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ABSTRACT

We show how qualitative simulation can be used to monitor and diagnose faults
in the behaviour of dynamic physical systems. Our system synchronously tracks
the evolution of the real system and iteratively searches for faults based on a
characterisation of the modelling space. A particular innovation is the use of
priority measures to rank the multiple behaviours predicted by the simulation
and to use these in establishing the most likely fault. The operation of the
system is illustrated by application to an experimental process rig that consists of
continuous and dynamic thermal and flow processes.

INTRODUCTION

The benefits of using Model Based Reasoning for diagnosing faults on physical
systems are now well established. However very little consideration has been
given to the types of model that should be used in a given situation. The
majority of work on Model Based Diagnosis has been investigated using static
real-valued models and consistency maintenance techniques to relate the
modelling primitives (constraints) to conflicts obtained between the physical
observations and the predicted state of the model. In many practical cases,
however, predicting the dynamic behaviour of the system is crucial to
establishing the cause of the fault as the incipient fault may only be observable
during the transient behaviour between equilibria. Detecting and diagnosing
such faults often allows corrective or repair action to be taken before major
damage occurs or perhaps even preventing the development of a hazardous
situation. Further, in many practical situations real-valued models are not
readily available, either because of a lack of the fundamental operation of the
system or because extensive modelling effort is not justified. In these
circumstances qualitative modelling and simulation techniques can otten be more
applicable. Indeed qualitative models result in diagnostic systems that are
inherently more robust than numerically based systems. Strangely, the
development of Model Based Diagnosis using qualitative dynamic models has
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only been pursued during the last few years. In this paper we overview our
approach to Model Based Diagnosis based on our Fuzzy Qualitative Simulation
System and present experimental results in applying the approach to a laboratory
scale process rig.

DYNAMO: USING QUALITATIVE DYNAMIC MODELS IN DIAGNOSIS

To determine why a physical system has not worked correctly compared with its
design intention, it is useful to know how it was supposed to work in the first
place. This simple observation underlies recent development of model-based
diagnostic techniques [1], within which observations from the physical system
being diagnosed indicate what that system is actually doing whilst predictions
made from an explicit structural model of the system indicate what that system is
intended to do. Such an approach to diagnosis is, therefore, crucially dependent
upon the use of the explicit structural models of the physical systems. In order to
avoid potential great complexity in system modelling and diagnostic reasoning
qualitative models are usually utilised for behavioural prediction or simulation.
Viewing this, within this section, we first present a brief overview of the Fuzzy
Qualitative Simulation algorithm, FuSim [7], with a method for prioritising
possibly multiple qualitative behaviours predicted by FuSim to increase the
efficiency in performing the diagnostic reasoning task, and then describe a
model-based diagnostic system that uses FuSim for behavioural predictions.

Fuzzy Qualitative Simulation and Behaviour Prioritisation

Clearly, the choice of representation of physical quantities plays a critical role in
qualitative simulation [8, 10]. All qualitative modelling techniques describe
quantities with a small set of symbols, called qualitative values, which are
abstracted from the underlying field that the variables of a physical system take
values from. In FuSim a qualitative value of a system variable is a fuzzy number
chosen from a subset of normal convex fuzzy numbers [7]. This subset, called
the fuzzy quantity space, is generated by an arbitrary but finite discretisation of
the underlying numeric range of the variable. For computational efficiency, such
qualitative values are characterised by the 4-tuple parametric representation of
their membership functions within the implementation of the algorithm [7]. A
4-tuple fuzzy qualitative value, [a, b, ., B], as shown in figure 1, is defined as

0, xX<a-a;
a'(x-a+a), xela-a, aj;

w(x)= {1, x ela, b];
Bb+p-x), xelb, b+p];
0, x>b+p
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FuSim adopts a constraint-centred ontology for system-modelling. A model
is derived from an underlying differential equation representation or from direct
application of first order energy storage mechanisms. The sets of possible values
which system variables can take are thus restricted by either algebraic, derivative
or function relational constraints amongst the variables. More specifically, the
algebraic operations performed within a fuzzy quantity space are simple
arithmetic operations allowed within the set of fuzzy numbers. A derivative
constraint simply reflects that the qualitative value of a variable's magnitude
must be the same as that of another variable's rate of change. Functional
relationships within FuSim are represented by fuzzy relations [7], thereby
allowing imprecise and/or partial numerical information on functional
dependencies between variables to be exploited if indeed such information is
available.
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Fig. 1. A 4-tuple Fuzzy Qualitative Value

