
An Artificial Neural Network Approach to
Software Testing Effort Estimation
Christian W Dawson
School of Mathematics and Computing, University of
Derby, Kedleston Road, Derby, DE22 1GB, UK
EMail: C.W.Dawson@Derby.ac.uk

Abstract

Trying to predict the effort needed to test prewritten software is a complex
problem as the amount of work involved in software testing depends on a
number of independent and related factors (for example, lines of code, unit
complexity etc.). Artificial neural networks appear well suited to problems of
this nature as they can be trained to understand the explicit and inexplicit factors
that drive a testÕs cost. For this reason, artificial neural networks were
investigated as a potential tool to improve software testing effort estimation
using project data supplied by Rolls-Royce and Associates Limited. In addition,
in order to deal with uncertainties that exist in modelled results, statistical
analyses were employed to identify confidence intervals for predicted costs. This
paper discusses these analyses and comments on the results that were obtained
when artificial neural networks were developed, trained and tested on the data
supplied.

1 Introduction

Although there has been a significant amount of research in software
measurement, software metrics and software project estimation (for
example, see texts such as [1, 2]), there has been a limited amount of
work focused towards the prediction of software testing effort. This
form of effort estimation is particularly important for those

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

companies who provide software testing services. Rolls-Royce and
Associates Limited are one such company who test software
developed by other organisations. In this case the software tested is
used in aircraft jet engines. Their customer initially supplies
information on the software units they require testing (for example,
the unitÕs size in terms of lines of code) and a response is made as a
tender for the work. Currently, this tender is based on a best estimate
of the effort required. This estimate is somewhat subjective and
results, presented later in this note, show how these estimates can be
significantly improved by employing an artificial intelligence
technique such as artificial neural networks (ANNs). In addition, the
results of the ANN approach are compared with a standard statistical
model.

1.1 Unit Testing Effort Estimation

Unfortunately, cost estimation in software development is not an exact
science, as there are a number of qualitative factors involved that can
rarely be explicitly identified. Because of this, several techniques and
approaches have been proposed for estimating software development
effort, and the quantity of literature on the subject is enormous.
Without an ability to measure, or accurately estimate, a software
projectÕs characteristics, organisations have little management control
over that projectÕs behaviour, risks are not clearly identified, and
potentially disastrous projects may be undertaken. In fact Ô15% of
software projects are not completed due to grossly inaccurate
estimates of development effortÕ [3].

Usually, software project estimates are based on initial estimates
of the product characteristics and the process that is being adopted.
For example, product estimates might include quantitative measures
such as product size (in terms of lines of code measured by an agreed
standard), functionality (in terms of function points), and qualitative
measures such as complexity and quality. Process estimates might
include factors such as team productivity, effectiveness of defect
removal procedures and so on.

Techniques that are often used for software project estimates
include COCOMO (which uses an algorithmic approach based on
product estimates [4]), Delphi (a technique used to balance different
expertsÕ opinions [5]), and function points (a technique that measures
the complexity of a product [6]).

Using artificial neural networks to predict software development

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

effort is not a new idea. For example, Kumar et alia [7] used neural
networks to estimate manpower buildup levels in software projects,
based on task concurrency, inverse application complexity, and
schedule pressures. In addition, Hakkarainen et alia [8] used artificial
neural networks to predict software product size. However, trying to
predict the costs involved in unit testing is a relatively immature field.
Applying ANNs to this area has yet to be fully explored.

2 Artificial Neural Networks

2.1 Overview

Artificial neural network research tends to fall into two main
categories; first is the development and improvement of existing
ANN training algorithms and topologies. The second area involves
the application and evaluation of existing ANN research to complex
problems. This is the category into which this particular study falls.
Existing ANN algorithms have been adopted and adapted to the
problem of software testing effort estimation. The networks chosen
for this study were feed forward, three-layered networks, trained using
a modified backpropogation algorithm.

