\
\nu_{B} \partial_{12}^{2} & \Delta - 9\lambda^{2} + \nu_{B} \partial_{22}^{2} & 9(\lambda^{2} + \eta) \partial_{2} \\
-9\lambda^{2} \partial_{1} & -9\lambda^{2} \partial_{2} & 9(\zeta - \lambda^{2} \Delta)
\end{bmatrix}_{sym}
\] (30c)
where $\partial_\alpha \equiv \frac{\partial}{\partial x_\alpha}$, $\partial_{\alpha \beta}^2 \equiv \frac{\partial^2}{\partial x_\alpha \partial x_\beta}$, and $\Delta \equiv \partial_{\alpha}^2$, with the constants

$$\alpha(\nu, \nu_3) := 63(1 - \nu) - 121\nu_3^2, \quad \beta \equiv \beta(\nu, \nu_3) := 1 - \nu - 2\nu_3^2,$$

$$\gamma \equiv \gamma(\nu, \nu_3) := \frac{297}{5} \frac{\nu_3^2}{\alpha(\nu, \nu_3)},$$

$$\eta \equiv \eta(\nu, \nu_3, k_E, c) := \frac{55(1 + \nu)\nu_3 k_E}{\alpha(\nu, \nu_3) k_G^2} \lambda^2,$$

$$\zeta \equiv \zeta(\nu, \nu_3, k_E, c) := \frac{12375}{28} \frac{(1 - \nu^2) k_E}{\alpha(\nu, \nu_3) k_G^2} \lambda^4,$$

$$B^{(1)} := D^{(11)}(1 + \nu)E^{(11)} \left[1 - 33 \frac{\beta(\nu, \nu_3)}{\alpha(\nu, \nu_3)} \right],$$

$$B^{(2)} := D^{(22)}(1 + \nu)E^{(21)} \left[1 - 308 \frac{\beta(\nu, \nu_3)}{\alpha(\nu, \nu_3)} \right],$$

$$F^{(1)} := 1, \quad F^{(2)} := -693 \frac{\beta(\nu, \nu_3)}{\alpha(\nu, \nu_3)}, \quad D := D^{(11)}$$

and

$$\nu_A := [1 + \gamma] \nu_\nu, \quad \nu_{AB} := \frac{28}{27} \gamma \nu_\nu, \quad \nu_B := \left[1 + \frac{28}{27} \gamma \right] \nu_\nu, \quad \nu_\nu := \frac{1 + \nu}{1 - \nu}.$$ (32)

In order to reduce this system to those corresponding to the s-(1,0) model it is necessary to discard all terms containing variables with upper indices including 2, to set $k_R := 1$ according to eqn (26), and finally to discard all terms containing the variable α, eqn (31a), here identified as the second coupling variable. Then, it is easy to obtain now the Lamé/Navier equation of the s-(1,0) model (Westphal Jr. et al. [5]):

$$L_{ij} u_j = -F_i \sigma^{(1)}$$

with

$$u := \begin{pmatrix} \varphi^{(1)}_1, \varphi^{(1)}_2, \varphi^{(1)}_3 \end{pmatrix}^T,$$

$$F := \begin{pmatrix} B^{(1)} \partial_1, \ B^{(1)} \partial_2, \ F^{(1)} \end{pmatrix}^T, \quad B^{(1)} := \frac{\nu k_N k_G}{(1 - \nu) \lambda^2 k_E},$$

$$\lambda := \frac{1 - \nu}{2} \begin{bmatrix} \Delta - \lambda^2 + \nu_\nu \partial_{11}^2 & \nu_\nu \partial_{12}^2 & \lambda^2 \partial_{11} & \lambda^2 \partial_{12} \end{bmatrix}.$$

4 s-(3,2) hierarchical integral equations

The hierarchical boundary integral equations are easily obtained by using the weighted residual method (Brebbia et al. [12]). The Somigliana identi-
ties for a collocation point \(p \in \Gamma \) are

\[
c_{ij}(p)u_i(p) + \int_\Gamma T_{ij}(p,q)u_j(q) \, d\Gamma = \int_\Gamma U_{ij}(p,q)t_j(q) \, d\Gamma + \int_\Omega U_i(p,Q)\sigma^{(1)}(Q) \, d\Omega . \tag{35}
\]

For details see Westphal Jr. [9]. The integral equations for the model \(s-(1,0) \) can be easily obtained in the form (Westphal Jr. et al. [5])

\[
c_{ij}(p)u_i(p) + \int_\Gamma T_{ij}(p,q)u_j(q) \, d\Gamma = \int_\Gamma U_{ij}(p,q)t_j(q) \, d\Gamma + \int_\Omega \left[U_{i3}(p,Q) - \frac{\nu_3 k_G}{(1-\nu)\lambda^2 k_E} U_{i\alpha,\alpha}(p,Q) \right] \sigma^{(1)}(Q) \, d\Omega . \tag{36}
\]

