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Abstract

A connectionist model (usingMeural Network applied to the transformatianflow-outflow
phenomena of an experimental urban basin has b&etoged.

It has been made a softwaresing a MatlabToolbox, simulating aStandard Back
Propagation Neural Networkwhich hasbeen applied tthe experimental data of Luzzi's ba-
sin. In aprevious paperthis applicationgave encouraging results eventlie authors had
worked onlywith twenty five experimentally measured eventstlo¢ inflow-outflow phenom-
ena.

In the present paper the authors present the results of the application of the Neural Net-
work to the samenflow-outflow phenomena of Luzzi's basin, obtained working wiity
nine experimental inflow-outflow events.

The authors improved the Neutdétwork efficiencyusing a variabléearning rate and
tried towork with inflow-outflow events inthe frequencydomain in order to obtain better re-
sultsand faster computation times. To do sbe authors have presented to the Neural Net-
work, inflow-outflow events as complex numbers.

The results can be regarded good considering the complexity of the engineering problem,
which is non linear and time dependent.

1 Introduction

The transformation phenomenon of inflow-outflow in a genlesisin -urban or
natural - is one of the most interestiisgues ofthe Technical Hydrologythat
summarizes althe hydrological and hydrauliprocessesvhich influence the
meteoricinflow in each point of thdasinproducingvariableflowrates in the
closing section Maione et al.[1].

The present study is a further step of a rese&ioktolisi etal.[2] which
aims atthe definition of a connectionist model capable of simulathreytrans-
formation phenomenon of inflow-outflow for a quitemplex physical system.
This aim has been reached by means of pairs pluviogram-hydrogramered
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in the experimental urbabasin at Luzz(Cosenza, Italy) in a three-year period
Calomino et al.[3].

The connectionist model simulating the hydrological basin has been realized
by means of @ackpropagation Neurdletwork, Matlab [4] Cammarata [5]
[6], characterized by the property lEarn the solution of groblem bythe di-
rect interaction with known events througéxperimental availablgairs of
events pluviogram-hydrogram.

Using the standard procedure tphysical phenomenon has besmquired
by the NeuraNetwork employingabout 80% of the inflow-dtlow pairs, dur-
ing the so-calledraining phaseor model set-up

The set-upmodel has beetested on théasis ofthe remaining20% of the
inflow-outflow pairs to assess tlevel of reliability ofthe matheratical model
through theevaluation of itgrediction or generalizationgrade, thats, its ca-
pacity of predicting the functioning of the basin system.

Another innovative contribution tthe present research, compared with the
previous one, is the use of an advanced softwdatiab and itsNeural Net-
work library installed on a IBM-compatible PC will66MHz Pentiunproces-
sor. This allowed a high velocity duritige built-in routines, an easieranage-
ment ofthe Backpropagation Neurbletwork, and the graphiwisualization of
several information during the training phase.

2 Architecture of the Back Propagation Neural Network

In this phase othe researci@Giustolisi[2] a threelayer NeuralNetwork Cam-
marata [5][6]completelyconnected to ak&rror Back Propagatiotraining al-
gorithm and transfer functions associated with non-linear neurons (figure n.1).

OUTPUT LAYER

INPUT LAYER O j1

Figure 1

The NeuralNetwork chosen (even though it cannot be tteal one to
simulatethe physicalphenomenon) allows, after a suitable trainitig simula-
tion of very complex physical systems; themture has been recently regarded
sufficient.
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The three layers of the Neural Network have been dimensioned as follows:

- input layer: 139 neurons
- hidden layer: 50 neurons
- output layer: 165 neurons

to associate each neuron of the infayer with a value othe experimental
pluviogram sampled with an interval of 1 minute, and each neurihre afutput
layer with a value othe experimental pluviogram also sampled with an interval
of 1 minute.

Actually, rainfall havenot thesameduration and for this reasonramber
of neuron equal to the number of values sampled of the longest pluviogram (139
minutes) has been employed for the input layer.

Similarly, the number of neurons tbfe outputayer has been fixed equal to
the number ofthe values sampled ahe maximumhydrogram (165minutes).

As for thehidden layer, being thahere are nomethods to determinde suit-

able number of neurons, a number of 50, experimentally obtained, was accepted.
In fact, a lowemumber (5 and 10 hiddameurons) madéhe NeuralNetwork
unsuitable already durinpe training phase, whereas a higher numd®0 and

200 hiddenneurons) dichot enable it to generalize in a better way,tbe con-

trary delayed the learning capacity due to the increased calculations.

