Preliminary insights into magneto-biomonitoring (Tilia europaea and Acer pseudoplatanus) as an alternative roadside particulate air pollution technology

A. L. Power¹,², A. T. Worsley¹, C. A. Booth² & K. M. Farr²
¹Edge Hill University College, Ormskirk, Lancashire, UK
²Research Institute in Advanced Technologies (RIATec), The University of Wolverhampton, West Midlands, UK

Abstract

Urban roadside particulate air pollution, deposited on tree leaf surfaces (Lime: Tilia europaea; Sycamore: Acer pseudoplatanus), has been monitored (July 2003 to November 2003) by mineral magnetic technologies. The nature of this work is particularly important because particulate pollution affects human health (i.e. cardio-vascular and respiratory systems). Leaves were collected from four roadside locations and a woodland park within the City of Wolverhampton, West Midlands, U.K. Data analyses reveal that significant (p <0.001) site-specific differences are chiefly attributed to differences in types of traffic management and associated vehicular behaviour, but may also be influenced by the type of vehicular engine (notably diesel) and localised conditions. Moreover, evidence suggests magnetic concentration parameters are a surrogate for particulate air pollution. Given the speed, measurement sensitivity and non-destructive nature of the technique, it is proposed this low-cost approach offers some advantages over other technologies currently used to monitor urban roadside particulate pollution.

Keywords: environmental magnetism, tree leaves, PM₁₀, vehicular pollution monitoring, traffic management.
1 Introduction

Atmospheric particles exist in various forms (sub-micro aerosols to visible dusts). Particulate pollution can have serious and damaging influences on human health, affecting cardio-vascular and respiratory systems. Typically, the finest particle sizes (diameter <10µm; known as PM$_{10}$) exacerbate these illnesses. This is because they are not filtered-out by the nasal tract and, as a consequence, are able to penetrate deep into human lungs, which can reduce pulmonary function and promote alveolar inflammation [1, 2]. For instance, coal-derived particulate pollution was a notable component of the London smogs (1950s), which were responsible for high mortality rates and also contributed to acute illness in many people. This culminated in the first Clean Air Act (1956). In the UK, nowadays combustion from petrol (~5%) and diesel (~19%) powered vehicles is the main producer of PM$_{10}$ pollution [3].

Many studies have explored relationships between the magnetic and physico-chemical properties of dusts and sediments, which has allowed mineral magnetic measurements to be identified as a suitable proxy for geochemical, radioactivity, organic matter content and particle size data [4–13]. Hence, magnetic techniques have aided pollution studies [14–20] and, more recently, promoted magneto-biomonitoring of urban leaves to be recognised as a possible alternative or supporting technology for particulate pollution studies [21–24].

This pilot study presents an insight into the (i) use of urban tree leaves as dust depositories; (ii) application of mineral magnetic measurements as a PM$_{10}$ proxy; (iii) associations between particulate pollution and traffic management/vehicle behaviour; and (iv) promotion of mineral magnetic technologies as an alternative roadside particulate air pollution monitoring tool.

2 Magneto-biomonitoring technology

Mineral magnetic analyses are now considered a routine form of analysis when investigating the compositional properties of soils, sediments and dusts [25]. Compared with other analytical methods, mineral magnetics provides a compositional tool, which is reliable, rapid, non-destructive, inexpensive and sensitive to low detection levels [26]. Consequently, this has assisted understanding linkages between health and respirable airborne particulate matter [27], association with organic matter [9, 10], progressed spatial and temporal pollution studies [14–20], benefited air-borne particulate discrimination [17, 28–30] and has recently promoted its suitability for aiding biomonitoring of air quality [22, 23, 31, 32].

Urban trees leaf surfaces are known to intercept and retain airborne particulates [33–37] allowing traffic emissions to be monitored [38] and linkages made with PM$_{10}$ pollution [39]. Magnetic techniques have been used to demonstrate decreases in pollution concentrations on leaf surfaces (and in soils) with distance from roads [17, 22, 23, 40] and have highlighted their use as a proxy for vehicular heavy metal pollution [24]. Furthermore, the ability of differing tree species to retain particulates has also been recognised [23].
3 A preliminary study: Wolverhampton city, U.K.

3.1 Site descriptions

Leaf samples were collected from four roadside sites (Figure 1) and a woodland park within the Wolverhampton conurbation, West Midlands, UK. In all cases, sample trees are <15m from traffic.

Figure 1: Urban roads of Wolverhampton (a) St Peters Ring Road, (b) Union Mill Street, (c) Penn Road and (d) Willenhall Road.

