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ABSTRACT

Although the development of linear control theory is well established, real
industrial processes contain significant non-linearities that give limited credence
to the optimal performance of controllers over a wide operational region.
Consequently, the development of techniques that enable the design of a
controller suitable for operation with a non-linear process would be beneficial.

This paper describes the development and implementation of an on-line,
one-step-ahead, optimal predictive controller incorporating a neural network
model of the process. The scheme is based on a Multi-Layered Perceptron
neural network as a modelling tool for a real non-linear, dual tank, liquid level
process. The model validation techniques are described as well as the choice
of network structure and topology. The ability of the trained neural network to
represent both a simulation of the process, modelled from first principles, and
the actual process is investigated. The implementation, of the optimal control
algorithm, to both the simulation and the real process are described. Results are
presented to illustrate the steady-state and transient performance of the control
scheme.

INTRODUCTION

The development of linear controllers for linear systems has been established
for many years. However, the control of more realistic non-linear systems still
provides engineers with challenging problems. The approach of linearising a
model of the process about its operating point and developing a suitable linear
controller is of limited applicability. The alternative approach of developing a
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non-linear controller for operation over the non-linear regions has not been
established to an acceptable degree. The potential development of a non-linear
model, using a neural network, and the consequent design of a suitable
controller provides a possible way forward for the evolution of controllers for
the future. This paper describes the development and on-line implementation
of a standard predictive controller employing a neural network model to
describe the non-linear dynamics of a laboratory process.

Neural Networks are not new and have been around since the mid 1950’s
but it is only recently, due to the development of improved training algorithms
and electronic hardware for implementation, that interest has been rejuvenated.
Their application into Al areas, vision systems, speech and sound systems has
recently broadened into the field of control systems. The inherent ability of
neural networks to model non-linearity, to generalise from the initial data set,
to overcome noisy signals and to be robust to data inconsistencies raises
interest in their development for modelling and control of real industrial
processes.

A number of approaches are possible for controller design, depending on
the type of process. Real processes may vary with time and contain non-
linearities. The design of controllers for linear systems is well established and
documented. However, the design of suitable controllers is not so well
established for non-linear and time-varying processes and is currently receiving
interest. In this paper, the objective is to design, develop and implement a
controller, incorporating a neural network model, specifically for a non-linear
process.

One approach, that can be used, is to develop a linear model of the process
about its steady-state operating conditions, the process representation only being
valid for a limited range outside its steady-state operating point. A number of
different linear control algorithms can be developed using this linear model.
However if the operating point was changed and the non-linearities were a
factor, then the design process would again be required to redesign or retune
a controller to meet a required process specification. An alternative strategy
would be to design a specific non-linear controller for the process and its range
of operation. A preferred solution would be a single process representation that
accurately models the process dynamics over the entire region of process
operation. This would enable a single control strategy to be implemented. It is
now widely accepted that a non-linear process may be accurately modelled by
an artificial neural network (ANN). The availability of such a model permits
the implementation of a number of control strategies. A main disadvantage of
a neural network representation is its lack of physical characteristics and in this
respect has similarities with process black-box input-output modelling
approaches. One of the significant advantages in using neural networks is that
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the model may be achieved without deep process knowledge and can be
accomplished with the availability of adequate process data.