Based on such a qualitative representation of values and constraints, FuSim
takes as input a set of system variables, a set of constraints relating the variables
(as the system model), and a set of initial values for the variables, and produces
a tree of states with each path representing a possible behaviour of the system as
output. In fact, FuSim first generates a set of transitions from one qualitative
state description to its possible successor states by exploiting the continuity of
the system variables. Further restrictions on these possible successor states are
then imposed by checking for consistency with the definition of the constraints
and the consistency between constraints which share an argument -- called
constraint filtering, and information on the rates of change of the system
variables held as part of the fuzzy qualitative state -- called temporal filtering. In
addition, other knowledge about the system such as energy conservation may be
used to produce so-called global filters [10]. Importantly, associated with each
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sequence of states, i.e., each path of the output tree, FuSim also generates a
sequence of temporal intervals to indicate how long the system may persist
within a particular state. This is a distinct advantage of FuSim over other
qualitative simulation techniques. Especially, when used for diagnosing dynamic
systems, FuSim is thus able to show which particular portion of the predicted
behaviour should be matched by an observation at a particular time point or
during a particular time interval [6].

Tt should be noticed that, in present approaches to qualitative simulation,
except for FuSim, the worst case solution is always assumed. That is, all
theoretically possible successor states of a present state are maintained and, in
fact, propagated with equal status. This, of course, leads to the generation of
spurious behaviours that discredits qualitative simulation in the eyes of
application engineers, in that, such multiple behaviour predictions are at variance
with the uniqueness of the behaviour of the physical world. However, attaching
an uncertainty measurement to those potential successor states, and hence a
commitment to an associated behaviour, allows prioritised generation of
behaviours or an efficient mechanism for their use within applications e.g.
diagnosis. This allows a progressive approach to reasoning that first generates
or utilises the 'most likely' behaviour and only progresses to other less
committed behaviours if the behaviours considered fail to meet the purpose of
the application system. Thus, ultimately, the soundness of the algorithm is still
retained, however, a significant improvement in efficiency is possible by
exploring the higher priority behaviours first.

An algorithm for prioritising behaviours in qualitative simulation has been
developed by the authors [5]. In summary, the determination of the state priority
of system variables can be carried out as follows, where, informally, a
constrained variable is the single variable on the one side of a given constraint
while the constraining variables are those appearing on the other side, and the
metric D(s,§) measures the distance between two qualitative states s and §
[5, 7}

1)  For each variable x find all constraints relating to it.

2) When x is the constrained variable within a constraint, find the N
propagated qualitative states of the x, {5, |i = 1,2,..., N}, by operating on
the values of constraining variables; where /N is the number of the tuples of
the predicted possible states associated with this constraint; find the

distances between s, and §, respectively:

{D(s,,5)li =1,2,...,N};
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then. attach each resulting distance measure to its corresponding predicted
possible state of x and go to 4).

3) When x is a constraining variable in a constraint, for each of its predicted
states (within the tuples of the possible states associated with that
constraint), find the propagated state of the constrained variable (but not
the x) within the constraint and then the distance between this propagated
state and its respective predicted state; attach so resulting distance to the
predicted possible state of the constraining variable x.

4) Redo 2) or 3) until all the predicted states associated with all the
constraints that are related to x have been attached with distance measures.

5) Prioritise the states of x such that As)=J,i=12,...M, M< N,
0<j<N,if

D, = min{{D, |k =1,2,...,M} - {D, |k < j}},

where D,,i =1,2,...,M, is the distance label attached with state s,, M is
the total number of possible states of the variable x associated with all the

constraints, and 1(.) indicates the priority level of the state .

Iterative Search Based Diagnostic System

This sub-section describes a particular implementation of the model-based
diagnostic systems following the iterative search based approach [6]. We present
the diagnostic system by explaining the functionalities of different modules
utilised within the system and indicating the methods to realise these modules.
As shown in figure 2, at the most schematic level, this diagnostic system consists
of four fundamental sub-systems: a behaviour predictor that predicts the
expected system behaviour; a discrepancy generator that generates the
discrepancies between predictions and observations; a candidate proposer that
produces fault candidates based on the discrepancies; and a diagnostic strategist
that controls and co-ordinates the complete diagnostic process. Each of these
sub-systems are explained in order below.