The choice made is also basgabn the fact that theapacity ofthe Neural
Network to simulate the physical phenomenon do not vary substantially with the
number of hidden neurons taking irgocount the uncertainties of the knowl-
edge of the physical system.

The 59 eventsvailablewere organized in #natrixes (tabld), whose col-
umnsrepresent each event equaled torthmber of components e corre-
spondent event ahaximumduration, adding auitable number ateros at the
end.

Table |

Name Size Notes

INPUT 139x50 | input matrix used for training/set-up
INPUTG 139x9 input matrix used for the generalization/predictign
OUTPUT 165x50 | output matrix used for training/set-up
OUTPUTG | 165x9 output matrix used for the generalization/prediction

For the set-up the 568vents werenot randomlychosen, thdirst 50 in a
chronologicalorderand for the prediction theemaining 9events were taken.
This wasaimed at approachinthe operating conditions of a trainéteural
Network which is to supply hydrograms predicting new rairents whose hy-
drograms are unknown.

One of the constraint of therror Back Propagation (EBRyith a constant
learningrate is theslowness othelearningprocess because it requitearning
rates notvery high toavoid instability problems. Alsdahe choice of thesame
value ofthelearningrate is quitedifficult for it has nevebeencoded. The soft-
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ware used allowed to solvkis problem usinghe momentunand thevariable
learning rateCammarata [5] Matlab Toolbox [7]:

- The former decreases the Back Propagaensitivity to little details of
the error surface minimizing the risks to be staked in not veryrdeema. This
happens modifying the law of updating weights as in figure n.1:

w, (t+1)=w (0)-2w +B iy ()- w(t+1)

wheref3 is a positive constant < 1 termawmentunwhose function is that of
producing a sort anemory ofthe previous up-datingtandardizinghe weight
variations; f) and (+1) are the instant related togeneric learning cycle and
the instant related to the cycle immediately after, respectively.

- The latter allowshe learningrate toincrease and to decreasetbabasis
of the trend of thglobal errorthus reducing thé&aining period otthe Neural
Network since the ideal one is chosen automatically. The training method with a
variable learning rate can be written in the following way:

i= lr -m dec
||: O 1
where: Ir = learning rate

Irinc = increase of learning rate
Irsec = decrease of learning rate
b =momentum constant

Enax = maximum increase of error
50 165

— 2
SSE = quadratic deviatiorr Z (qjk - qjk)
=1 =1
The increase and decrease coefficientthetraining rate are the most in-
teresting aspects of the software used, ihahe capacity of speeding up the
learning when the global error of thraining setshows a descendeménd and
slowing down otherwise.
In table Il thevalues ofthe usedrariablesare listedwhich allowed tolink
the need for a quickearning withthe learning efficiencyduring the whole ex-
perimentation.

SSE'> SSH E, U SSE'< SSE E, U

g9

Table Il
Ir Ir inc Ir dec b Emax
0,00000001 | 1,02 | 0,7 0,1 1,02

For thelearningrate we started, for prudential reasofiem a very low
value of 10, thanks to theapacity ofthe NeuralNetwork toincreaserapidly
the learning rate when the global error oftilaéning setdecreases.

It is well known that the inflow-atflow phenomenon in a hydrological ba-
sin is sometimes not linear. It is also known that the choice bidalen layer of
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the Neural Network having function of non-linear transferring, makeshbiee
extremely versatile. Othe basis ofthese considerations, log-sigmoid functions
were used for the hidden layer.

The choice of a transferring function fhre outputwas madeanalyzing
two different solutions:

- a log-sigmoid function;

- a linear function.

2.1 Output layer with log-sigmoid transfer function

The choice of a log-sigmoid transfer function alsotf@ outputayer supplies
values between 0 and 1, that is, always positive; this allowed to teptysi-
cal absurd of negative output flowrates.

The adoption of a log-sigmoid transfer function haspiteblem of theneu-
rons saturation whenthe flowratevalues reaclhe limts of the outputdomain
where the tangent of tHanction tends to be horizontal and @ correction
capacity if the Neural Network is equal to zero Cammarata [5][6].

In addition, thdog-sigmoid transfer function halse superiofimit, so that
a Neural Network also has in output the superior limit.