The inherent ability of neural networks to capture the non-linear dynamics
of a process enables the design of a suitable controller for process operation
over the defined non-linear region. A number of investigations into the
combined use of control strategies in conjunction with neural networks have
been recently published (e.g. Miller et al. [1]). The application of an Internal
Model Control (IMC) strategy to the control of a simulated non-linear system,
that was invertible, was reported by Hunt and Sbarbaro [2]. The IMC approach
has the disadvantage of the requirement of both a forward and inverse model
of the plant, the latter may not always be possible to achieve and introduces
additional training requirements for a neural network. Model reference control
using neural networks has also been investigated in simulation (Narendra and
Parthasarathy [3]) with success, although a number of conditions were assumed.
In these studies, it was decided to employ a Neural Network Predictive
Controller (NN-PC) as a first attempt strategy because only one neural network
representing a forward model of the process is required and the approach has
some advantages over alternative strategies. The method has been successfully
used in a simulation example (Willis et al. [4]) and benefits from not needing
an inverse process model. The combination of neural network model and
predictive controller has also been investigated on a simulation of a distillation
column (Montague et al. [5]). The NN-PC algorithm is based on an iterative
solution of a conventional cost function. The objective of the algorithm is to
find the control signal (or process input) that minimises the cost function. The
cost function embodies an integral-square-error function on the difference
between required and network model output and is tempered by a weighting
factor which penalises excursions of the actuator.

From the possible array of network structures, it was decided to employ a
Multi-Layered Perceptron (MLP) network, trained using the standard back-error
propagation (BEP) algorithm (Werbos (6], Rumelhart and McClelland [7]). This
combination has been shown to be able to reliably represent a real non-linear
process. Although a number of different network architectures have been
investigated, the MLP has been utilised because it has been shown that these
networks can represent non-linear functions provided sufficient hidden units are
incorporated (Hornick et al. [8]). Another benefit is that the network is suitable
for supervised training. In the field of process control, it is possible to obtain
input/output data directly from a process or its simulation, hence providing the
required data for both training and validation. The main disadvantages of the
MLP and BEP algorithm are the relatively high volume of process data required
for training and the long training time, compared to other structures and
training algorithms, necessary to achieve a good model.
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LIQUID-LEVEL PROCESS

The choice of process was moderated by a number of considerations. The
process had to be accessible, safe and could be readily modelled by
conventional techniques. Consequently, it was decided to use a relatively simple
process as an initial test-bed because the process provided well-known non-
linearities and could be readily simulated.

The process (Fig.1) consists of two plexiglass cylinders 1.2 m high with a
cross-section of 0.0154 m?. The fluid is pumped into the system by a 'Stuart’
pump. The input flow-rate to the first tank is controlled by a pneumatic valve,
which has a safety by-pass. The tank outlet restrictances can be adjusted
manually. All pipework is standard 25.4 mm copper. The measurement of level
is by standard DP-cell with P/I conversion for transmission to the PC. The
control signal would be developed in the PC and transmitted to the pneumatic
valve via a DAC and I/P converter.

The data acquisition and controller output signals are acquired and
implemented through 'Blue Chip Technology’ input/output interface cards in
an IBM PS/2 model 30 computer. The control algorithm was implemented in
the Quick Basic programming language and the sampling time employed was
36 secs.

-3
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Figure 1 Process diagram
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PROCESS SIMULATION

The on-line development of process models and controller can be time
consuming and inefficient. The first step in the development of a suitable
controller, was to develop a conventional mathematical model of the liquid-
level process and utilise it as a test bed. Hence, it enables a thorough
investigation of the principles involved prior to on-line evaluation.

The non-interacting, dual tank liquid level process (Fig.1) with non-
linearities in the outlet flow rates exhibits features typical of many industrial
processes, and is made more realistic by the inclusion of an unmeasured state:
the height of liquid in tank 1. The non-linear differential equations describing

the process are:
c dh, =ku-vh1 (v

“ar U R
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where h, and h, are the liquid levels in tanks 1 and 2 respectively, u and h, are
the process input and output, k, is the valve gain, C,, C,, are the cross-sectional
areas of tanks 1 and 2 and R,, R, are the outflow pipe restrictances of tank 1
and tank 2, respectively.

These equations were implemented in a continuous simulation package
ACSL (Evans et al. [9]) which provides a range of Runge-Kutta routines to
solve differential equations with non-linear features. The data set, for the
development of the neural network model, was achieved by disturbing the input
flow rate, via the valve input u in equation (1).

