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Università di Palermo Facoltà d’Ingegneria, 90128 Palermo, Italy
3Dip. di Ricerche Energetiche ed Ambientali
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Abstract

A steady-state bi-dimensional turbulent diffusion equation was studied to find the
concentration distribution of a pollutant near the ground. We have considered the
air pollutant emitted from an elevated point source in the lower atmosphere in adi-
abatic conditions. The wind velocity and diffusion coefficient are given by power
laws. We have found analytical solutions using or the Lie Group Analysis or the
Method of Separation of Variables. The classical diffusion equation has been mod-
ified introducing the falling term with non-zero deposition velocity.

Analytical solutions are essential to test numerical models for the great difficulty
in validating with experiments.
Keywords: atmospheric pollution, diffusion equation, exact solutions.

1 Introduction

The classical form of the mean steady diffusion equation is valid for elementary
particles of the fluid or when the foreign particles are of the same density as
the fluid. If the density and dimensions are high enough to have terminal veloc-
ities vs not negligible, the distribution of the particles will be affected in various
ways [1–4].

A simple approximation is to consider that the particle sinks at a rate vs and the
ground acts as a permeable surface and retains all material passing through it.

Using a very simple model it is possible to examine various cases. It is possible
to have exact solutions of the mean steady diffusion when the turbulent diffusivity
kz and the terminal velocity vd depend somehow on the height [5–7].
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2 Mathematical model

The sedimentation of the material may be allowed by introducing a convection
term in the mean steady equation that becomes [8, 9]:

u(z)
∂c

∂x
= ∂

∂z

(
kz(z)

∂c

∂z
+ vs(z)c

)
(1)

where vs(z) is the deposition velocity.
We assume that mean wind velocity u(z), the eddy diffusivity in z-direction

kz(z) and the deposition velocity vs(z) are:

u(z) = u0z
α (2)

kz(z) = k0z
n (3)

vs(z) = v0z
q (4)

3 Group analysis of the equation

Group analysis of the (1) is performed through the one-parameter Lie group of
transformations:




x∗ = x + εX(x, z, c) + O(ε2)

z∗ = z + εZ(x, z, c) + O(ε2)

c∗ = c + εC(x, z, c) + O(ε2)

(5)

where X, Z, C are the infinitesimal generators of the transformations [10–12].
Equation (1) is invariant respect to the group (5) of transformations if c∗ is the

solution of eq. (1) in the star variables. In this case, the number of independent
variables can be decreased.

A considerable difficulty lies in the amount of the auxiliary calculations involved.
We performed the calculations of the generators of the transformations group on a
P.C. using the MATHEMATICA package.

Since eq. (1) is linear, the infinitesimal generators of the group of invariance are
of the form:




X = X(x)

Z = Z(x, z)

C = A(x, z)c + B(x, z)

(6)

The function B(x, z) must satisfy eq. (1) and, without compromising with the gen-
erality, can be assumed equal to zero.

If we normalize the parameters u0/k0 → v0 and the variable k0x/v0 → x, we
have that X, Z and A must satisfy the following equations:

nz−1Z − z−1αZ + X′ − 2Zz = 0 (7)
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qv0z
−2−n+qZ + nqv0z

−2−n+qZ − q2v0z
−2−n+qZ − nz−1Az

− v0z
−n+qAz − 2qv0z

−1−n+qZz − Azz + z−n+αAx = 0 (8)

nz−2Z + nv0z
−1−n+qZ − qv0z

−1−n+qZ − 2Az − nz−1Zz

− v0z
−n+qZz + Zzz − z−n+αZx = 0 (9)

We show now some results.

4 Similarity solutions

Let us look at some similarity solutions.

4.1 α, n and q arbitrary (n − α �= 2)

In this case it possible to obtain from the eq.s (7–9) the generators of group of
similarity:




X = a0

Z = 0

C = c1c

(10)

where a0, and c1 are arbitrary constants.
The characteristic equations are:

dx

x1
= dz

0
= dc

c1c

The invariants are z and ce
− c1

x1
x
. If we assume c1

x1
= −λ2, the similarity solution,

corresponding to the separation of variables, is

c = e−λ2xZ(z)

where Z(z) is solution of the following ordinary differential equation:

(qv0z
1−n+q + z2−n+αλ2)Z(z) + z(n + v0z

1−n+q)Z′(z) + z2Z′′(z) = 0

If n = 2q − α, the solution is [13]

Z(z) = e
z1−q+α(v0+

√
v2
0−4λ2)

−2+2q−2α

×
[
h1�

(2 − 3q + 2α − qv0√
v2

0−4λ2

2(1 − q + α)
,

2 − 3q + 2α

1 − q + α
;
z1−q+α

√
v2

0 − 4λ2

1 − q + α

)

+ h2L

(2 − 3q + 2α − qv0√
v2

0−4λ2

−2(1 − q + α)
,

1 − 2q + α

1 − q + α
;
z1−q+α

√
v2

0 − 4λ2

1 − q + α

)]
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Figure 1: The c(x, z), v0 = 20, q = 0.5, λ = 1, α = 1.5, h1 = 1, h2 = 0.