In our case, the previous limitations give some problems with the character-
istics ofthe physical systenunder investigation. Puttingerovalues athe end
of each event rain-flowrate the Neurdétwork presents theutput neurons
correspondent to the zeros saturated, whereas the neexdnalizethe ex-
perimental hydrograms to be fit ihe interval [0,1] of the transfefunction of
the outputneurons creates the need define a priori amaximumvalue of
flowrate that can be predicted by the Neural Network.

The fact that during thiearning phase a Neursetwork with log-sigmoid
can be more stable due to the particular shape of the funlcéisrgs its draw-
back the need to use, as in our case for the hydrograms, a normalization

(OffSEH‘ xperimentalg
normal

yrete =

where theoffset different fromzero wouldserve toeliminate the saturation
problem caused bthe zerovalues ofthe hydrograms ; andhe large normal
would eliminate the problem of the maximum value predicted.

Lastly, with the choice made, if properly carried out, th&putneurons
would work in the areavhere thdog-sigmoid function is equal 1@,5and so in
the linear segment (in good approximation).

2.2 Output layer with linear transfer function

The choice of linear transfer functions allows, on the one hand, to avoid neurons
saturation problems, on tlmtherhand, generates values of flowrate also nega-
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tive. However, once thkearning phasevas finished, this problemresulted of
neglectableproportions,since the NeuralNetwork learns to supply flowrate
values almost always positive.

The adoption of a linear transfer function for theputneuronlayer solves
saturation problems and also problems relatetiedact that the transfer func-
tion hasthe superiotimit. A normalization ofthe outputs in thénterval [0,0.4]
was carriedut though nomnecessary, usinpe equatiorpreviously introduced,
with offset0 andnormakynax /0,4. The same wadone for the inputata of
rain in the normalization interva[0,0.4] to compare the results obtaineih
those of othebasins and toninimize saturation phenomena tife intermediate
layer when a log-sigmoid is chosen

The minor stability of the linear transfer function has been sahitlizing
the weights and thieiases with low values, as wshallsee, and adopting\eery
small momentunfs.

3 Description of the Neural Network

Indicated with «> the generic neuron athe input layer with <i> the geeric
neuron of thehidden layerconsisting inp neurons [§=50 in the present case),
and with > thegeneric neuron ahe output layer the NeuraNetwork trans-
forms an inpuvectore (139elements) into aoutput vectory; (165 elements)
throughsynaptic weightsvg,;w;) and biases&;6;), connecting thénput-hidden
and the hidden-outplayers, andhe hidden layerepresented by vectoxsac-
cording to egs. Giustolisi et al. [2] Cammarata [5][6]:

139

50
Fi):ZWrEe_ei PJ:ZWjiEX_ej
r=1 =1

%=g1(P) Yi=g2(P))

selected as transfer functions:

9.(P)= 1+1e'P (log-sigmoid)
g,(P)=P (linear)

The flowrate al'} minute of K" event calculated by the Neutdetwork is

given by:
50 39 ED
v, =F (X ,W) = Qﬁwmgﬁ WDreEH
=1 r=1

! The constant normalization allow us to compare the starting learning rate, the star-

ting wieghts and SSE between trials.
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Lastly, theinitialization ofthe NeuralNetwork has been carriedut simply
using therands function of MATLAB:

a=0,01-[rands]

which allowed to randomly assign to weight and biases valube irange of [-
0,01+0,07] to avoid saturatiomproblems ofthe transfefunctions examined in
the previous paragraph.

4 Input-output pairs in time domain

The 50 pairs of input-output events used by the Nélealork in set-ugphase
(training phase) were presentethny times in several ways to obtain the
optimization of the Neural Network answers during the predictiophase
(generalization) of 9 pairs of input-output events.

In fact, the pairs available for the Neulgtworktrainingare related (table
[I1) to events of inflow-outflow featured by quitariablewatervolumes, and
also themaximumand mean values aéinfall and flowrates, lasting from few
minutes up to 165 minutes.