DEVELOPING THE ANN FOR PROCESS MODELLING

In the development of a neural network model, it is important to select the
optimum network topology for this application and determine the parameters
for quicker and more accurate training. The lack of analytical methods results
in the need to undertake experiments to determine near optimum network
design. This section describes the rationale and consequent development of a
network suitable to represent the laboratory process.

The conventional MLP network structure with back-error propagation, using
the standard sigmoidal non-linearity as the activation function for each of the
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neurons in the hidden and output layers, has been used for the development of
the model of the process. The data was pre-conditioned using the technique of
spread encoding (Evans et al. [9,10], Lisboa [11]) which involves spreading
each input data value over a prescribed number of network input nodes using
a Gaussian distribution. Each value, in the distribution, is encoded between 0.1
to 0.9. A similar and reverse procedure is applied on the network output nodes
to gather the distributed data and decode to the correct analogue value.

The network can be structured as either a 'predictor’ or as a 'model’ as
illustrated in Fig.2. In this figure it can be seen that in the ‘'model’ structure the
network outputs are delayed and fed back as inputs to the network. When the
network is configured as a "predictor’, then the past values of process input and
output data are used for network inputs. Comparative investigations were
undertaken between the two structures in order to produce a representation of
the process that is as reliable and robust as possible. The number of input and
output nodes was determined in a similar way to conventional black-box,
discrete input-output modelling. The process is considered to be characterised
by the NARX (Non-linear, Auto-Regressive, eXogenous) model defined by:

@) = F [ y0-1),.p0tn) ut-k),..ult-k-n) | + e 3

where F is some unknown non-linear function, y and u are the process outputs
and inputs respectively, e is a Gaussian distributed white noise sequence, k is
the process deadtime, n, and n, are the number of past output and input data
used in the model structure. The well-defined dynamics of the liquid-level
process simplified the selection of the NARX model structure to be a 2nd order
model with one sample delay between input and output (i.e. n,=2, n,=1 and
k=1). Hence, the four network inputs consisted of two past outputs and two past
inputs from the process and the network output was the process output at time,t.
The application of the spread encoding results in each data value being spread

—, NEURAL T} NEURAL OUTPUT
- NETWORK OUTPUT NETWORK
g
PROCESS PROCESS s
INPUT OUTPUT  INPUT OUTPUT
A) PREDICTOR STRUCTURE B) MODEL STRUCTURE

Figure 2 Predictor and model structures for neural network operation
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over 6 nodes. As a consequence, the network input/output structure is 24 input
nodes (past process data) and 6 output nodes (present process output).

The liquid-level process has been simulated using both classical linear and
non-linear equations and was utilised for initial investigations into the ability
of a network to adequately represent the process. It was necessary, in the
development of the model, to investigate not only the number of network inputs
and outputs but also the number of hidden nodes and the necessary precision
between desired and actual network outputs. At this time, analytical techniques
have not been developed to enable network designers to specify the optimum
number of nodes in the hidden layer, or even whether there should be
additional layers. Consequently, it was necessary to conduct experiments to
determine the number of hidden nodes, the required mean square error (MSE)
value and the number of training passes (Lisboa et al. [12]) and details are
presented later.

CONTROL ALGORITHM

It was decided to use a Predictive Control strategy in this investigation. The
objective of the algorithm is to find the value of control input, u(t), at time step
t=1 that minimises the cost function:

N, N,
J=Y [, 4D -Y, 0+ DF+Y Mul®) -ule-DF @)

t=l t=l

where A is a weighting factor, y, is the required process output, Y., is the
network output, u is the control signal, N, is the prediction horizon and N, is
the control horizon.

The neural network model is used to predict future output responses of the
process, Y, (t+1), and these values are compared with the future desired values
of the outputs within the cost function. The objective of this function is to
minimise the error between the required set point and predicted process output,
subject to a weighting on the control signal. The algorithm determines the next
controller output to be applied to the process.

