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Abstract 

Chemical Mass Balance (CMB) and Positive Matrix Factorization (PMF) models 
were used to analyze fine particulate matter data from two sites within the city of 
Chicago. Measurements of metals, organic and elemental carbon, sulfate, nitrate, 
and gaseous criteria pollutants from the PM2.5 speciation network were 
evaluated. CMB and PMF results were both strongly influenced by the 
measurement uncertainty. Variables with a high percentage of measurements 
below the detection limit were heavily down-weighted so that the models would 
not be overly influenced by low or unknown concentrations. Variables that were 
usually above the detection limit were weighted by the root mean square average 
of 10 % of the measured concentration and the corresponding detection limit. 
     The analysis yielded a nine source CMB and a 10 factor PMF solution for the 
Chicago sites. Sources represented by the factors were identified using 
established source profiles from literature and mass to mass ratios of species. 
The sources identified included secondary sulfate and nitrate, motor vehicles, 
coal-fired utilities, vegetative burning, wind blown dust, salt used to de-ice 
roadways and steel production. CMB and PMF predictions for source 
contribution and composition were compared and contrasted. The two models 
provided remarkably consistent results. The estimated daily contributions from 
each source revealed seasonal patterns which also aided in source identification.  
Keywords: Chemical Mass Balance, Positive Matrix Factorization, Particulate 
Speciation Trends Network, receptor models, source composition. 
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1 Introduction 

In 2000, the United States Environmental Protection Agency established the Fine 
Particulate Speciation Trends Network to expand on its existing PM2.5 
monitoring activities. The purpose of the network is to characterize individual 
species which compose the total fine particulate measured at the Agency's 
Federal Reference Method (FRM) PM2.5 monitoring sites. The data from the 
speciation network serves an important role in aiding the Agency in determining 
which species are the most prevalent in areas of the nation thus allowing for the 
formulation of control strategies. For example, studies have already shown that 
secondary sulfates comprise a large part of the fine particulate in the Eastern part 
of the United States while secondary nitrates dominate the total PM2.5 in the 
Western United States [1]. 
     Another use planned for the data collected through the speciation network is 
to support fine particulate matter source apportionment studies. Traditional 
source apportionment techniques have centered around the use of the Chemical 
Mass Balance (CMB) model which uses source composition (independent 
variables) and speciated air quality data (dependent variable) to determine source 
contributions for either gases, particles or a combination of both [2,3]. One 
limitation of this approach is that source profiles for many of the important 
PM2.5 sources are not well defined. A complementary receptor modeling 
technique which does not require the specification of source profiles to provide 
an indication of possible source impacts is Positive Matrix Factorization (PMF). 
This technique is a form of factor analysis where the underlying co-variability of 
many variables (e.g. sample to sample variation in PM species) is described by a 
smaller set factors (e.g. PM sources) to which the original variables are related. 
PMF has been used in a variety of source apportionment and spatial analysis 
studies [4, 5]. One important advantage of PMF is that it does not require source 
profile information to determine the possible source contributions as with the 
CMB model. Furthermore, CMB assumes that the fitting species used in the 
analysis are non-reactive, that is they do not change significantly in the 
atmosphere between the time of emission and collection at the receptor location. 
PMF does not impose this restriction. However, it can be difficult to identify 
potential sources defined by the PMF model without source profile information 
to compare the predicted composition with. This work will compare and contrast 
CMB and PMF solutions for the same data set in Chicago and examine the 
strengths and weaknesses of the models. 

2 Methods 

Both models solve the following equation: 

EFGX +=  

where  X  (n x Sp)= matrix of Sp speciated concentrations on n days; 
 G (n x f) = matrix of f source contributions on n days; 

152  Air Pollution XII

Air Pollution XII, C. A. Brebbia (Editor)
© 2004 WIT Press, www.witpress.com, ISBN 1-85312-722-1