Event inflow-outflow n.26 Event inflow -outflow n.50

245 F 245
------- input x 100
output

195 + 195 +

145 + 145 +

95 + 95 1

45 +

rainfall intensity [mm/min]
discharge [I/min]

rainfall intensity [mm/min]
discharge [I/min]

' '

.| A
45 [k

g e

0 50 100 150 0 50 100 150
time [min] time [min]

Figure 2

Therainfall flowing intothe basin isnot equal to the downflolowing out
from the same basin since only gross raintasexperimentally available, as re-
corded by theluviographs, whiclare not reduced of thelume that thanks to
the basin configuratiordoes notcontribute to the formation of a downflow in
the monitored section of the Neufdétwork ofurban drainageyut is lost due

% The functiorrands(S,R)of Neural NetworkToolbox gives ushe SxR matrix of the
weights Wand itgives usthe Sx1 matrix of théiasesd with random elements in the range
[0,1].
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to infiltration into subsurfacastrata, to evapo-transpiration, inlitile storage
capacities, or for other physical causes Maione et al.[1].

Table Il

N. Date t. total h meani | volume flux .
event min mm mm/h m”3 coeff. TO aVOld theproblem Of
1 27/11/87 1 3. 12.p 670 041 ) .

2| 2rie7| a4 5. sp 71l o4+ the different durations of the
o P R b 1sls ol inflow-outflow events it has
5 23/01/88 73 7. 6.b 1471 049 i

e Eoctcutod IO L L 21° been necessary to uniform the
7 14/09/88| 3 8. 13p  162|2 042 Iength adoptmg a number of
8 15/09/88 4 13. 20f 2603 03 .

5 | 21/09/88| 5 2. 2 ashs o4s Input neurons equal to the
10 08/10/88 1 3. 13B 56|6 0.45 ; ;

11 08/10/88 5 4. af 868 04s Maximum numbgr of mlngtes
12 20/11/88| 94 4. 3p 905 042 of the |ongesra|n (139 min-
13 20/11/88 5 2. 2p 490 0.40

14 21/11/88 2 1. 4B 339 043 UTES) and anumber OfOUtpUt
Te | sunime| of sf 4b eshi o4 Neurons equal to the maxi-
17 21/11/88]| 10 8. 40 166)0 07 mum number Of minutes Of
18 22/11/88 4 3. sh 71l7 041

19 22/11/88| 11 5.p 3p 1056 oo the |OngeSt downflow (165
20 23/11/88 1 1. 5p 189 045 . . S

21 | 231188| 6 3. sh 7l o4, minutes). This criteria has
22 24/11/88 1 1h 4b 264 048 i

23 25/02/89 4 6. 8p 124[5 0.49 bee_nadopted for thelor_mall-
24 | 26/02/89| 1 ih 7p 264 049 zation of thelengths of iput-
25 26/02/89 4 4. 5p 754 045 . .

26 | 27/02/89] 4 2. 3p 37l 041 Ooutputsequences tonaintain
27 27/02/89 6 a.p ah 79)2 0.49 ; ; ; by

S5 avi00i80| ¢ By B —— o1 thl_s |nformat|on_ within the
29 | 27/02/89) 3 L. 3p  30p 0.18 pairs of events (figure n.2).

30 28/02/89 6 4. ah 868 0.41 .

31 28/02/89| 12 6.p 2B 1132 0.fs Consequently, Observmg
S| seosme| s{ 1f 1h 22 ofs the curves of the 59 input-
34 _j 02/03/891 5 2. ap 908 045 output of theevents used in
35 02/03/89 6 5.0 sh 1018 0.12 )

36 02/03/89 1 1. 9p 339 o.1s the various phaseS of set-up
37 04/03/89 4 1. 15.p 18|9 0.49 .

38| o4/oziso| 4l 7k 1ok 139s o4- Of the connectionismodel of
39 04/03/89 2 2. sh 49)o 015 oij ; ;

40 13/04/89 1 1. 6p 30]2 045 simulation of the phy_smal
a1 | 13/04/89f 2 Lp 2B 226 040 system ofthe urbanbasin at
42 14/04/89 3 3} 4p 604 043 . . .
43 14/04/89 4 5.p N 981 oq2 Luzzi as sequences discrete in
44 14/04/89 6 7h 6p 139[6 0.18 4: :

45 15/04/89 1 1. 151 339 0.14 time, the appear of/_ery varl-
46| oljosiso} 3 3. ap sod  ofs gple order of magnitude and
47 02/05/89 7 4. 3B 754 0.{7 )

48 02/05/89| 13 7. 3h 1471 o.te affected by |Ong series @kro
49 18/05/89 1 2.p oh 415 0.43

50 18/05/89 5 22.b 23 426}2 0.b6 values at the end.