Behaviour Predictor The central idea of the model-based approach to diagnosis
is the use of an explicit model of a physical system's structure. Based upon this
model, the predictor accomplishes its task by predicting the expected behaviour
of the system via a behaviour simulation or constraint propagation algorithm,
regarding the dynamic or static property of the physical system being diagnosed
respectively [4].

The reliable diagnosis of fauits on continuous dynamic systems requires that
the model of the system synchronously tracks the evolution of the observations
from the physical system. To achieve this the behaviour simulator used within
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the diagnostic system must produce estimates of the durations associated with
the respective states and also minimise the spurious behaviours generated. From
the previous review of FuSim, it can be seen that FuSim has several features
useful for synchronising the model evolution with the observations: 1) the
temporal duration of the qualitative states is given; 2) stronger functional
constraints can be utilised; 3) a reduction in the spurious behaviours is possible
as a product of 1) and 2); 4) qualitative behaviours generated are prioritised
with respect to their possibility to reflect the underlying real behaviour; and 5)
fuzzy sets allow the subjective element in system modelling to be incorporated
and reasoned with in a formal way. Further, a distance metric for detecting and
generating discrepancies between two fuzzy qualitative values is ready for use
[6, 7]. Having taken a notice of these, FuSim is thus utilised as the behaviour
predictor within the iterative search based diagnostic system presented herein.

PHYSICAL observations

operation SYSTEM
condidons

predictions

PREDICTOR

3

-1

— —

: +” DIAGNOSTIC .| DISCREPANCY
candidates ‘. _STRATEGIST _./ GENERATOR
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|

CANDIDATE |
PROPOSER discrepancies

Fig. 2. Iterative Search Based Diagnostic System

The outline of the FuSim algorithm has been given in the preceding sub-
section while details about it can be found in [7]. We shall, therefore, not further
re-describe how the predictor generates a system's behaviour.

Discrepancy Generator Diagnosing a physical system crucially relies upon the
discrepancy detection between the observed and predicted behaviours of the
system. The task of the discrepancy generator is to decide on whether or not
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there is indeed an inconsistency between a prediction and an observation and. if
so, to generate the discrepancy. Since both the interpreted predicted and
observed values are represented by the 4-tuple fuzzy numbers, the prediction

and the observation can generally be denoted as P=[p,,p,,p,,P,] and

0 =[0,0,0,0], respectively. The discrepancy generation is then realised by
applying a set of rules to P and O, deduced by the use of the a distance that
satisfies the three basic properties of a discrepancy 'metric' [6]. Informally, the a
distance is the shortest distance between two underlying real numbers with their
memberships equal to or greater than the a and each belonging to a different
fuzzy number. The discrepancy generation rules are listed in the following,
where a reflects the desired degree of matching, which may be given by default
or independently assigned by the diagnostic strategist on-line:
(1) If O intersects with P, use the sub-rules below:
(1-1)If o €[ p,, p, 1 (see figure (3.2)), there is no inconsistency between
P and O, P and O are matched;
(1-2) If o e(p,,p, + p,(1 - )] (see figure (3.b)), there exists a minor
inconsistency but P and O are still said to be matched because the a
distance between the two equals 0;

(1-3) If o e(p, + p,(1-),p, +p, | (see figure (3.c)), there is an
inconsistency between P and O and the a distance, 0 - p, - p, (1- a),

is regarded as a type [ discrepancy.
(2) If O does not intersect with P (see figure (3.d)), there is an inconsistency

between P and O and the a distance, 0 - p, — p, (1 - @), is regarded as a

type II discrepancy.
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P O 4 [¢]
1 1
7 AN 7
X X
0 Prp; P o P; PR 0 PrPy P P, PP
(3.a) 3.0)
) Ryx)
P Q p (o)
1 1
a ) @ b e f DN
X X
0 P-P; P: PO PP 0 PrPy Py |33 B+ P, o
(3.b) (3.d)

Fig. 3. Discrepancy Generation

Notice that, symbolically, both rule (1-3) and rule (2) have the same a .
distance in representation. However, they have rather different implications in
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that, within rule (1-3), the a distance is detected under the condition that ()
intersects with 2, whilst this is not the case with rule (2). Also, rules (1-2), (1-
3), and (2) give the method to detect and generate discrepancies when o is
greater than p,. For the other situation, where o is smaller than p, the
corresponding discrepancy generation rules are obtained by symmetry.