The major advantage of Predictive Control is that it incorporates predictions
for a number of future time steps to the horizon. This strategy enables the
model-based control system to anticipate where the process is heading. Values
of manipulated variables are computed to ensure that the predicted response has
certain desired characteristics. One sampling period after the application of the
current control action, the prediction response is compared to the actual
response. Using corrective feedback action for any errors between actual and
predicted responses, the entire sequence is repeated at each sample instant. '
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The control objective is to have the corrected prediction approach the set
point as closely as possible. Only the first prediction is implemented. The
advantage of this procedure, is that it gives early detection of modelling errors
of disturbances and approximately corrects for them. One problem with the
control law, is that it can result in excessively large changes in the manipulated
variable. An approach to counteract this is to penalise the change in movements
of the manipulated variable, u, in the cost function, with the weighting factor
A in equation (4).

NETWORK TOPOLOGY AND TRAINING

The selection of the type of training data for the network was investigated. In
order to capture the dynamics of a non-linear system, both the magnitude and
frequency response of the process must effectively be captured. Standard
frequency response testing is inadequate unless undertaken for a range of
sinusoidal amplitudes. Investigations also highlighted inadequacies in PRBS
excitation due to there only being two excitation levels which did not excite the
neurons over their operational span (Lisboa et al [12]). Consequently, it was
decided to use a Random Amplitude Signal (RAS) to provide a rich excitation
signal for process operation over a wide non-linear operational region and
produce suitable data for network training and validation.

It is important to ensure that the MLP network is trained over a wide
operating range not only to capture the non-linear dynamics but also to ensure
it is wider than the proposed operating range of the process. To achieve
successful representation of a process, it is important to provide adequate
excitation over the operational region. Process output data obtained with a RAS
input will produce fewer values at the outer regions of the process excursions.
Consequently, it is important to test the network in a slightly smaller region
than in which it was trained.

The training data for the neural network model was collected from both the
conventional mathematical simulation of the process and also real data from the
laboratory process. In each case, the process was excited by a random
amplitude signal applied to the process input flow rate via the valve. A set of
1000 input-output data points were obtained from the simulation and 300 from
the laboratory process, due to process operational constraints.

In order to determine the optimum number of hidden nodes, a series of
MLP networks with different complements of hidden nodes were trained to find
the acceptable minimum MSE without the computational time becoming
excessive. These tests resulted in 6 hidden nodes being selected as suitable for
the network. Hence, these investigations resulted in a network with 24 input
nodes, 6 nodes in the hidden layer and 6 output nodes.
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The network topology was then fixed and tests continued to compare the
relative merits of the 'predictor’ and 'model’ approaches for network operation.
Both network configurations are illustrated in Fig.2. The ability of the trained
network to represent the process was tested by comparing the steady-state and
transient responses of the network outputs with that of the process. These tests
consisted of a number of different excitation signals, which included a PRBS,
RAS, sine and a set of step changes, to fully prove the simulation capability of
the network over a wide operating region.

The evaluation of these validation tests resulted in the reappraisal of
network training. It was important to ensure that the training activity produced
an accurate representation of the process. The initial values of the gain and
momentum terms in the BEP algorithm were 0.9 and 0.6 respectively. The
investigations showed that the minimum MSE could be further reduced by
decreasing the gain and momentum values to 0.4 and 0.15 after 70 passes of
the complete data set. It was found that initially, a high gain is advantageous
to speed initial network convergence. However, at later stages, a lower value
is beneficial in reaching the global minimum of the search space. The network
was trained to a MSE of 0.8623 with 200 training passes, the gain and
momentum were initially 0.9 and 0.6 respectively and were reduced as the
training proceeded to final vales of 0.01 and 0.001 respectively. The ability of
the network to represent the process was evaluated by testing its performance
with a series of test signals, to verify both the steady-state and dynamic
performance, and is described in the next section.