5 2-D plate versus 3-D elasticity

Our objective is to compare the 2-D differential equations with the corresponding equations of the 3-D elasticity theory for an elastic layer, see e.g. Lu're [6], Schwab & Wright [7] and Gregory [13]. This can be easily performed by the Helmholtz decomposition theorem, with (Lewiński [10])

\[
\Psi(\xi) := \epsilon_{\alpha\beta} \varphi^{(\xi)}_{\alpha\beta} , \quad \Phi(\xi) := \varphi^{(\xi)}_{0,0} , \tag{37}
\]

where \(\epsilon_{\alpha\beta} \) is the permutation tensor. By substituting eqns (37) into the Lamé/Navier system we obtain the solutions for \(\Psi(\xi) \), \(\Phi(\xi) \) and \(\varphi^{(\xi)}_{3} \).

5.1 Solution for \(\Psi(\xi) \)

- Model \(s-(1,0) \) (Reissner [14])

\[
\left[h^2 \Delta - s-(1,0) S_1^2 \right] \Psi^{(1)} = 0 , \tag{38a}
\]

\[
s-(1,0) S_1 := \sqrt{10 k_G} ; \tag{38b}
\]

- Model \(s-(3,2) \) (Lewiński [10])

\[
\left[h^2 \Delta - s-(3,2) S_1^2 \right] \left[h^2 \Delta - s-(3,2) S_2^2 \right] \Psi^{(\alpha)} = 0 , \tag{39a}
\]

\[
s-(3,2) S_\alpha := 2 \sqrt{\left(14 + (-1)^{\alpha} \sqrt{133} \right) k_G} . \tag{39b}
\]

These differential equations are known as shear equations (Cheng [15]), a very right name, as \(k_G \) is the only material parameter involved.
5.2 Solution for $\Phi^{(\xi)}$ and $\varphi^{(\xi)}$

- Model $s-(1,0)$ (Reissner [14], Panc [16])

$$D\Delta \Phi^{(1)} = -\left[1 + \frac{\nu_3}{10(1-\nu)k_E} h^2 \Delta \right] \sigma^{(1)} , \quad (40a)$$

$$D\Delta^2 \varphi^{(1)}_3 = \left[1 - \frac{2k_E - 3k_G}{10(1-\nu)k_Ek_G} h^2 \Delta \right] \sigma^{(1)} , \quad (40b)$$

- Model $s-(3,2)$

$$D\Delta \left[h^2 \Delta - s^{-(3,2)} P^2_1 \right] \left[h^2 \Delta - s^{-(3,2)} P^2_2 \right] \Phi^{(\alpha)} = g_\alpha \sigma^{(1)} , \quad (41a)$$

$$D\Delta^2 \left[h^2 \Delta - s^{-(3,2)} P^2_1 \right] \left[h^2 \Delta - s^{-(3,2)} P^2_2 \right] \varphi^{(\alpha)}_3 = h_\alpha \sigma^{(1)} . \quad (41b)$$

For an isotropic material (for a transversely isotropic material and the definitions of g_α and h_α see Westphal Jr. [9])

$$s^{-(3,2)} P^2_1 := \frac{36(1-\nu^2)}{126-121\nu^2} \left(154 + i\sqrt{77 \frac{322 - 297\nu^2}{1-\nu^2}} \right) , \quad (42)$$

where $s^{-(3,2)} P_2$ is the complex conjugate of $s^{-(3,2)} P_1$.

5.3 Comparison with the 3-D elasticity theory

We have to compare the coefficients $s^{-(3,2)} S_\alpha$ in eqns (39) with the coefficients $S_\alpha := (2\alpha - 1)\pi$ of the 3-D elasticity, see e.g. Schwab & Wright [7]. We give these coefficients and the percentual errors for the models $s-(3,2)$ and $d-(3,2)$ (Chen & Archer [17]) in Table 2.

Table 2: Percentual errors of shear coefficients for models of twelfth-order.

<table>
<thead>
<tr>
<th>3-D Elasticity</th>
<th>$S_1 = \pi$</th>
<th>$S_2 = 3\pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors of model $s-(3,2)$</td>
<td>0.00074%</td>
<td>7.23%</td>
</tr>
<tr>
<td>Errors of model $d-(3,2)$</td>
<td>0.028%</td>
<td>38.39%</td>
</tr>
</tbody>
</table>

The 3-D elasticity coefficients related to eqn (42) are the Papkovich-Fadle eigenvalues, see Schwab & Wright [7]. As can be seen in Figure 2, the coefficients of the model $s-(3,2)$ are close to those of the 3-D elasticity theory for all values $0 \leq \nu \leq 1/2$.
6 The general scalar fundamental solution