The three layers in this case are an input layer, which distributes
inputs to the hidden layer, and an output layer. The number of nodes
used in the input layer and output layer are determined by the
problem to which the network is being applied. The number of
nodes used in the hidden layer is chosen by the user and there are no
clear rules as to how many nodes one should employ in this layer.
Consequently, different numbers of hidden nodes were evaluated in
this study in an attempt to identify the ÔbestÕ ANN configuration for
software testing effort prediction.

Explanation of ANN structure and discussion of the
backpropogation training algorithm is beyond the intended scope of
this paper as there are numerous articles and texts devoted to these
issues. For more information on ANNs the reader is directed towards
texts such as Wasserman [9] and Gallant [10].

In order to implement and evaluate ANNs in this study, four
computer programs were developed. The first program is used to
create the training sets from data of previous projects. The second
program standardises the data within a training set before it is passed
to a third program that generates and trains the ANNs. The

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

backpropogation algorithm used for training the ANNs was adapted
to include momentum [10] and a dynamically controlled step size
algorithm [11]. The fourth program is used to test a trained ANN.
This testing can include Monte Carlo simulation of the network to
provide estimates based on initial best guesses by the user. The
distribution functions generated by this program, as text files, can
then be analysed to determine the uncertainties involved with the
estimated costs [11].

3 Data Acquisition and Analyses

3.1 Overview

As with the development of any model, one is always limited by the
quantity and quality of data that are available. Although, in this case,
the quality of data available were high, the quantity of data supplied
were somewhat limited, although there were sufficient data available
for this preliminary study.

Data were obtained for a recently completed test project. This
project consisted of 12 objects each containing from 2 to 19
individual units for testing. In total there were 89 units in the project
with testing durations ranging from 1 to 98 hours. Total testing cost
for the entire project was 1546 hours (cost and duration being
synonymous). Table 1 provides a typical extract from the data
supplied. In this table data are presented for Owner (who is
responsible for testing the unit), Package (object name), Unit name,
Actual Duration (actual duration of each unit test in hours),
McCabeÕs Complexity Metric, Number of Lines of ADA Code (in
each unit), and Estimated Duration (estimated duration of unit test in
hours).

Owner Package Unit Actual McCabe Lines Estimated
Duration Complexity of ADA Duration

AB 1 A 36 14 125 45
CD 2 B 11 7 50 30

Table 1 Extract of the Data Supplied

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Using statistical analyses three factors (or drivers) were identified
from the data supplied as having an influence on a unitÕs test cost;
lines of code in the unit, McCabeÕs complexity metric, and number of
units within an object. These three factors were used as the three
inputs into an ANN with actual duration being used as the output.

3.2 Neural Network Training

There are a number of different parameters one can manipulate when
constructing ANNs. These parameters include variations to the
number of hidden nodes one chooses to have in a network, variations
to the ÔspeedÕ of the training algorithm employed (by adjusting a
learning parameter), and variations to the length of time one chooses
to train a network for (the number of training cycles or epochs). In
this particular study a number of different network configurations
were investigated (different numbers of hidden nodes) along with
various different training cycles. The results of the more accurate
configurations are presented later.

In order to test the ANNs in this study it was necessary to split the
data into two sets; that which could be used for training (the
calibration set) and that which could be used for testing (the
validation set). The calibration and validation data sets were chosen
to be mutually exclusive and jointly exhaustive. It was decided that a
sufficiently rigorous test for the ANNs would be train them on 90%
of the data and test their ability to predict previously unseen unit test
efforts on the remaining 10% of the data. This approach was
repeated ten times so that the ANNs were forced to predict every
unitÕs test duration without having being exposed to that unit
beforehand.

4 Evaluation

4.1 Comparative Statistical Model

In order to evaluate the effectiveness of the ANN approach in this
study, results were compared with existing best estimates and with a
more conventional statistical model. In this case the conventional
statistical model employed was a stepwise multiple linear regression
(MLR) approach. This technique identified the most significant
factors affecting unit testing cost and reduced the affects of

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

multicollinearity between these drivers using a stepwise procedure. It
was found that there was a close correlation between the lines of code
of the software units under test and McCabeÕs complexity measure of
those units. Consequently, the McCabe measure was excluded by the
stepwise technique from the statistical model produced. The MLR
model was tested in the same way as the ANN approach and the
comparative results are presented below.