It is clear that the discrepancy generator accomplishes its task by comparing
observations with predictions. For dynamic systems, of course, a technique
which is able to compare predictions against observations over time is required.
In fact, for coherent detection the comparison between the observed behaviour
and the predicted behaviour must be made at the same system state, i.e., at the
same absolute time (point or duration). This is because that, the system model
used must operate synchronously with the natural evolution of the physical
system. This brings a problem to the use of traditional qualitative simulators
(e.g. QSim [3]) as the behaviour predictors because of the need to guide and
control the comparison between the observations and the predictions. Temporal
information becomes essential to the maintenance of synchronous behaviour.
Without this it is impossible, without resorting to heuristics, to control the
evolution of the models, including spurious behaviours and fault models [6]. It is
in this respect that FuSim provides important advantages. This is reflected from
the fact that FuSim produces a temporal duration sequence associated with the
state sequence and the possible behaviours generated are prioritised, thereby
enabling an effective and efficient discrepancy detection method to be
developed.

The rule used to guide and control the discrepancy detection is directly
deduced from knowledge of both the temporal durations and the priorities of the
qualitative states and can be stated as follows:

Treat the current observation, OBS(t, ), as the initial state of the model
and the time when the observation is made as the initial temporal point.
From the next observation OBS(t,), generate the simulated behaviour
from OBS(t,) until the temporal upper bound of a qualitative state
meets or covers /,. If there is more than one such state are generated
prioritise these states. Next, compare the highest priortised state with
OBS(t,). Redo this process if they are matched; else, compare the state
with the second highest priority with OBS(t,) and so on. If all such
states do not match OBS(r,) discard the current model.

Notice that, in the above rule, discarding a model simply implies that this
model is inconsistent with the current working condition of the physical system.
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lllustratively, the way to track a model, or to compare predictions against
observations, can be depicted by figure 4 and explained in the following.

PRED(TS)

- — & —
PRED(T9 PRED(T;) PRED(T;) PRED(T3)
OBS(ty) OBS(ty) OBS(t,)
L 2 2 g -t
to=To €T T2 E“ZETi
T

Fig. 4. Prioritised Behaviour Tracking

Without losing generality, suppose that the first two observations from the
physical system are OBS(t,) and OBS(¢,), FuSim then uses OBS(f,) as the
initial state, PRED(T,), and starts running the simulation of the model. If it
generates the possible next state, say, PRED(T,), which matches OBS(r,) under
the condition that ¢, € T, no discrepancy is detected and hence the discrepancy
generator waits for another observation OBS(f,) to be available. After this,
FuSim continues predicting the successor state PRED(T, ), however, this state's
temporal information indicates that for any r € T, ,# < t,. Thus, FuSim keeps
making further predictions from PRED(T, ) and resuits in both PRED(T;) and
PRED(T; ) as possible next states. Using the technique for state prioritisation it
follows that p( PRED(T;,)) = 1 and p( PRED(T; )) = 2. Now that PRED(T;)
matches OBS(t,) and ¢, € T, the model being used remains as validated and
the process of prediction and comparison recurs, starting from the matched
prediction PRED(T,). Importantly, if there is no priority information on these
two predicted states, both of them have to be compared with the observation
OBS(t,) and hence the discrepancy generation process would become less
efficient than it is. Actually, if PRED(T,) is checked first, though ¢, € T},
PRED(T, ) does not match with OBS(t,) and no further predictions will be

made following the branch beginning at the PRED(T,) whatever later
observations are obtained. This comparison has, therefore, been made
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unnecessarily. In the event that PRED(T,) also conflicts with OBS(t,), the
current model will then be discarded.

Clearly, due to the temporal information in FuSim only a small number of
predictions starting from certain current state(s) are generated and, also, the
discrepancy generator makes the comparison between a prediction and an
observation only when the prediction is the last one generated with respect to
the latest sampling time.