where h1 and h2 are arbitrary constants, �(−,−; ·) is the confluent hypergeomet-
ric function and L(−,−; ·) is the generalized Laguerre polynomial. The concen-
tration is

c = e−λ2xe− (v0+
√

v2
0−4λ2)

1−q+α
z1−q+α

2

×
[
h1�

(2 − 3q + 2α − qv0√
v2

0−4λ2

2(1 − q + α)
,

2 − 3q + 2α

1 − q + α
;
z1−q+α

√
v2

0 − 4λ2

1 − q + α

)

+ h2L

(2 − 3q + 2α − qv0√
v2

0−4λ2

−2(1 − q + α)
,

1 − 2q + α

1 − q + α
;
z1−q+α

√
v2

0 − 4λ2

1 − q + α

)]

4.2 n = 1, q = 0 and α arbitrary

We observe that in this case k0 = ku∗ where k is the Von Karman constant and u∗
is the friction velocity.

The generators of group of similarity are:




X = a0 + a1x + a2

2
x2

Z = a1 + a2x

1 + α
z + c0z

1 − α

2

C = (b0 + b1z
1+α + b1x(1 + α)(1 + v0 + α))c

(11)

where a0, a1, a2, b0, b1 and c0 are constants satisfying the conditions

c0(1 + 2v0 + α) = 0, a2 + 2b1(1 + α)2 = 0

Now we consider the following subcases.
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4.2.1 c0 = 0, a2 = −2b1(1 + α)2 and α �= −1
The characteristic equations are:

dx

x
= (1 + α)

dz

z
= dc

c

The invariants are c
x

and ξ = zx− 1
1+α ; the concentration is

c = xf (ξ)

where f (ξ) is solution of the following ordinary differential equation:

ξαf (ξ) −
(

1 + v0 + ξ1+α

1 + α

)
f ′(ξ) − ξf ′′(ξ) = 0

In this case we have:

f (ξ) = e
− z1+α

x(1+α)2

[
h1�

(
2 + v0 + 2α

1 + α
, 1 + v0

1 + α
; z1+α

x(1 + α)2

)

+ h2L

(
−2 + v0 + 2α

1 + α
,

v0

1 + α
; z1+α

x(1 + α)2

)]

where h1 and h2 are arbitrary constants. The concentration is

c = xe
− z1+α

x(1+α)2

[
h1�

(
2 + v0 + 2α

1 + α
, 1 + v0

1 + α
; z1+α

x(1 + α)2

)

+ h2L

(
−2 + v0 + 2α

1 + α
,

v0

1 + α
; z1+α

x(1 + α)2

)]

4.2.2 (1 + 2v0 + α) = 0, a0 = −1, b1 = 0 and α �= −1
The characteristic equations are:

dx

−1
= dz

z
1−α

2

= dc

c

The invariants are cex and ξ = x + 2
1+α

z
α+1

2 ; the concentration is

c = e−xf (ξ)

where f (ξ) is solution of the following ordinary differential equation:

f (ξ) − f ′(ξ) + f ′′(ξ) = 0

In this case the concentration is:

f (ξ) = e− x
2 + z

1+α
2

1+α

[
h1 cos

√
3

(
x

2
+ z

1+α
2

1 + α

)
+ h2 sin

√
3

(
x

2
+ z

1+α
2

1 + α

)]
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Figure 2: The c(x, z), v0 = 11, α = 1, h1 = 1, h2 = 0.

4.3 n = 2, q = 1 and α = 0

The generators of group of similarity are:




X = a0 + a1x + a2

2
x2

Z = b0z + 1

2
(a1 + a2x)z log z

C =
(

c2 − 1

8
x(2a1(v0 − 1)2 + a2(2 + (v0 − 1)2x))

−1

8
log z(2(v0 + 1)(a1 + a2x) + a2 log z)

)
c

(12)

where a0, a1, a2, b0, and c2 are arbitrary constants.
If we put: a0 = 0, a1 = 1, a2 = 0, b0 = 0, c2 = 0, we have




X = x

Z = 1

2
z log z

C = −1

4
((v0 − 1)2x + (1 + v0) log z)c

(13)

The invariants are ce
1
4 (v0−1)2xz

1
2 (1+v0) and ξ = log z√

x
; the concentration is

c = e− 1
4 (v0−1)2xz− 1

2 (1+v0)f (ξ)

where f (ξ) is solution of the following ordinary differential equation:

f ′′(ξ) + ξ

2
f ′(ξ) = 0
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Figure 3: The c(x, z), α = −3, h1 = 1, h2 = 1.
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Figure 4: The c(x, z), v0 = 3, h1 = 1, h2 = 1.

the solution is

f (ξ) = h1 + h2 erf

(
ξ

2

)

The concentration is

c = e− 1
4 (v0−1)2xz− 1

2 (1+v0)

(
h1 + h2 erf

(
1

2

log z√
x

))
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5 Conclusion

We obtain analytical solutions, using Lie group analysis, for steady-state bi-dimen-
sional turbulent diffusion equation with variable coefficients. The laws of wind
speed, turbulent diffusion coefficients and terminal velocities are specified by
power laws. The obtained solutions are more realistic respect to gaussian model
in air pollution modeling. In future we intend, using our solutions, to solve the
diffusion equation (1) for many boundary conditions.
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