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Abstract

This study identifies meteorological variables that show strong influence on the
concentrations of fine particulate matter (PM2.5) in Toronto and Sarnia, Ontario,
Canada, using the Statistical Downscaling Model (SDSM), coupled with the
Artificial Neural Network (ANN). The meteorological variables are based on the
reanalysis data from NCEP and their correlations with the daily average and daily
maximum PM2.5 concentrations for the period 2003–2014. The meteorological
predictors are selected with the SDSM model from the ones with most significant
correlations. Furthermore, ANN is used to test the power of those predictors by
comparing the variance of PM2.5 that is explained by the chosen predictors and
by all meteorological data. The SDSM model suggests that both daily average
and daily maximums PM2.5 in Toronto and Sarnia are affected by low level
wind dynamics, and that long range transport of PM2.5 plays an important role
during the summer. The ANN models suggest that the meteorological variables
can explain 62–72% variance of PM2.5 while chosen predictors can explain 52%–
59% variance.
Keywords: particulate matters, meteorological conditions, statistical downscaling
method, artificial neural network.
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1 Introduction

Particulate matter (PM), one of the six crucial air pollutants regulated by the United
States Environmental Protection Agency (EPA) [1], is a mixture of solid and
gaseous particles. PM is categorized by its diameter, and for those with diameters
less than 2.5µm (PM2.5) can be inhaled into the lungs and penetrate the thoracic
region of the respiratory system. Long term exposure to PM2.5 will increase the
risk of cardiopulmonary mortality by 6–13% per 10µg/m3 of PM2.5 [2]. The
correlation between PM2.5 and meteorological conditions is complex due to the
various formation processes of PM2.5. Studying the meteorological influence on
PM2.5 can help us not only implement of a warning system for air quality control,
but also understand the possible climate change impacts on air quality.

In previous studies, meteorological variables such as temperature, relative
humidity, wind speed, and wind direction have been observed to have significant
correlation with PM2.5 [3,4]. In most cases, temperature and relative humidity are
positively correlated with PM2.5, and wind speed and precipitation are negatively
correlated with PM2.5 [3, 5]. Some studies examined individual pollutant-
meteorology relationships such as nitrate, sulfate, organic carbon and basic carbon,
and their correlations with meteorological variables can be different [5]. Observed
correlation of pollutants and meteorological conditions suggests that cold frontal
passages associated with midlatitude cyclones and stagnation provides ventilation
of pollution and causes PM2.5 variability in eastern North America, Europe, and
Asia. Future climate is expected to be more stagnant and thus may cause more
frequent pollutant episodes [6, 7].

Statistical downscaling method (SDSM) is an applicable tool to derive local-
scale surface weather from regional-scale atmospheric variables, and to apply
impacts modelling on local-scale weather from GCM outputs of future climate [8].
More than two hundred published studies have successfully examined climate
change impacts on local-scale precipitation, temperature, and surface ozone using
SDSM. To the authors’ knowledge, no study has applied SDSM to PM2.5.
Statistical tools such as multiple linear regression, artificial neural network, fozzy
techniques, linear time series model, and persistence model have been used with
PM2.5 in different locations, and none of models performs better than others in
terms of all performance indices [9].

To investigate a more specific and explicit relationship between meteorological
variables and PM2.5 at point-scale, this study uses SDSM to build multiple
linear relationship between predictors and predictands for daily average and
daily maximum PM2.5 concentrations. Then we build ANN non-linear models to
compare with SDSM model performance.
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2 Study area and data description

2.1 Study area

Toronto and Sarnia, Ontario, Canada, are two study cases chosen to represent
different pollutant sources. Toronto’s pollution is mainly from urbanization while
Sarnia experiences a greater degree of industrial pollution. Table 1 shows the
detailed information about these two cites.

2.2 Hourly PM2.5

The ambient hourly PM2.5 concentration data were collected from Ontario
Ministry of the Environment and Climate Change (MOECC) (http://
airqualityontario.com/history/). The PM2.5 concentration was
measured using tapered element oscillating microbalance (TEOM) 1400AB
from 2003–2012, and new instruments called synchronized hybrid ambient
real-time particulate (SHARP) 5030 replaced TEOM since 2013. In order to
integrate SHARP measurements comparable to the previous ones, MOECC
chose seven sites including Sarnia and Toronto West to calibrate the two types
of measurements. They have concluded that SHARP measurements of PM2.5

concentration are more precise and are 25% higher on average than TEOM
measurements [10]. Based on this conclusion, this project increased by 25% of
the TEOM measurements to be consistent with the SHARP measurements.