The present discrepancy generation mechanism tracks a model without
distinguishing if it is the normal-behaviour model, a modified model against
particular model variation direction, or a known fault model. Therefore, if the
model currently being tracked is the normal-behaviour one, an on-line
discrepancy generator built in this way actually performs system-monitoring
with an identical structure. Once a discrepancy is detected the diagnostic
process is activated and the model of normal behaviour is adjusted along
potential model variation directions. The monitoring task then becomes a fault
identification task. How to hypothesise the possible faults is, of course,
accomplished by the candidate proposer discussed in the following.

Candidate Proposer The final diagnoses, namely the faults returned by the
diagnostic system, come from the candidate proposer under the condition that
the predictions from the behaviour predictor match the observations. The task of
fault candidate generation is achieved by exploiting discrepancies through an
iterative search process performed within defined model sub-spaces
characterised by particular model variation directions or modelling dimensions
[9]. This process can be described as the following: Start with system-
monitoring based on the normal-behaviour model of the physical system, when
certain discrepancies are generated (by the discrepancy generation rule (1-3) or
(2)) these discrepancies initiate the modifications and/or adjustments of the
model within different sub-spaces of model variations characterised by the
underlying modelling dimensions. Each such modified (or adjusted) model will
be treated as a candidate to be further evaluated as illustrated in the model-
tracking process. Which model dimensions to search is, of course, under the
control of the diagnostic strategist. From this viewpoint, the candidate proposer
maps discrepancies onto particular fault hypotheses. However, as can be seen
later, the fault hypotheses herein do not necessarily imply those pre-defined off-
line but usually obtained from the on-line diagnostic process through modifying
the normal-behaviour model of the physical system.

In order to perform the mapping between the discrepancies and the
candidates the proposer stores the modelling dimensions to be used to build the
system model and a set of rules, called the search rules, to guide the search
against these dimensions. If fault models are known a priori they can be used to
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initialise the search at the corresponding point in the model space. This focuses
the search at the most likely point and iteration starts from there, greatly
enhancing the efficiency of the search process. However, fault models are not
essential and search can be initialised anywhere in the model space. The search
rules currently used reflect diagnostic heuristics and can be stated as follows,
where modifying a model means to vary that model with respect to a particular
dimension chosen by the diagnostic strategist:

1) Start with normal-behaviour model: if the discrepancy generated is type |
modify this model; and if the discrepancy generated is type II choose the
most likely fault model as the modified model, i.e., the candidate unless
there do not exist any known faults. In case where no fault models exist,
the type II discrepancy also initiates the modification of the normal-
behaviour model.

2)  Start with modified model: if the discrepancy resulting from the modified
model is less than that generated previously, namely the a distance is
shorter than the previous one, maintain this model as the candidate and
substitute the previous discrepancy for the current one; if the discrepancy
vanishes, i.e., the predictions obtained from this modified model match the
observations, return the model as a final diagnosis; if the discrepancy is
unchanged further modify this model; and if the discrepancy becomes
larger than before discard this model as a possible candidate.

It is important, however, to notice that for simplicity the above rules are
presented without indicating which direction of the modelling dimension is to be
modified. In practice, without knowing fault models, the modifications of the
normal-behaviour model will be performed against one direction first and, if no
diagnosis is returned from this direction the search process will be redone
against the inverse direction, starting again with the normal-behaviour model. If
the first modified model is that of a known fault, further modifications of it will
be executed in both directions by viewing the fault model as an initial "normal-
behaviour' model, thereby searching in the same way as the situation where no
fault models exist.

It is clear that the candidate proposer generates candidates by making use
of both the type and the size of the discrepancies to guide the identification of
faults. The candidate generation process is, in fact, a systematic search process
performed within the space of possible model variations and diagnosis is refined
over time through the iterative search process. This avoids the need for explicit
fault models and even allows the diagnostic process to start with an estimated
system model of normal behaviour. However, knowledge about faults can be
effectively utilised to restrict the search space as reflected in the search rules if
indeed such knowledge is available, a technique we term fault-guided search.
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This reflects an objective that, in real applications, fault models (if any) are
constructed and/or provided for more severe or more obvious possible faults. If
there is a type II discrepancy there is a heavy distortion of the physical system
from the designed behaviour and, thus, the most likely fault modei should be
tested first. An interesting but extreme case resulting from the proposed
diagnostic system is that, if each model sub-space consists of only normal-
behaviour model and fault models the candidate proposer will degenerate into a
decision tree or a look-up table as used in [2].