51 12/06/89 3 3. i) 670 041 i

52 17/06/89 2 6. 18p 1245 0.6 In the_ BaCk_ Propagatlon
53 26/03/90 3 8. 148 1660 054 the equatlonWhICh regu|ate
54 29/03/90 2 2.p 5B 415 0.14 . .

55 | 30/03/90| 3 3} 5k 604 o4o the correction of nghts
56 04/04/90 8 4. 3p 905 0.1 ; ; .

57 09/04/90 2 2.p 5f 415 043 dunng the Iearnlng are.

58 10/04/90| 39 26.p ah 501|7 0.fe6

59 10/04/90 8 2.b 1B 453 0.47

AW, :‘”%z‘” i -v,)or(R)x =nty - y)0e" 0x0§ N
A :—na‘z%mf'(e)tq:—nqx—x)mé” 0é0x
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wherer, i, j are theindexes ofthe input,hidden andbutputlayers, respectively.
Eq. (1) isdirectly poportional to the inpute” and theoutputy;; therefore, the
corrections W be the more remarkable, thegherthe inflows (raininput) and
the outflows (flowrateoutput) wil be. This is an anomalous learnirghich
gives a different weight to the events to recorder.

The set-up irGiustolis et al.[2] othe NeuraNetwork with the pairs of in-
flow-outflow in time domain, made &0+5 pairsavailablebetween modeset-
up and its validation, supplied satisfactory results considénegnodest num-
ber of experimental measurements compared thghtheoretical need of con-
nectionist models.

Now, having alarger number of pairs of experimental evetitg, training
process habeenrepeated to poinbut the improvements othe connectionist
model deriving fromthe increased width of tHearningsetavailableand to a
greater expertise acquired on the functioning of the Neural Networks.

In the present paper, in fact, the Neuxaitwork usedsimilar to the one
used in Giustolisi edl.[2], presents someanovative technical solutioredopted
in thelearning phase gmintedout inthe previous chapter, and as for its archi-
tecture, the heartransfer function othe outputlayer chosen to avoidatura-
tion probelms during the learning caused by the high number of zeros at the end.

5 Input-output pairs in frequency domain

As new solution, an alternative to the presentatidmia domain otheinflow-
outflow pairs has been illtrated.

To thisaim aNeuralNetwork, similar tothe previous ondjas beerested
presenting experimental pairs in the frequency domain, that is, as sum of circular
functions.

Such a solution has beadapted to better thefficiency of the simulation
modelthrough aspecificpre-elaboration of the set-up datduis elaboration of
the 50 pairs okxperimental events wasmed at supplying information to the
NeuralNetwork in a betteshape to its comprehension without loosinigr-
mation in this step.

The idea to present tthe connctionistmodel pairs of rainfall-flowrate
events in thérequency domain is originated blye consideration based upon a
specificresult of the theory of lineaystems invariant with translatiowhich
should be pointed out.

It is known that a hear system invariant with translation Oppenheim et al.
[8], in this discrete case, can be characterizedna domain bythe answer to
the unitarian impulsé(n) in the following way,

h(n) = T[3(n]

> 2
v = 3 XK - B )

k==-c0
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where h(n) is the answer to thaitarian impulse othe T[] system and y(n) is
the output of the system generated by the generic input x(n).

This system isthen,completely described with a sum of convolution, sec-
ond equation in (2), once the answed(o) is known.

The theory of hear systems invariant the translatiorallows to describe
in the frequency domaiithe sequences time x(n), y(n), h(n) bymeans of the
Discrete Fourier Series DR3ppenheim e#l.[8] obtainingthe following equa-
tions

H(E®) = 3 (T

Y(®) =S oeen
(e™) ;3(0 3)

X(e2)= 3 X1 ™
Y(€%) = H &)X ¥)

which are valid provided that theseries in(3) are convergerand then x(n),
y(n), h(n) can be summed:

3 () < iy(n)<oo il‘([)<oo

n=0

This means that a linear system can be described in frequency domain in
terms of products ofomplex numbers (&) and H(E®) which represent x(n)
and h(n) in terms of sum of cosines functions of pulse® obtain complex
numbers Y (&°).

The comparison between the relations of thedr systems in time domain
and the Inear systems in frequency domain poiotg that inthe second case
the description of theystem is made easier being basedthan product of
complex numbers.