4.2 Measuring Accuracy

There are a number of measures one can use to determine the overall
accuracy of modelled results. In this study two such measures were
employed; the mean squared error (MSE) and the mean squared
relative error (MSRE):

(1)

(2)

where Ti are the n modelled durations and Ti are the n actual
durations.

Squared errors provide a good indication of errors made for long
durations, whilst relative errors provide Ôa more balanced perspective
of the goodness of fitÕ for shorter durations [12]. In addition, the
coefficient of determination, r2, was calculated for each model to
measure the proportion of the variability of duration accounted for
by the model. The absolute error was also calculated to determine
how closely the modelled durations approached the overall project
total. A negative total error implied an overestimate of a projectÕs
duration. Percentage total errors were also calculated as total error
divided by total project duration.

^

 MSRE =
n

å
i = 1

n

T
i

(T
i
 - T

i
)
2

 MSE =
n

å
i = 1

n

 (T
i
 - T

i
)
2^

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

4.3 Results

Table 2 provides a comparative overview of the results that were
obtained on the representative project. The ANNs presented in this
table were all trained for 50000 epochs, which gave the best overall
predictions. As can be seen from this table all ANNs significantly out
perform the existing approach to estimation. The existing approach
overestimates existing durations by as much as 18% whereas ANN2 is
accurate to within about 1% of the projectÕs total duration.

MSE MSRE Total Error % Error r2

(Hours2) (Hours)

Current
Approach 265 9.7 -284 -18% 0.191
ANN1 222 3.79 -68 -4% 0.378
ANN2 323 4.88 +11 1% 0.249
ANN3 419 5.60 -64 -4% 0.195

Step wise 233 10.14 +31 2% 0.297
MLR

Table 2 Comparative Results of Different Techniques
(ANN1 - 2 hidden nodes, ANN2 - 4 Hidden nodes, ANN3 - 8 Hidden

nodes)

Table 2 also highlights how existing techniques could be
improved by employing a simple statistical approach such as the
multiple linear regression approach discussed earlier. In this case,
using a stepwise MLR approach, percentage error results are
comparable with those of the trained ANNs. Some measures, such as
the MSE and coefficient of determination, show that better estimates
could be made using this approach than the trained ANNs.

Figure 1 shows a comparison between the MLR approach and
ANN1. This figure plots predicted duration against actual duration.
A perfect model would produce a straight line with all points lying on
f(x) = x (shown by the bold solid line). As can be seen, both models
appear to capture the general trend of the durations but their results
are by no means perfect. The coefficient of determination (r2)
provides a useful measure of this relationship. In the case of the
MLR model, r2 is 0.297 and in the ANN1 model, r2 is 0.378.

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Figure 1 Comparison of ANN1 and MLR ModelsÕ Predictions

It is worth noting the two circled estimates in Figure 1 for both
models. In both cases the MLR and ANN� models have grossly
underestimated the actual duration of each unitÕs testing duration.
An inspection of the data confirmed that these inaccurate predictions
were by no means unexpected as they both occurred in rather
insignificant software units. Clearly, some other factors (for example,
Owner) were having an affect on the time taken to test these two units;
factors which had not been included in the models.

The MLR model showed somewhat variable predictions at lower
durations compared with the ANN model. This is highlighted in
Figure 1 by the spread of points at lower durations and the higher
MSRE measure shown in Table 2.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Actual Duration (Hours)

P
re

d
ic

te
d
 D

u
ra

ti
o
n
 (

H
o
u
rs

)