Diagnostic Strategist The diagnostic strategist controls the entire diagnostic
process based on the on-line evaluation of the diagnostic performance, in
connection with other knowledge resources such as domain-dependent
heuristics and resource limit. With respect to each of the other three sub-systems
within the current iterative search based diagnostic system, the functionality of
the strategist can be summarised as follows:

1) Decide on the levels of abstraction and commitment of the quantity space
for system modelling and data interpretation and determine which model to
be used as the system model for normal behaviour simulation;

2) Select the a value for discrepancy detection and generation;

3) Choose appropriate modelling dimensions to search for candidate
generation.

Although important, it can be seen from the fault candidate generation
process that, the diagnostic strategist does not affect the central mechanism of
iterative search. In essence, the diagnostic reasoning process merely involves the
behaviour predictor, the discrepancy generator, and the candidate proposer. We
shall, therefore, leave the concrete realisation of the strategist as an important
future work.

APPLICATION TO A CONTINUOUS PROCESS

A realistic application, based on a laboratory scale "Process Rig System", as
depicted in figure S, is given to demonstrate how a physical system is modelled
within FuSim, and to show how the iterative search based diagnostic system
using FuSim determines faults. The process rig is an experimental system in
which the behaviour of a heat input and extraction process from flowing water
can be examined. It consists of several components: a tank, a sump, a pump, a
radiator and a heater.
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Fig. 5. The Process Rig
System Modelling

The physical process may be modelled as a flow process and a thermal process.
In the present example only the mass flow loop (the block diagram of which is
shown in figure 6) will be discussed. The model of such a system consists of
seven variables: the flow of fluid into the tank, i, the height of fluid in the tank,
h. the volume of fluid in the tank, v/, the flow of fluid from the tank, o, the rate
of change of the height of fluid in the tank, v/, the volume of fluid in the sump,
v2, and the total volume in the system, including the radiator, v7: For simplicity,
the following set of 4-tuple parametric fuzzy numbers is chosen to form the
fuzzy quantity space:

O = {[-1.-1,0,0.1], [-0.9, -0.75, 0.05, 0.15}, [-0.6, -0.4, 0.1, 0.1]
[-0.25, -0.15, 0.1, 0.15], [0, 0, 0, 0], [-.15, 0.25, 0.15,0.1],
[0.4, 0.6, 0.1, 0.1], [0.75, 0.9, 0.15, 0.05], [1, 1, 0.1 0] },

and is abbreviated to O = { -t, -I, -m, -s, 0, s, m, 1, t }; with each value
corresponding to a perceived meaning, for instance, - denoting negative top and
s indicating positive small.

Suppose that the normal model assumes free flow of fluid from the tank.
Thus, the physical system can be characterised by the following fuzzy qualitative
model:

H=i-0, "=l1-V: derivih)=H
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The first three equations establish the ordinary algebraic and derivative
relationships holding amongst the variables of the system. The functional
relations between v/ and A, and /4 and o ( the fourth and fifth constraints) are
weak, but stronger than monotonic operators, represented as degenerated fuzzy
relations [7].

Vr > » V2

Vi

()l)
10

(()l
10

Fig. 6. The Block Diagram of the Flow Loop of the Process Rig

Monitoring and Diagnosis

Suppose that the diagnostic system starts monitoring the physical system from
its initial operating condition, where the observed variable / has an initial value
of positive small and the input flow of fluid into the tank, /, is assumed to be
also positive small and kept as constant. When an observation is obtained at
ty = 1.9 from the observable variable /# such that OBS(1.9) = 0.2, where the
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observed values are normalised with respect to the underlying numerical ranges
of the variables. Based on the above normal-behaviour model, FuSim predicts
the immediate next state from the initial one, s, which matches with the
observation. This indicates that the physical system is performing normally. In
the same way, a further observation OBS(3.8) = 0.6, also guides the system
model to make the next prediction to be checked against the observation,
providing synchronous tracking of the normal-behaviour model. However, from
the model of normal behaviour FuSim generates a state with s as the successor
state, resulting in a type II discrepancy. Figure 7 shows the predicted and
measured values for the observed variable plotted against time. The small dark
rectangle represents the measured value, the short dashes represents the a-cut
[7] of the predicted value and the 'T' shapes: the extremities of the predicted
fuzzy number. It can easily be seen from this diagram that the value of the
observed variable is outside the furthest extremity of the predicted fuzzy
number, indicating a type II discrepancy.
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Fig. 7. The Monitoring Process