This last result is obtained for linear systems invariant with translation, even
if the connectionistnodel is meant to simulate @hysical systenaffected by
high non-linearitiesand doesnot answer to the property of iadance with
translation of the answer to theitary pulsgInput Unitary Hydrogram), is es-
sential to consider that a Neufdétwork working into thdrequency domain
could give better results than a Neural Network working into the time domain.
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5.1 Characteristics of the Neural Network in frequency domain

Based on the considerations of the previous chapter the 50 pairowf in
outflow events have been pre-elaborated to obtained a descriptiosas of
circular functions according to DFS before their presentatiothéoNeural
Network for the model set-up.

It has been confirmetthe choice ofjiving to the shorter sequences a num-
ber of zeros tmormalizethe lengths ofthe events oinflows and outflows cal-
culated by themodel atthe maximumduration of theexperimentadataavail-
able N,,=139 and N,=165; the events, then, appearfiage and limited se-
guenceswhich can be summed in a modatcording towhich DFS could be
calculated as:

[X(e2)] = szi X0, 0™ forj=12,.....,50 inflows @

Nout-1

[Y(ém’)] z[)(r)] De'en forj=1,2,.....,50 outflows

The calculation of4) has been carriedut using firstthe Discrete Fourier
Transformed DFT Oppenheim et al.[8],

[X(K], = Ninpmz[x(n)] e =1 (N, -} e j=1,...50 o
[Y(¥], ——Dg[y(n)] e =1, (N, -} e j=1,...50

O

and Fast Fourier Transformer non power of two alghoritm.

[X(K)]; e [Y(K)]; calculated with(5) areformed by (N,, -1) and (N -1)
complex conjugate numbers, for each of the 50 events j, relateg #d {R=67
and (Nwr1)/2=82circular functions to whichiwo complex numbeare added
havingthe sole reapart different fromzero, related to the continuoaempo-
nent given by the particular shape of (4) or (5)e0 or k=0:

[X()], = DN%rix(n)] per j=1,2,..,50
.n Nout-1 (6)
[Y(0)] =0 Z [y(n)], per j=1,2,.....,50

OU

Egs. (6) pointout how theinformation supplied tdhe NeuralNetwork
linked to inflowsand outflows is contained in tliest value ofthe complex se-
guences which represent the mean value of x(n) and y(n).
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In fact in egs. (6), a meno terms of constant proportionality,,1Ax%d
1/Now, the sums represenggactlythe inflows and the outflowssincethe spe-
cific mean value i®btainednot as afunction of the effective duration of the
events but as function of the values of maximum duratigraNd Ny

From the point oVview of itsarchitecture, the Neurdetwork in the fre-
guency domairdoes notiffer much from that irthe time domain; infact, the
latter is formed by I\, and N input andoutputneurons, respectively, with the
same number of hidden neurons dhe same learningate and momentum of
the neural net previously adopted.

As for the transfer functiondgwo linear functions were used tavoid
whichever risk ofsaturationbeingaware of the fact that in tHeequency do-
main acompletely linear Neurdlletwork inwhich g;(P)=g.(P)=P can simulate
a non Inear phenomenon sintiee inputfrequency is connected @il the out-
put.

A completely linear NeuraNetwork also allows tominimize the impor-
tance of initial W, andWj;, to increasehe learningspeed and doasot require
the normalization.

To the new NeuraNetwork, on the contrary, the continuoesmponent
and the real and theageryparts correlated to (N-1)/2=67circular functions
of description of each of the 50 [X(8]; were presented in the input neurons
Ninp, In Ordinate sequence.

Similarly, the continuous component and the real and the imagery parts cor-
related to (N.1)/2=82 circular functions of description of each tfe 50
[Y(e"®)];were presented to the output neurong, I ordinate sequence.

Such a NeuraNetwork iscapable of graspinthe most important conse-
guence of(6) linked tothe fact that thénformation onthe volume exiting the
physical systenthe hydrological basin at Luzzipr the single event | ahodel
set-up before and after the assessment of the predietpagity ofthe model in
a second time is contained in one single output value.

The NeuralNetwork in thefrequency domain, after a suitabdet-up,
should be capable of recognittee outflowvolume, contained ionly one neu-
ron of themodel, by the recording of theflow volume, in onlyone input neu-
ron of themodel, and of th@therinput neurondinked to the circular compo-
nents defining the shape of the rainfall pluviogram and also its duration.