(1) *St Peters Ring Road* (National Grid Reference (NGR): SO 914 990; Plate 1a) comprises a western section (500m) of the ring road that surrounds Wolverhampton city centre with two sets of traffic lights at either end. The sample trees are positioned midway in a central vegetated reservation (15m wide). The road is slightly inclined with three lanes of vehicles travelling uphill and two lanes downhill, exposing the trees to 5 lanes of traffic pollution, mainly cars and heavy duty vehicles with occasional traffic standstills; (2) *Union Mill Street* (National Grid Reference (NGR): SO 914 880; Plate 1b) comprises a branch of the A41 ring road approximately 2km from Wolverhampton town centre. The sample trees are positioned in the middle of a central reservation (15m wide) with all traffic passing on a dual carriageway, mainly cars but also heavy duty vehicles. The road is slightly inclined with one lane of vehicles travelling downhill, exposing the trees to 2 lanes of traffic pollution; (3) *Penn Road* (National Grid Reference (NGR): SO 904 980; Plate 1c) comprises a residential road near a woodland park. The sample trees are positioned at the side of the road with occasional traffic passings. The road is slightly inclined with two lanes of vehicles travelling downhill, exposing the trees to 1 lane of traffic pollution, mainly cars; (4) *Willenhall Road* (National Grid Reference (NGR): SO 894 970; Plate 1d) comprises a major arterial road in Wolverhampton, with a significant amount of traffic passing. The sample trees are positioned at the side of the road with occasional traffic passings. The road is slightly inclined with two lanes of vehicles travelling downhill, exposing the trees to 1 lane of traffic pollution, mainly cars.
Street (NGR: SO 921 986; Plate 1b) is located on the eastern outskirts of the city centre. High traffic loads are experienced along this main approach to the city with lorries, buses and cars frequently idling at a set of traffic lights; (3) Penn Road (NGR: SO 903 968; Plate 1c) is a busy and frequently used south-westerly route to/from the city centre, set in residential surroundings with two lanes of traffic, heavily used by buses. Traffic standstills are frequent due to the presence of a bus stop and traffic signals at either end of the 150m section; (4) Willenhall Road (NGR: SO 984 938; Plate 1d) is situated in a residential area east of the city centre. Traffic intensities are high along this road, but regular standstills are infrequent; and (5) Mosley Park (NGR: SO 950 970) is a small woodland park, located in a sub-urban residential area of Willenhall. All adjacent roads are mainly residential and, as such, experience low traffic intensities.

3.2 Materials and methods

Leaves were collected from two tree species (Lime: *Tilia europaea*; Sycamore: *Acer pseudoplatanus*) at each site, at approximately fortnightly intervals (22/07/2003 – 12/10/2003). On each occasion, collection days were always after a minimum of 3-days of dry weather. Samples were collected at the same heights from each tree (1.8–2.0 m) to avoid ground contamination (splash) and minimise pedestrian disturbance.

Five leaves from each tree were compressed into 10cc plastic pots and their dry weights recorded to obtain mass specific values. All samples were then subjected to the same analysis procedures [25], to determine Low-frequency Magnetic Susceptibility (χ_{LF}); Anhysteretic Remanence Magnetisation (ARM); and Saturated Isothermal Remanent Magnetisation (SIRM). Interpretations of these parameters are widely available [41].

Particulate matter was monitored with a P. Track Ultrafine Particulate Counter (Model 8525), with the probe positioned immediately adjacent to those same trees used for leaf sampling.

3.3 Results

Preliminary statistical analyses validate the use of mineral magnetic measurements. Correlation coefficients indicate significant (p <0.01) kinships exist between PM$_{10}$ and mineral magnetic measurements (Table 1). For Lime tree leaves, the association is not always applicable. In contrast, for Sycamore tree leaves, the relationship is significant for all magnetic parameters. Despite the small data population, based on this evidence, magnetic measurements are deemed a suitable proxy for PM$_{10}$ pollution. However, a cautionary note is expressed about the reliability of the data derived from Lime tree leaves.

Mineral magnetic data is presented for both Lime (Table 2) and Sycamore (Table 3) leaves. For both species, Union Mill Street has the highest magnetic concentration values and Willenhall Road has the lowest magnetic concentration values for all four roads. Since the physical and biological properties of the leaves are different, it is inappropriate to compare inter-species data. However,
despite these differences, similar data trends for both species support the validity of this methodological approach.

Table 1: Relationships between PM$_{10}$ and magnetic measurements (n = 5).