MODEL VALIDATION

The trained neural networks representing the mathematical model of the process
and the real process were evaluated on test data sets that were not used during
training. These included another random amplitude signal a pseudo-random
binary sequence signal (PRBS), and finally a set of steps so as to evaluate the
networks steady-state performance. The validation of the mathematical model
is illustrated in Figs.3 and 4, and the real process in Figs.5 and 6.

Fig.3 illustrates the network tested on the random signal as a one-step-
ahead predictor, and also as a model. The network’s performance is adequate
in both cases. The steady-state performance of the neural network as both a
model and predictor is shown in Fig.4 for a set of step inputs. For this test the
prediction accuracy as a model is noticeably poorer than as a predictor when
required to predict steady states close to the outer region on which the network
was trained (>70 cm). Nevertheless, the results demonstrate stable operation as
a model and again, acceptable predictions of the process output with a
maximum error of 4cm. The neural network that was trained to represent the
real process was also evaluated on the same signals described above. Figs.5 and
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6 show the results of the network trained with real process data. It is seen that
in each of the cases the neural network performs adequately to real data.

Investigations into the relative merits of operating the ‘predictor’ and
‘model’ network architectures have indicated that the model form is the more
useful because it can be operated independently from the process, unlike the
predictor structure. An accurate model also improves the performance of the
predictive controller by providing accurate future predictions of the process
response. Investigations have shown that the spread encoding technique does
enable an accurate model representation to be obtained with the MLP and this
is illustrated in these results.

As the initial simulation training data was noise-free, investigations were
also undertaken with a Gaussian distributed noise signal added to the process
output, with a signal to noise ratio of 20dBs, to represent measurement noise.
In each case the ability of the network to represent the process or its simulation
was evaluated. The results indicated that for networks trained with or without
noise added to the process output both gave acceptable results when recalled
in the predictor and model structures.

CONTROL RESULTS

Initially, the development and testing of the predictive controller with a neural
network model (NN-PC) algorithm was achieved using the simulator, since the
on-line development, implementation and evaluation of the control scheme is
normally time consuming and in industry would be subject to the availability
of the plant. Consequently, the liquid-level process was modelled by
conventional non-linear differential equations, the network by standard high-
level (FORTRAN) language statements to represent each node in the network
and the optimiser by a routine which evaluated the cost function every sample
time. The combined elements were incorporated in the continuous simulation
package, ACSL.

The control scheme of a one-step-ahead predictor, N,=1, N,=1 in equation
(4), is illustrated in Fig.7 and was used throughout these results. The
performance of the controller was initially tested and consequently evaluated
on the process simulation. A number of validatory tests were defined to ensure
that the controller and neural network model were able to achieve the required
steady-state and dynamic characteristics. Fig.8 illustrates the resuits of applying
a series of set-point changes to evaluate the steady-state and transient responses.
The expected effect of A can be seen, namely that when A is zero, the response
is oscillatory but fast acting. Additionally, as A increases, the output response
is more sluggish as changes in the control signal are penalised but a much
smoother control input is achieved. In Fig.9, a comparison can be made
between a NN-PC controller and a well-tuned PID controller for small changes
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Figure 7 Predictive control scheme incorporating a neural network process
model

in set-point. The results show that the PID controller marginally outperforms
the NN-PC (with A = 0) and produces a less oscillatory response. This result
could be predicted since the process will be quite linear over this small region
of operation. Fig.10 compares the NN-PC and PID for larger step sizes which
will drive the process into non-linear regions. It can be seen that in this case
the control achieved with the NN-PC is an improvement over that of the PID
controller. The PID controller is now required to operate under different
conditions to when it was tuned, because of the process non-linearity, and
would require retuning at the new operating points.