Now that a discrepancy between the current observation and prediction has
been detected and, hence, that the diagnostic system assumes the physical
system to be 'faulty', the current normal-behaviour model is discarded, and the
original monitoring task becomes a one of diagnosis . For simplicity, assume that
the diagnostic strategist only requires the candidate proposer to search the
model sub-space characterised by a dimension corresponding to the relation
strength [9] between the height of fluid in the tank and the output flow. Within
this dimension, if there were a known fault model (reflecting a fault condition)
then this model would be tried first. However, in this case no fault models exist
and so the candidate proposer attempts to modify the existing model against the
current modelling dimension to find a diagnosis. Along this relation strength
dimension there can exist several degenerated fuzzy relations corresponding the
degree to which the relation strength has changed form normal. In this case the
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first modified model represents a small deviation from the normal relationship.
An initial state is created bv means of this model for the time at which the
discrepancy occurred. The state value matches the observation at t3 = 3.8 so
the process continues. A further observation is made at t4 = 5.7 which yields
OBS(5.7) = 0.8, invoking a prediction with the revised model. Due to qualitative
ambiguity a set of states are produced by the prediction whose absolute times all
match the observation time These states are then priontised; their values and
absolute times are shown below:

Value: s s m s s
Absolute time: [4.6 7.1] [4.6 7.1] [4.8 7.8] [4.9 8.1] [4.9 8.1]

It can be seen that four of the predicted values for the observed variable are
the same. This is because a separate state is created if there is an ambiguity in
any variable of the system. These prioritised states are checked against the
measured value for the observed variable, one by one, in order of priority; and
they are all found to fail. The diagnostic process proceeds by modifying the
relationship to be a medium deviation from normal and repeating the above
procedure. Once again there is no match, and the modification is discarded. The
diagnosis continues by trying a /arge modification to the relationship. This time
the prediction with priority 1 has the value, /, and an absolute time of [4.7 6.5],
both of which match the measurement. Now we have a model which matches
the observations at two time points. Therefore, the model with a /arge change 1n
the degenerate fuzzy relation between / and o is returned as the candidate. This
corresponds to returning a large blockage in the output from the tank as the
fault within the physical system. Figure 8 shows the complete temporal
evolution of this diagnostic process. Alternatively, it may continue tracking this
possible fault to add to the confirmation that the physical system is indeed

suffering from this faulit.
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Fig. 8. The Diagnostic Process
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Fig. 9. The Screendump of the Monitoring and Diagnosis of the Process Rig

This example has been implemented in Common Lisp under the LispWorks
environment on a SUN-4 Sparcstation II; the output window of the process is
shown in figure 9. The upper left portion of the window contains a schematic
diagram of the diagnostic process and displays the name of the current model
along with the present measured and predicted values of the observed variable.
The upper right quadrant displays the temporal evolution of the observed
variable, both measured and predicted (the measured value is displayed as a
point and the predicted value as a fuzzy interval). The lower half of the display
lists the important entities of the monitoring and diagnostic process, which are:
the sampling time, the predicted interval, the measured and predicted value(s) of
the observed variable, the priority of the prediction, the name of the model and
the type of the discrepancy. Once a diagnosis has occurred the candidate is
printed in this section of the window.
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CONCLUSION

Using qualitative simulation techniques within a Model Based Diagnostic
System offers many advantages.

e  The model is less precise so that it can accurately represent the available
knowledge

e  The dynamic model allows for the synchronous tracking of the evolution of
the process

e  Assigning priorities to the behaviours supports a trade-off between
efficiency and completeness

The presented example, whilst laboratory based, is very realistic; coping
with many practical problems found in industrial applications. The possibilities
for extension to other applications seem to be boundless. At present we are
interested in exploring the differences and similarities between our approach and
the Control Engineering approaches to Model Based Diagnosis based on real-
valued differential equation models.
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