This structure of théNeuralNetwork isreasonable from physicalpoint of
view sincethe watervolumelost by thehydrological basin can be considered
dependent both on the global water volume and on the pluviogram shape.

The nonlinearity of the NeuralNetwork answer resides in the fatftat
imagining anequal number of input amsutputneurons to have an equater-
val of sampling otheinflow and outflow sequences, so that &xes ofthe fre-
quencies of [X(&"];and [Y(€“)];would be of equal resolution, one would not
obtain a constant answer Y{/X(e"“) of the model being w given.

The remarkable nolinearity of the hydrological basin, omhe contrary, is
easily assumed from the graphic (figar8) of thevalues ofthe ratios of the in-
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flows to the outflows as in tablgl, and fromtherelative coefficient of outflow
which are not constant.

The Neural Network set up with the data of the frequency domain allows to
solve the conceptuaproblem deriving fromthe fact that the totatonnection
among the neurons of a Backpropagation NeNedivork implies a functional
connection also among the neurons in the inputaurtgdut layers, where the
former canphysically correspond taminutes of rainfalling after the outflows
represented by the latter.

This situation is not physically reasonable, even though it doesfluence
the goodfunctioning ofthe NeuralNetwork in thetime domain Giustolisi et
al.[2] since inthe connectionisparadigmthe possibility the weights adjust to
the situation assuming suitable values, is included.

0.90
0.80 +
0.70 +
0.60 +
0.50 +
0.40 +
0.30 +
0.20 +
0.10 +
0.00 1 1 1 1 1

0.0 100.0 200.0 300.0 400.0 500.0 600.0

Coefficient of outflow

Rain volume of the i-th event [m"3]

Figure 3

What previously said, camfluencethe number of neurons ahe hidden
layer, and the total O weights of the Neural Network, since part daiticéonal
connections, as already said, could a priori be eliminated.

To conclude, from a schematic point of vietwe NeuralNetwork trained
in the frequency domaimvorks as shown ifigure n.4. The pre-elaboration of
x(n) data bymeans ofDFT was followed by autputdecoding by means of
IDFT to obtain y(n) that is a sequerstdl in thetime domain. This lasipplica-
tion is also useful in the engineering field.

x(n) X(e" ) Y(€" ®) y(n)

— FFT rete IFFT

Figuran.4
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6 Analysis of results

The learningprocess was controlled observithge curves volute anchlculated
both inmemorization and in generalization. This allowed to asségzlty the
capacity of learning othe NeuralNetwork and,when thisdoes not occur, to
intervene on the main coefficients or on the architecture of the same Network.

To have a more objective criterion of evaluation, duting learning, a
suitable expression dfie errorhas been chosewhich would be synthetic as a
number and significant as a graph. Various criteria exist to compare hydrograms
recorded and thosgmulated bythe modelwhich allow to evaluatéhe model
performances with respect to the peak flowrate or to the hydrogram seatpe,
is, with respect to the outflows or to the duration of the peak flowrate Calomino
et al.[9].

It should be remembered that the Nedtatwork approaches thgroblems
in terms of recognition of the curve shape and adw#docus on thevalues of
the peaks.

Coherently with the engineering objectives of the model, to measure the ac-
curacy in the recognition of generic hydrogranthe percentage error of the
inflow related to the single event defined as follows:

E= 100( Z|(:1j-sim'(‘-]j—oss| ) /Qmedio

has been assumed, whe@g.qic represents theffective mean value of the
flowrate, and so without the burden of the zeros at the end of each Hvant.
choice has beesuggested by the needt toinfluencethe value ofthe error of
the rain duration.

As predicted by the software, thearning has been guided thye minimi-
zation of theglobal error SSEand has been carried to a very large number of
cycles savinghe Networkconfiguration (weights matrix) tevhich the mini-
mum value of the errde on the validation-set corresponded.