2.3 Regional-scale atmospheric variables (predictors)

The study focuses on the regional-scale meteorological conditions instead of
local-scale meteorological variables measurements. The regional-scale predictors
are derived from the National Centres for Environmental Prediction (NCEP)
reanalysis dataset, which are close to a best estimation of the evolving state of the
atmosphere. The NCEP reanalysis predictors are daily values from 1948 to present,
and the spatial resolution is in 2.5◦×2.5◦. The daily NCEP predictors (Table 2)
from 2003–2014 were obtained from SDSM website: http://co-public.
lboro.ac.uk/cocwd/SDSM/data.html

3 Methodology

Many methods with different strengths and limitations have been applied to
analysis and the forecasting of PM2.5 concentration. The US Environmental
Protection Agency suggests the most common methods include 3D air
quality models, climatology analysis, classification and regression tree (CART),
regression, and neural network [11]. This study chooses two methods, multiple
linear regression models (SDSM) and neural network models (ANN).

Air Pollution XXIV  217

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 207, © 2016 WIT Press



Ta
bl

e
1:

C
ha

ra
ct

er
is

tic
s

of
To

ro
nt

o
an

d
Sa

rn
ia

.

L
at

.(
◦
)

L
on

.
(◦

)
E

le
va

tio
n

(m
)

A
ir

In
ta

ke
H

ig
ht

(m
)

Po
pu

la
tio

n
(2

01
1)

[1
2]

C
ha

ra
ct

er
is

tic
s

A
nn

ua
l

A
ve

ra
ge

of
PM

2
.5

(µ
g/

m
3
)

To
ro

nt
o

43
.6

6
−

79
.3

9
10

5
10

2,
61

5,
06

0
M

et
ro

po
lit

an
8.

64

Sa
rn

ia
42

.9
8

−
82

.4
1

17
9

3
72

,3
66

In
du

st
ri

al
13

.1
8

Ta
bl

e
2:

D
es

cr
ip

tio
n

of
28

N
C

E
P

pr
ed

ic
to

rs
.

N
O

.
Pr

ed
ic

to
rd

es
cr

ip
tio

n
N

O
.

Pr
ed

ic
to

rd
es

cr
ip

tio
n

N
O

.
Pr

ed
ic

to
rd

es
cr

ip
tio

n

1
M

ea
n

Se
a

L
ev

el
Pr

es
su

re
11

50
0

hP
a

M
er

id
io

na
lV

el
oc

ity
21

85
0

hP
a

W
in

d
D

ir
ec

tio
n

2
Su

rf
ac

e
A

ir
flo

w
St

re
ng

th
12

50
0

hP
a

Vo
rt

ic
ity

22
85

0
hP

a
D

iv
er

ge
nc

e

3
Su

rf
ac

e
Z

on
al

V
el

oc
ity

13
50

0
hP

a
W

in
d

D
ir

ec
tio

n
23

R
el

at
iv

e
or

Sp
ec

ifi
c

H
um

id
ity

at
50

0
hP

a

4
Su

rf
ac

e
M

er
id

io
na

lV
el

oc
ity

14
50

0
hP

a
G

eo
po

te
nt

ia
lH

ei
gh

t
24

R
el

at
iv

e
or

Sp
ec

ifi
c

H
um

id
ity

at
85

0
hP

a

5
Su

rf
ac

e
Vo

rt
ic

ity
15

50
0

hP
a

D
iv

er
ge

nc
e

25
Pr

ec
ip

ita
tio

n

6
Su

rf
ac

e
W

in
d

D
ir

ec
tio

n
16

85
0

hP
a

A
ir

flo
w

St
re

ng
th

26
N

ea
rS

ur
fa

ce
R

el
at

iv
e

H
um

id
ity

7
Su

rf
ac

e
D

iv
er

ge
nc

e
17

85
0

hP
a

Z
on

al
V

el
oc

ity
27

M
ea

n
Te

m
pe

ra
tu

re
at

2m

8
50

0
hP

a
A

ir
flo

w
St

re
ng

th
18

85
0

hP
a

M
er

id
io

na
lV

el
oc

ity
28

N
ea

rS
ur

fa
ce

Sp
ec

ifi
c

H
um

id
ity

9
50

0
hP

a
Z

on
al

V
el

oc
ity

19
85

0
hP

a
Vo

rt
ic

ity

10
D

ow
nw

ar
d

So
la

rR
ad

ia
tio

n
20

85
0

hP
a

G
eo

po
te

nt
ia

lH
ei

gh
t

218  Air Pollution XXIV

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 207, © 2016 WIT Press



3.1 Statistical downscaling model

Statistical downscaling is a multiple linear regression model that builds statistical
relationship between predictors and predictands:

Ui = γ0 +
n∑

j=1

γjpij + εi (1)

where Ui is the daily observation (PM2.5), γ is the model parameter, n is the
number of the predictors, pij are predictors, and εi is a stochastically generated
random number that follows a Gaussian distribution. The statistical downscaling
techniques will be applied on SDSM software that combines regression-based
analyses and stochastic weather generator. The historical data will be evenly
divided into two sections for model calibration and validation. SDSM first
examines the correlation of PM2.5 with the most influenced predictors in
model calibration. SDSM then synthesizes 20 ensembles of daily data in model
validation. The model represents the most likely regression relationship between
predictand-predictor [13].