 F (f x Sp) = matrix of f source profiles for Sp species; and 
 E (n x Sp) = matrix of errors for Sp species on n days. 
     For the CMB model, X and F are measured and G and E are solved by least 
squares statistics. For the PMF model, the number of sources is specified and the 
G and F matrices are estimated with a non-negative constraint (concentrations 
and compositions can not be less than zero). CMB calculations were performed 
with the SAS programming language using the effective variance weighted least 
squares procedure [6]. Details of the PMF analysis have been presented [7]. PMF 
calculations were performed for a 10-factor model with the Multilinear Engine 2 
(ME2).  
     Source fingerprints were derived from published studies. Sources modeled 
included soil, biomass burning, motor vehicles (gas and diesel composite), steel 
industry, coal combustion, road salt, petroleum refineries, and secondary sulfate 
and nitrate. The vehicle profile was compiled from a series of composites 
obtained from the Northern Front Range Air Quality Study (NFRAQS) 
conducted by Desert Research Institute [8]. The secondary sulfate and nitrate 
profiles were calculated using the mass ratios of the individual constituents for 
each of the two salts. Wood burning profiles from NFRAQS and a study 
conducted by Jamie Schauer were used to construct the vegetative burning 
profile [8, 11]. The steel profile was constructed from a series of profiles for a 
different steel processes used in a South Africa steel mill for a study conducted 
by Desert Research Institute [12]. The petroleum refinery profile is an average of 
a composite petroleum refinery profile from NFRAQS and a separate refinery 
profile collected during a study in Robbins, Illinois examining the emissions 
from a local waste incinerator [8, 13]. The rock salt profile represents the 
analysis of the bulk road salt used for snow removal in the Chicago metropolitan 
area [13]. The soil profile is a composite of several profiles created during the 
Robbins incinerator study by Desert Research Institute and represents the local 
soil component for the Chicago area [13]. The coal plant profile represents the 
average of the profiles from NFRAQS and two other studies which examined the 
chemical composition of power plants using high sulfur coal which is common 
in the Midwestern United States [8, 9, 10].  
     Data were combined from the two speciation-trends sites within Chicago for 
2001 and 2002 to create a data set of 241 observations. Each observation 
included 4 gases (SO2, NOx, NH4, and CO), 4 ions (SO4

=, NO3
-, Na+ and K+), 2 

carbon fractions (organic and elemental carbon) and 48 elements. Multivariate 
factor analytic techniques have been shown to be sensitive to variables with a 
high proportion of data less than the minimum detectable limit (MDL). Thus, the 
uncertainty for each value was based on a signal to noise analysis of the 
importance of individual species given the number of samples above the method 
detection limit [14]. 
     One of the difficult judgments in PMF modeling is determining the number of 
sources to include in the model. The number of factors to be included in the final 
solution was determined from a preliminary factor analysis where the eigen 
value corresponding to the inclusion of each successive variable was plotted 
against the number of variables included in the analysis. This is commonly 
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known as a Scree plot and gives an indication of the number of factors 
appropriate for a solution when the line approaches horizontal. For the Chicago 
example, solutions of five to eleven factors were calculated in ME2 and 
compared to the results obtained by the PMF analytical tool. This analysis 
showed consistent results between the two methods for a 10 factor solution. 

3 Results 

Table 1 shows descriptive statistics for the CMB and PMF solutions. The table 
includes tentative identifications of the PMF sources. Figure 1 is a scatter plot 
matrix of CMB and PMF daily source concentrations and show similarity and 
differences between model predictions. 
 

Table 1:    Average CMB and PMF source contributions. 

Model Source Minimum Maximum Median Mean Std Dev 

CMB Coal 0.000 3.43 0.134 0.206 0.311 

CMB Soil 0.000 10.87 0.288 0.489 0.896 

CMB Steel 0.000 4.26 0.193 0.340 0.541 

CMB Burning 0.000 11.57 1.460 1.781 1.447 

CMB Vehicle 0.642 12.56 4.44 4.71 2.240 

CMB Salt 0.000 3.34 0.00 0.135 0.445 

CMB Refinery 0.000 3.54 0.049 0.088 0.268 

CMB Sulfate 0.479 30.2 3.48 4.99 4.55 

CMB Nitrate 0.143 18.66 2.19 3.07 2.91 

PMF Utility 0.000 1.181 0.120 0.188 0.197 

PMF Soil 0.000 6.33 0.578 0.830 0.832 

PMF Steel 0.000 1.695 0.090 0.164 0.204 

PMF Fe Mn 0.000 2.84 0.249 0.398 0.436 

PMF Copper 0.000 4.372 0.184 0.296 0.458 

PMF Burning 0.000 6.63 0.439 0.662 0.816 

PMF Vehicle 0.000 9.04 2.55 2.65 1.377 

PMF Salt 0.000 4.59 0.060 0.228 0.575 

PMF Sulfate 0.000 39.4 3.79 5.94 5.91 

PMF Nitrate 0.000 20.2 2.36 3.44 3.42 
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     Table 1 and figure 1 show strong agreement between these two models. For 
example, predictions for road salt, sulfate and nitrate are strongly correlated with 
very similar mean concentrations. Other sources with moderate correlations 
include biomass burning, soil and vehicles.  CMB vehicle and biomass burning 
predictions are higher than PMF while PMF soil concentrations are higher than 
CMB solutions. Except for burning, mean differences are all less than a factor of 
2. Figure 1 also shows that the CMB steel source is moderately correlated to the 
PMF iron and manganese source. The mean concentrations of these sources are 
also similar. 

Figure 1:  Scatter plot matrix of CMB versus PMF solutions. 