<table>
<thead>
<tr>
<th>Magnetic Parameter</th>
<th>Lime: Tilia europaea</th>
<th>Sycamore: Acer pseudoplatanus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>p-value</td>
</tr>
<tr>
<td>χ_{LF}</td>
<td>0.597</td>
<td>$>$0.05</td>
</tr>
<tr>
<td>ARM</td>
<td>0.747</td>
<td>$>$0.05</td>
</tr>
<tr>
<td>SIRM</td>
<td>0.775</td>
<td>$<$0.05</td>
</tr>
</tbody>
</table>

Table 2: Summary mineral magnetic data (mean and standard deviation) for urban roadside dusts on Lime tree leaves.

<table>
<thead>
<tr>
<th>Site</th>
<th>χ_{LF} (10$^{-7}$ m3 kg$^{-1}$)</th>
<th>ARM (10$^{-5}$ Am2 kg$^{-1}$)</th>
<th>SIRM (10$^{-5}$ Am2 kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willenhall Road (n = 6)</td>
<td>0.16 (0.13)</td>
<td>0.43 (0.11)</td>
<td>28.80 (6.56)</td>
</tr>
<tr>
<td>Penn Road (n = 6)</td>
<td>1.92 (0.42)</td>
<td>1.63 (0.31)</td>
<td>145.59 (14.77)</td>
</tr>
<tr>
<td>St. Peters (n = 6)</td>
<td>1.98 (0.98)</td>
<td>1.52 (0.78)</td>
<td>157.55 (56.20)</td>
</tr>
<tr>
<td>Union Mill Street (n = 6)</td>
<td>2.22 (0.98)</td>
<td>2.00 (1.38)</td>
<td>233.09 (61.42)</td>
</tr>
<tr>
<td>All Roads (n = 24)</td>
<td>1.57 (1.07)</td>
<td>1.40 (0.96)</td>
<td>141.26 (84.48)</td>
</tr>
<tr>
<td>Mosley Park (n = 5)</td>
<td>0.40 (0.12)</td>
<td>0.41 (0.08)</td>
<td>52.24 (16.96)</td>
</tr>
</tbody>
</table>

Table 3: Summary mineral magnetic data (mean and standard deviation) for urban roadside dusts on Sycamore tree leaves.

<table>
<thead>
<tr>
<th>Site</th>
<th>χ_{LF} (10$^{-7}$ m3 kg$^{-1}$)</th>
<th>ARM (10$^{-5}$ Am2 kg$^{-1}$)</th>
<th>SIRM (10$^{-5}$ Am2 kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willenhall Road (n = 6)</td>
<td>0.44 (0.23)</td>
<td>0.54 (0.29)</td>
<td>56.98 (21.98)</td>
</tr>
<tr>
<td>Penn Road (n = 6)</td>
<td>1.88 (0.58)</td>
<td>1.61 (0.59)</td>
<td>134.89 (36.00)</td>
</tr>
<tr>
<td>St. Peters (n = 6)</td>
<td>0.68 (0.29)</td>
<td>0.66 (0.15)</td>
<td>55.34 (10.76)</td>
</tr>
<tr>
<td>Union Mill Street (n = 6)</td>
<td>1.70 (0.67)</td>
<td>1.89 (1.11)</td>
<td>179.19 (72.67)</td>
</tr>
<tr>
<td>All Roads (n = 24)</td>
<td>1.17 (0.78)</td>
<td>1.18 (0.85)</td>
<td>106.60 (66.86)</td>
</tr>
<tr>
<td>Mosley Park (n = 5)</td>
<td>0.35 (0.06)</td>
<td>0.48 (0.12)</td>
<td>55.65 (9.04)</td>
</tr>
</tbody>
</table>

Magnetic concentration data for Penn Road is similar to St Peters Ring Road for Lime trees, but it is notably higher for Sycamore trees. This suggests localised conditions (e.g. environmental, meteorological or anthropogenic) of these sites, maybe influencing or disturbing particulate deposition.

Mosley Park was included in this study to provide a comparative background control, indicative of an urban site with low traffic intensities. For both species, it is to be expected that this site has lower magnetic concentration values than any of the roads. However, despite the notable differences between sites, Mosley
Park and the Willenhall Road locations display similar magnetic concentration values. Since the control site is not near to any major traffic routes, this suggests either the Mosley Park leaves receive particulate pollution from an unknown source or the traffic intensity and/or traffic flow conditions at the Willenhall Road site are causing only minor particulate pollution to be deposited.