Choosing predictors is a crucial process in statistical downscaling [13]. Selected
predictors should satisfy the context of physical or chemical processes and also be
statistically significant. In this study, we not only consider daily-correspondence
predictors, but also examine predictors with lag of 1 to see effects of yesterday’s
weather on PM2.5. We use a combination of the correlation matrix, partial
correlation, p-value, and knowledge from the literature to choose the influenced
predictors. Firstly, correlation matrixes between the predictand and 28 predictors,
as well as predictand with predictors’ lag of 1 values are calculated. Predictors that
have correlation coefficient with the predictand greater than 0.25 are selected as the
inputs for the SDSM model. Secondly, the partial correlation coefficient, p-value,
and correlation between individual predictors are obtained by regressing predictors
and predictands. Predictors that p-value is greater than 0.05 are eliminated;
predictors that are highly correlated (correlation coefficient is greater than 0.7 [14])
are removed to avoid multi co-linearity; predictors that are not consistent with
physical and chemical processes of PM2.5 are removed. Thirdly, the remaining
predictors are regressed again with predictand on SDSM, and then 20 ensembles
of PM2.5 daily data are synthesized by SDSM model. Monthly mean, monthly
variance, and monthly sum are calculated for historical PM2.5 and synthesized
PM2.5 to test model performance.

3.2 Artificial neural network

The ANN is a perceptron model that can learn any complex non-linear relationship
between a given set of predictors (meteorological variables) and the predictant
(PM2.5) [9]. The general architecture of the ANN model is called multilayer
perceptron, shown in Figure 1. It consists of an input layer, an output layer, and
multiple hidden layers. Algorithm in every hidden layer and in output layer is
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similar. Inputs at each layer are multiplied by their corresponding weight matrix,
and summed with a bias. The summed results are the input of a nonlinear active
function. The results of active function are the output of current layer as well
as the inputs of the next layer, and results of output layer will be the desired
data simulated by ANN model [17]. The processes of building model include
training, validating, and testing processes. In this study, the Levenberg–Marquardt
algorithm is employed for training and the Bayesian Regularization method is used
to avoid overtraining [15–17]. During the training process, weights (wji, wkj) and
biases (bj , bk) are updated at each iteration to minimize the error between target
(observation) and output. Each iteration contains two steps: a forward operation
to produce weights, bias, and a desired output, and a backward propagation of
computing error to update the values of weights and bias [18]. Iterations are
repeatedly processed until the error cannot be minimized anymore. The model
will be implemented using the neural networks toolbox in MATLAB.

We have built two ANN models to examine NCEP predictors performance
(Figure 1). Model 1 evaluates all 28 NCEP predictors and their values of lag
of 1, which reveals the total ability of NCEP predictors to explain PM2.5.
Model 2 evaluates only the six predictors selected in the SDSM model. Having
used the same combination of predictors, the SDSM model and ANN model 2
provide a comparison of multiple linear regression and non-linear regression in the
correlation of meteorological predictors and PM2.5. The performance difference
of the first and the second ANN model provides information about how much
correlation the six influenced predictors can explain compared with the total
correlation in the first ANN model.

4 Results and discussion

4.1 Diurnal and seasonal variation of PM2.5

Figure 2 exhibits diurnal variation of PM2.5 concentration for time period of 2003–
2014 in Toronto and Sarnia. Daily average (blue) and daily maximum (yellow)
are separately calculated on weekdays and on weekends. In Toronto, there is a
distinct pattern between PM2.5 concentration on weekdays and on weekends. On
weekdays, the daily average of PM2.5 starts to increase at 7am and reaches its
peak between 9–10am, during the morning rush hour. It drops in the following
hours and starts to increase again from 7pm during the evening rush hour. On
the other hand, daily average of PM2.5 on weekends is lower in general than on
weekdays, and there is not a peak in the morning. Although the hourly variation
of PM2.5 is relatively small on weekends, there is still a peak between 22–23pm
on weekends that may due to residential heating. These results are consistent with
our understanding of PM2.5 concentration in metropolitan cities, where pollutant
sources are mainly from domestic emissions such as exhaust from vehicles and
residential heating [19], so traffic hours and residential activities hours correspond
to the time period of high emission of PM2.5 concentration.
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(a) The architecture of ANN model 1. Input values are observations of ln(PM2.5)
and 56 predictors.

(b) The architecture of ANN model 2. Input values are observation of ln(PM2.5)
and 6 predictors used in SDSM model.

Figure 1: The schematic representation of neural networks.