0

10

20

30

40

50

60

70

80

90

100

P
re

d
ic

te
d
 D

u
ra

ti
o
n
 (

H
o
u
rs

) Multiple Linear Regression

Artificial Neural Network

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

4.4 Confidence Limits

A useful outcome from the above evaluation was determining the
confidence one has in a modelÕs predictive powers. Using the
standard error of the least squares regression line between predicted
duration and actual duration (ie this time the regression of actual
duration on predicted duration), one can provide confidence intervals
for each modelÕs predictions. For example, in the ANN1 model, the
standard error about the regression line was calculated as 14.35
hours. Thus, for an ANN1 prediction of 20 hours, one is 68%
confident (one standard error about the regression line) that the
actual duration of the unit test the ANN1 model is attempting to
predict, is actually between 18.5±14.35 hours (where 18.5 is
calculated from the regression model). Clearly, the more accurate the
model is, the shorter and more valuable this confidence interval
becomes as, in this case, the confidence interval is so broad as be
somewhat meaningless.

Unfortunately, due to hetroscedasticity, these confidence intervals
are only valid within a certain range. The level of hetroscedasticity is
also difficult to determine. In the case of ANN1, from a simple visual
inspection of the data, the homoscedastic range appeared to be
limited to durations up to approximately 30 hours. Predicted
durations over 30 hours appeared too variable to enable confidence
limits, based on the standard error about the regression line, to be
accurately determined. For predicted durations of up to 30 hours, the
standard error about the regression line is 6.6 hours. Thus, for a
prediction of 20 hours, the 68% confidence interval is now 12.9±6.6
hours within the homoscedastic range.

6 Conclusions

This note has shown that an ANN model can be valuable for
predicting software testing effort. The results clearly show
improvements on existing Ôbest guessesÕ and are, in some cases, better
than standard statistical models.

Analyses of the models also provides additional useful
information. In this case, confidence intervals for each modelÕs
predictions were calculated. However, unless the accuracy of a model
is reasonable, and predicted results are relatively homoscedastic, the
results a model produces can be so vague as to be somewhat

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

meaningless.
Clearly, further research is required to determine an optimum

ANN configuration (topology, training rate, epochs and so on) for
problems of this nature. As with all such models, improvements can
continue to be made as more data become available and ANNs are
able to learn from a larger pool of previous project histories.

7 References

[1] Fenton, N.E. Software Metrics, A Rigorous Approach, Chapman
and Hall, London, 1991.

[2] Kan, S.H. Metrics and Models in Software Quality Engineering,
Addison-Wesley Publishing Company, USA, 1995.

[3] Jones, C. Programming Productivity, McGraw Hill, New York,
1986.

[4] Boehm, B.W. Software Engineering Economics, Prentice Hall,
USA, 1981.

[5] Helmer-Heidelberg, O. Social Technology, Basic Books, New
York, 1966.

[6] Albrecht, A.J. Measuring Application Development
Productivity, Proceedings of the IBM SHARE/GUIDE
Applications Development Symposium, Monterey, CA, October,
pp. 83-92, 1966.

[7] Kumar, S. Krishna, B.A. & Satsangi, P.S. Fuzzy Systems and
Neural Networks in Software Engineering Project Management,
Journal of Applied Intelligence, 4, pp. 31-52, 1994.

[8] Hakkarainen, J. Laamanen, P. & Rask, R. ÔNeural Networks in
Specification Level Software Size EstimationÕ, Proceedings 26th
International Conference on Systems Sciences, Wailea, 5-8
January, IEEE, 4, pp. 626-634, 1993.

[9] Wasserman, P.D. Neural Computing Theory and Practice, Van
Nostrand Reinhold, New York, 1989.

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

[10] Gallant, S.I. Neural Network Learning and Expert Systems,
Massachusetts Institute of Technology, USA, 1994.

[11] Dawson, C.W. ÔA Neural Network Approach to Software Project
Effort EstimationÕ, Applications of Artificial Intelligence in
Engineering, 1, pp. 229 - 237, 1996.

[12] Karunanithi, N. Grenney, W.J. Whitley, D. and Bovee, K.
ÔNeural Networks for River Flow PredictionÕ, Journal of
Computing in Civil Engineering, 8(12), pp. 201 - 220, 1994.

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