Traffic studies indicate Willenhall Road has the highest traffic flow (mean of 1342 vehicles one-way) of all four roads, during morning peak travel times (07.45 – 08.45). In contrast, Union Mill Street has the lowest traffic flow (mean of 935 vehicles one-way) during morning peak travel times. This is in marked contrast to the trend of the magnetic concentration values. This suggests either magnetic concentration measurements are not a suitable proxy for particulate pollution at these sites (not consistent with Table 1) or the data variations are attributable to inter-site differences (e.g. traffic flow conditions and/or immediate environmental surroundings).

3.4 Discussion

Magnetic measurements highlight significant (ANOVA: p <0.001) inter-site differences between particulate pollution quantities deposited on the leaves of two tree species. Results indicate these differences are not associated with traffic quantities passing each site but are attributable to the type of traffic management controlling each site. For instance, despite high traffic flow volumes, Willenhall Road had the lowest particulate pollution (i.e. low magnetic values) because the traffic was free-flowing and was infrequently stationary. Therefore, the vehicles were releasing lower particulate pollution because they were not stopped with engines idling or changing gears. In contrast, despite low traffic flow volumes, Union Mill Street had the highest particulate pollution (i.e. high magnetic values) because traffic was frequently stationary at traffic lights. Therefore, vehicles were expelling greater particulate concentrations because the engines were idling and/or changing gears at this site.

Traffic conditions on the Penn Road are notably different to those on St Peters Ring Road. During peak travel times, Penn Road traffic frequently queues at several sets of traffic lights for short intervals and, unlike the other roads, traffic flow is restricted to a single lane. In contrast, St Peters Ring Road is free flowing and multi-laned. The Sycamore tree data clearly reflect these traffic conditions, with Penn Road experiencing greater particulate pollution because vehicles are frequently stopped with engines idling or changing gears to move away. In contrast, St Peters Ring Road has lower particulate pollution because traffic only occasionally stops. Traffic is usually free moving, with less particulate matter released.

It is also important to note, of all roads, Union Mill Street had the highest proportion of lorries. Likewise, Penn Road had the highest proportion of buses. Since these both vehicles types are normally diesel powered and, therefore, expel greater particulate quantities, it is probable that they contribute to the high particulate pollution at these sites.
3.5 Future work

The findings from this pilot study highlight the need for further study, which should include: (1) the nature of the relationship between magnetic and particulate properties explored fully in specific urban environments and individual sites, to test the reliability of magnetic technologies as a proxy for both PM$_{10}$ and PM$_{2.5}$ pollution; (2) a sampling regime that incorporates more sample collection sites, which for comparative purposes should also include several sites with similar traffic management (e.g. at traffic lights, dual and single lane carriageways or free flowing traffic conditions for each site) and, where possible, similar localised settings; (3) examination of leaves from other tree species as receptors for particulate pollution; (4) employment of spatial magnetic data to create local/regional pollution maps; (5) discriminate magneto-characterization of particulates from petrol and diesels powered engines; (6) street dust comparisons between pavement and leaf-covered particulates; and finally, (7) further investigation of the most appropriate sample preparation procedure (and associated units) when conducting this type of bio-monitoring exercise. The approach used here (mass specific measurements) restricts data comparison with similar publications. However, other approaches, which have used leaf-ratio indexes or leaf surface areas (pixel scanning of leaves), are comparatively complex and time-consuming. Therefore, a new sample preparation procedure needs validating (e.g. washing or wiping leaves), which permits the traditional, mass specific measurements, approach to be used.

4 Conclusions

This study uses mineral magnetic parameters as surrogates for vehicular-derived particulate pollution. Data originated from four urban roadside locations and one urban woodland park and demonstrates site-specific differences. These are chiefly attributed to differences in vehicle behaviour (e.g. free flowing, stationary and idling or moving-away and changing gears) at various traffic management situations (e.g. at traffic lights, dual and single lane carriageways or free flowing traffic conditions for each site), but may also be influenced by the type of vehicular powered engine (i.e. petrol or diesel) and localised conditions (e.g. environmental, meteorological or anthropogenic).

Initial evidence suggests magnetic concentration parameters are a suitable proxy for particulate air pollution. Given the speed, measurement sensitivity and non-destructive nature of the technique, it is proposed that this low-cost approach may offer some advantages over other technologies currently used to monitor urban roadside particulate pollution.

Acknowledgements

All authors gratefully acknowledge and thank the technical staff of the School of Applied Sciences at The University of Wolverhampton. ALP also thanks Edge Hill for providing the financial support to publish this work.
References