The successful development of the controller and NN model in simulation
provided a good foundation for on-line tests. These evaluation tests were
similar to those used in the simulation, i.e. a series of step demands in the set
point. The on-line results are illustrated in Fig.11. The expected oscillatory
response was replaced by an almost overdamped transient at the first set point
change (from 59cm to 40cm). Further investigation of the control signal
(Fig.11b) showed that although the NN-PC was generating large corrective
signals, the physical limitation of the valve operating range was preventing the
expected response. A more desirable control signal could be achieved by using
a value of A larger than zero at the expense of slower set point tracking, as
illustrated in Fig.8b. A PID controller tuned at the initial operating point was
subjected to the same series of set-point changes (Fig.12). It can be seen that
the controller had the same saturation problems and furthermore the results
indicate a poorer overall performance when compared with the NN-PC. It was
noted that the on-line tuning of the PID conwollers was tedious and time
consuming, as expected, and the controllers naturally could not remain optimal
over the non-linear region. The NN-PC results in simulation and practice
demonstrate the improved performance that can be achieved with neural
networks for control of non-linear systems.



@% Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

o
c

< ..|Process A=0 -
§" S :(Process A=1
70 3 P :
o | Set Point 7 ;
X 65 /
& ;
Qv ’
= |
R
350’# T e e 80 100 120 140

Sample Number
(a) Process response

Lou

190

170

Digital Number

0 20 40 60 80 100 120 140

Sample Number
(b) Control signal

Figure 8 NN-PC with A=0 and A=1 (simulation)

73 Set Point=[~="")

57 '

Level in Tank 2 (cm)

548l

o 20 40 60 80 100 120 140

Sample Number
Figure 9 PID control versus NN-PC for
small step demands (simulation)

90

PID

- < NN-PC
. e

Set Point~ ;“ A

-1
=)

40

Level in Tank 2 (cm)

.
|
|

sl

o 20 40 60 80 100 120 140

Sample Number
Figure 10 PID control versus NN-PC for
large step demands (simulation)

SuusowiSug ur souaSieIU] [RIDIUIY

€8L



@% Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering

784

[0nU0d (I duly-uQ ZT amndig

reudis jonuo) (q)
-JequinpN sjdwesg

0st 00¢ 0s2 002 oSt oot os o

[
i XJ)\,?\\/\ ™
[ 102t

JaqunN [eBIQ

asuodsal ss3001g (®B)
Jaquny sidwes

[ 0s¢ 00t ose 002 ost oot 0% 4

oe

qor

oS

hames o I

oL

(W) g yueL Ul [oAST]

o8

0=Y J0J Dd-NN 3u1l[-uQ [T a3y
[eudis [onuUOD (q)
Jaqunp sidweg

0se 00¢ 052 002 0s1 oot 0s 0

_ h ool
a?.x V

Jaquiny [enbiq

asuodsar §s9001d (®)
JaquinN sjdweg

ooy ose oot 0s2 ooz (4] 001 oS o

oe

1
or (D

<

o

os __,

R 3
& Aoo 1
H o]
H 3

0L =
it Ll JUIO 10 g
/ 08 o
$59901d 3

08



@% Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 785
CONCLUSIONS

The paper has presented the development of a controller employing a neural
network model to control a real process. A simulation of the process was
utilised to develop the controller prior to on-line implementation. The results
show that both the model and the real non-linear process can be accurately
modelled by a MLP neural network. The paper also shows that it is necessary
to include basic design methodology to optimise the topology of the network
and enable an efficient training procedure. The investigations have concentrated
on a thorough validation of the process model, by neural network, prior to
developing the controller. These investigations included consideration of
different network structures, the number of training passes required to achieve
the necessary accuracy, testing by the inclusion of simulated measurement noise
and a range of excitation signals. The results show the network is capable of
modelling a real process.

The successful development of the model enabled the investigation into the
operation of a standard optimal controller. Again, the philosophy was to
investigate and develop the controller by simulation prior to on-line
implantation. The results show successful controller operation both in
simulation and on-line and an improved performance over a tuned PID
controller. Further work is in progress to assess the on-line control performance
when long range prediction is implemented and to make an on-line comparison
of the performance of different control strategies incorporating neural networks.
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