We close this paper with the general scalar fundamental solution $G(r)$ of the model s-(3,2). For this purpose we make use of Hörmander's method. The RHS of eqn (28) becomes $-\delta(P,Q)m^*_t(P)$ and $u^*_j(Q) := U^*_j,(P,Q)m^*_t(P)$. With $U^*_j,(P,Q) := L^0_{r,j}G(P,Q)$ it results

$$\det(L)G(P,Q) = -\delta(P,Q) \tag{43}$$

and the determinate of $L_{r,j}$ is found to be

$$\det[L] = A_6 \left(h^2\Delta\right)^2 \left[h^2\Delta - s^{-(3,2)}S^2_1\right] \left[h^2\Delta - s^{-(3,2)}S^2_2\right]$$

$$\times \left[h^2\Delta - s^{-(3,2)}P^2_1\right] \left[h^2\Delta - s^{-(3,2)}P^2_2\right] \tag{44}$$

with

$$A_6 := \frac{9282994875(1 + \nu)k_E}{8[63(1 - \nu) - 121\nu^2] s^{-(3,2)}P^2_1 s^{-(3,2)}P^2_2} \left(\frac{1 - \nu}{2}\right)^6 \left(\frac{D}{h^2}\right)^6 \lambda^4. \tag{45}$$

We have in eqn (44) the biharmonic, the shear, and the Papkovich-Fadle equations previously calculated, see eqns (39) and (41). This shows that, as expected, the above presented advantages of the model s-(3,2) are reflected in the fundamental solution of the problem.

The general fundamental solution $G(P,Q)$ of eqn (43) is, $r := |P - Q|$

$$G_6(r) := C_1r^2 \ln r + C_2r^2 + C_3r^2 + C_4 + \sum_{i=1}^{4} C_{(4+i)}K_0(z_i)$$

$$+ \sum_{i=1}^{4} C_{(8+i)}I_0(z_i), \tag{46}$$
where

\[z_i = \lambda_i r, \quad \lambda_\alpha := s^{-3,2} S_\alpha / h, \quad \lambda_{\alpha+2} := s^{-3,2} P_\alpha / h, \]

(47a)

\[C_1 = \frac{-\lambda_2^3}{4 \lambda_2^3 \lambda_2^2 \lambda_2^4} \prod_{i=1}^{3} [\lambda_4^2 - \lambda_7^2] C_8, \]

(47b)

\[C_2 = \frac{\lambda_4^2 \lambda_7^3 \lambda_9^2 + \lambda_2^3 \lambda_8^3 \lambda_1^2 + \lambda_4^3 \lambda_6^3 \lambda_7^2 + \lambda_4^2 \lambda_8^3 \lambda_9^2}{\lambda_1^2 \lambda_2^2 \lambda_3^2} \prod_{i=1}^{3} [\lambda_4^2 - \lambda_7^2] C_8, \]

(47c)

\[C_5 = -\frac{\lambda_4^4}{\lambda_1^4 [\lambda_4^2 - \lambda_7^2]} \frac{[\lambda_4^2 - \lambda_3^2]}{[\lambda_1^2 - \lambda_3^2]} C_8, \]

(47d)

\[C_6 = -\frac{\lambda_4^3}{\lambda_2^2 \lambda_7^3 [\lambda_4^2 - \lambda_7^2]} \frac{[\lambda_4^2 - \lambda_3^2]}{[\lambda_1^2 - \lambda_3^2]} C_8, \]

(47e)

\[C_7 = -\frac{\lambda_4^3}{\lambda_3^2 \lambda_7^3 [\lambda_3^2 - \lambda_7^2]} \frac{[\lambda_4^2 - \lambda_3^2]}{[\lambda_2^2 - \lambda_7^2]} C_8, \]

(47f)

\[C_8 = \frac{1}{2 \pi \lambda_4 h^4 \lambda_4^3 \prod_{i=1}^{3} [\lambda_4^2 - \lambda_7^2]}, \quad C_9 = C_{10} = C_{11} = C_{12} = 0. \]

(47g)

There are two free coefficients, \(C_3 \) and \(C_4 \), in the same way as occurs with the general fundamental solution of the model \(s-(1,0) \), see Westphal Jr. et al. [18], that are expressed in the form \((F_1 \) and \(F_2 \) are free coefficients)

\[C_3 = F_1 C_8, \quad C_4 = F_2 C_8. \]

(48)

7 Conclusions

The formulation here developed shows that boundary layer effects can be effectively represented in a hierarchical way. This opens up the possibility for the modeling of plate bending problems by boundary elements, incorporating a unified formulation for a hierarchy of three classes of plate models: a) the fourth-order Kirchhoff, b) the sixth-order Reissner and Mindlin, and c) the twelfth-order Poniatovskii/Reissner.

References