4 Discussion 

One of the challenges of PMF modeling is the naming of the predicted sources.  
This is done by comparing the predicted source compositions with known source 
compositions (F matrix) and evaluating the variability of the sample to sample 
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predictions (G matrix). For example, sources with seasonal patterns can be 
identified when plotting the G matrix (predicted source concentrations) as a time 
series. In this study, the preliminary identifications in table 1 were determined by 
time series plots as well as comparison with CMB predicted source contributions 
and measured source profiles.  
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Figure 2: Time series plot of CMB and PMF predicted sulfate. 
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Figure 3: Time series plot of CMB and PMF predicted nitrate. 

     Figure 2 shows the time series plot of CMB and PMF predictions for sulfate 
and shows increased sulfate concentrations during the summer. In contrast, 
figure 3 shows the time series plot for nitrate and shows higher levels during the 
winter. 
     Figures 4, 5, 6 and 7 compare PMF predicted source compositions for the 
vehicles, road salt, soil and biomass burning sources with the measured source 
profiles used in the CMB analysis. The agreement between the measured vehicle 
profile and the PMF estimated profile (figure 4) is remarkable. The predicted 
profile captures the major components perfectly including the gases (CO, NOx 
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and SO2) and the major particle components (elemental and organic carbon). 
While the PMF prediction overestimates the vehicle sulfate component, it does 
an excellent job with many metals including Ca, Cr, Fe, Mg, P, Pb, and V. 
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Figure 4: Comparison of CMB ■ and PMF □ vehicle fingerprints. 
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Figure 5: Comparison of CMB ■ and PMF □ road salt fingerprints. 

     The estimated profile for road salt aerosol (figure 5) also has a number of 
excellent predictions. For example, the sodium and chlorine predictions are 
almost exactly equal to the measured composition. Other reasonable good 
predictions include As, Ca, Cr, Ec, K, Mn, Ni, and Zn. It is interesting that the 
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PMF fingerprint includes predictions for gases associated with motor vehicle 
emission (NOx, and NH4

+) as well as Pb which was not in the measured source 
composition. This could be an indication of problems with the measured 
composition. This excellent agreement is also seen in the strong correlation 
between the CMB and PMF predictions in figure 1. 
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Figure 6: Comparison of CMB ■ and PMF □ soil fingerprints. 

     The comparison of measured to predicted soil composition (figure 6) is also 
interesting. The figure shows excellent agreement for many of the major soil 
elements including Ca, Fe, K, Si, Ti, and Zn. There is also good agreement for 
other major components including NH4

+ and organic carbon. Many of the minor 
elements also compare very well including Cr, Sn and V. Possible problems with 
the predicted composition include fairly high predictions for gases (CO, NOx, 
and SO2) which are clearly not associated with soil particles. The PMF 
prediction also did not find the sulfate and Cl in the soil particles and 
underestimated the Al mass fraction. One strength of the ME2 for performing 
PMF calculations is that it allows the partial specification of the F matrix (source 
composition). Future runs with this data set will explore the effect of removing 
the gases from the predicted soil composition. 
     Figure 7 compares the measured and predicted compositions for the bio-mass 
burning source. The predicted composition for major gases including CO and 
SO2 is excellent along with major PM components including elemental and 
organic carbon and K, a frequently used tracer for bio-mass burning. The PMF 
model did not pick up the Al, Cl, NH4

+, NOx, P and Zn in the measured 
composition while over predicting the As, Fe, NO3

-, SO4
=, Si, Sn, Ti and V. 

5 Conclusions 
The 10-factor PMF and 9-source CMB models produced remarkably similar 
predictions for PM2.5 aerosol in Chicago. Predictions for road salt, sulfate and 
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nitrate are strongly correlated with very similar mean concentrations. Other 
sources with moderate correlations include biomass burning, soil and vehicles. 
Average CMB vehicle and biomass burning predictions are higher than PMF 
while PMF soil concentrations are higher than CMB solutions. Except for 
burning, mean differences are all less than a factor of 2.  
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Figure 7: Comparison of CMB ■ and PMF □ biomass burning fingerprints. 

     It was not always easy to name the PMF factors. For example, figure 1 shows 
that the CMB steel source is moderately correlated to the PMF iron and 
manganese source. The mean concentrations of these sources are also similar. It 
is not clear if our identification of the PMF steel source is correct. We were also 
able to include a source for PM emissions from petroleum refineries in the CMB 
analysis. However, the PMF model was not able to find a factor with similar 
composition. The only source that the CMB refinery prediction correlated with 
was the source identified as PMF utility suggesting that our identification of that 
source may also not be correct. 
     Despite these differences, the ME2 solution of the PMF model was able to 
reproduce many of the major features of a number of important PM2.5 sources in 
Chicago including motor vehicles, soil, road salt, biomass burning, sulfate and 
nitrate. The next step in this analysis is to use the ME2’s ability to partially 
specify the F matrix and begin to force the two models toward a more common 
set of source compositions. 

6 Disclaimer 

The views expressed in this paper are those of the authors and not necessarily 
those of the U.S. Environmental Protection Agency. 
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