In Sarnia, there is no apparent difference for daily average between weekdays
and weekends, because the pollutant sources are mainly industrial emissions, and
90% of major industries operate 24 hours per day 7 days per week, explaining
why weekday and weekend daily averages have no obvious difference. The peak
values in Sarnia appear during the periods between 8–9am and 21–22pm, which
is similar to Toronto. The similar peak pattern for daily averages in Sarnia gives
us a suggestion that similar meteorological conditions (predictors) have acted on
PM2.5 in Toronto and in Sarnia, and the influence is similar even though the
composition of PM2.5 is different due to different pollutant sources. The variance
of daily maximum is much greater than daily average in Sarnia and shows no
explicit pattern. This suggests that the maximum indices may largely depend on
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Figure 2: Diurnal variation of daily average (blue) and daily maximum (yellow)
PM2.5 concentrations in weekdays and weekend in Toronto (up) and
in Sarnia (down) for 2003–2014.

the summation of industrial emission rates in each industry, therefore it is difficult
to detect a diurnal pattern.

Figure 3 shows seasonal variation of daily average PM2.5 concentrations for
2003–2014 period. Seasonal daily averages of PM2.5 concentrations in Toronto
and Sarnia all show a decrease pattern from 2003 to 2014, which exhibits a great
consequence of air quality control. In both cases, we see PM2.5 concentrations
is much higher in summer than in other seasons. In Toronto and Sarnia, PM2.5

concentration is 45% and 29% higher in summer than in winter respectively,
and this pattern is also observed by other groups [3]. This distinct pattern
brings the attention to possible particular correlation of PM2.5 concentration and
meteorological variables in summer. Further conclusions will be discussed in
section 4.2.

4.2 Identified meteorological variables on PM2.5

Table 3 shows the identified predictors selected in SDSM and their partial
correlation and p-values. The partial correlation (partial R) shows how much the
predictor can explain PM2.5 concentration under the present of other predictors,
and the p-value renders the results statistically significant. Consistent with the
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Figure 3: Seasonal variation of daily average PM2.5 concentrations in Toronto
(up) and in Sarnia (down) for 2003–2014.

assumption in 4.1, the same combination of meteorological predictors are chosen
for Toronto and Sarnia models. PM2.5 concentration is influenced most by the
surface zonal velocity, which can be interpreted as velocity component along a line
of latitude (i.e. east-west). Among six predictors, three of them are surface velocity
components, and this indicates PM2.5 concentration is a regional phenomenon.
In the summer, air flow velocity at 500 hPa replaces surface air flow velocity
and plays a role, so long range transport is an observably phenomenon in
summer. 850 hPa geopotential height will vary depending on the temperature of
the atmospheric column. Lower heights represent cyclones while higher heights
represent anticyclones [20]. High pressure systems can trap pollutants and cause
high PM2.5 concentrations. Low pressure systems can dramatically reduce PM2.5

concentrations through precipitation and clear the atmosphere. Both daily average
and daily maximum show a strong correlation with specific humidity from the
previous day. PM2.5 autoregression term shows today’s air quality is highly
correlated with yesterday’s air quality. In summary, SDSM models explain 42%–
64% variation of PM2.5 concentration, and models for daily average perform better
than that of daily maximum.

Further analysis are applied using ANN models (Table 4). ANN model 1 studies
the influence of all 56 predictors (28 NCEP + 28 NCEP of lag 1) on PM2.5,
and ANN model 2 examines the six predictors selected in SDSM model. ANN
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model 1 shows all NCEP predictors that have strong correlation with PM2.5 from
0.79–0.85 and can explain 39%–52% variance in testing. ANN model 2 represents
more than 80% information of Model 1, which shows that SDSM does select the
most important predictors. SDSM model and ANN model 2 perform similarly in
daily average, but ANN model 2 is better in daily maximum. Daily average more
likely tends to be linear relationship with meteorological conditions, while daily
maximum is more complex and tends to be a non-linear relationship.

Table 3: Statistical summary of identified predictors selected in SDSM.

Table 4: Statistical summary of models.

5 Conclusion

Diurnal variations of daily average and daily maximum for PM2.5 concentration on
weekdays and on weekends have been observed both in Toronto and Sarnia. The
SDSM model selects six most important predictors among 28 NCEP predictors
and their lag of 1, and explains 41%–64% variation of PM2.5 concentrations.
ANN model 1 and model 2 show that all NCEP predictors can explain 62%–
72% variation while six selected predictors explain 52%–59% respectively.
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We conclude that the SDSM model has chosen the influenced predictors that
represent most of the correlation between meteorological conditions and PM2.5

concentration. The selected six predictors reveal that PM2.5 concentration is a
regional phenomenon in Toronto and in Sarnia, but long-range transport of PM2.5

concentration in summer is a significant phenomenon in both cases.
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