Table IV-a
TIME DOMAIN Events Error (%) Mean Error (%)
1-10112|16|32) 9 [11]22)1 2| 2|11]| 9
11-20|20)20(12]11| 9 [10] 9 ]14[26]28
Training-set P1-30 | 16| 11| 6 |13|12[(26]11]14[13]16 13,15
31-40]126(20]|14|16| 8 110 18| 6 | 14|13
41-50]115( 6 | 7| 4 [10] 8 |15[/10|13] 1

Validation-set 1-9 |33]17]11]12]30] 17|15/ 22|45 22,44
Table IV-b
FREQUENCY DOMAIN | Events Error (%) Mean Error (%)

1-10|10[14[26] 6 [10[18] 3| 2 [12] 7
11-20| 16211414 8| 9| 8 14| 24]23
Training-set p1-30 | 15[ 12| 5 [14|11]21]11]11][ 15[ 16 12,15
31-40|18| 22| 15|13 7 [11]14] 5 [15[11
41-50f15] 6 [ 7] a9 9f16] 7]12] 1
Validation-set 1-9 |32] 17| 11| 14| 24|17 14] 24| 41 [N 21,53
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Tables 1V-a and IV-b show thigalue ofthe error foreach event both dur-
ing the learning and the generalization in both domains of the Neural Network.

6.1 Time domain

Operating on a package of inflow-outflow eventach larger thathe one in
Giustolisi etal.[2] the Network couldearn better the particularities of the
physical phenomenaand this lead to an increasetloé predicting capacities of
the networkThis resultconfirmsthe fact thahaving atraining-setand avali-
dation-setof adequate sizes, and sufficiently large, the performances of the
Neural Network on both sets tend to be the same.

The improvements ithe generalizationare moreevident comparing the
soletwo events of the training-set aommon betweethe preseninvestigation
and Giustolisi et al.[2] (figure n.5):

Validation-set event n.5 Validation-set event n.9
40 - ‘ 25
35 | experimental
outflow 20 &
= 301 calculated =
£ 25 4 outflow £ 15 +
Z 20 calculated Z 10 &
5 15 1 outflow [1] s
< <
2107 3 57
© 5 i ©
0 . 0 m=f ‘ : ——
‘ ‘ : 50 100 150
-5 50 100 150 -5
time [min] time [min]
Figure 5

Although the prediction of thege/o events resulted quitdifficult in both
cases, a better prediction of the peak flowrate and of the shape hofdiioe
gram can be seen. The hydrogram presents isolated negative waiabs
though not coheremith the physical reality, daot deprive to curves of their
significance.

6.2 Frequency domain

For each of the 9 events of tivalidation-set and for one of théraining-set,
the one characterized by theaximum error, araph is presentecomprising
two curves to compare the hydrogrgmen andhe one calculated by the Neu-
ral Network (figure n.6).

The performances of the Neudétwork ingeneralizatiorare to be con-
sidered quite interesting since it showed to be capable of identifying the shape of
the curves and because of the accurate determination of the instantsnainthe
peaks of the hydrograms.
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As for the prediction of the peak flowrate, instead, it cangbed for
events 2-3-4-5-6-8; the previous hydrograms calculated presented a trend dif-
ferent fromthe real one in the last segment of fle®ding wave ofthose hy-
drograms characterized by minor duration.

As for the events 1-7-9, instead, though the prediction of the peak was as-
sessed sufficienthe hydrograms calculated by the Neuxatwork are not as
good as the previous ones.

During theset-up the Neurdlletwork cannot, for thearticular type of al-
gorithm of learningused,give equal importance tall events rain-flowrate used
for its set-up and focuses on the bigger ones both as ouifbbvmes and
maximumvalues ofthe flowrates often with respect to thatervolumes. It is
difficult, in fact, to generalizéhe events 1-7-@hich are the three events of the
validation-setcharacterized by the lowegalues ofthe maximumflowrate and
of the outflow volumes.

This last circumstance is anyhow acceptable from an engingasing of
view becauséhe precisesimulation of inflow-outflow events characterized by
the larger parameters is technically more interesting.

35 Training-set event n.50 40 Validation-set event n.1
experimental 35

30 + outflow 1 o
— 25 1 A I R calculated =30+
c ) [ P
E 20 outflow E 25 +
2151 | 8207
E_—E 'I:ll' E 15 +
B . 310 |
© 51 . / . /l \\ © 51 )

0L 1 1 ‘ 0 SN ‘ ‘
0 50 100 150 0 50 100 150
time [min] time [min]

250 Validation-set event n.2 120 Validation-set event n.3

200 + 100 1
< | € 80 -
£ 150 || £
= 100 +[|- =
g . £ 40
% 50 ”:' % 20

-\ ot N
0 AN B + 0 ! s :
0 50 100 150 0 50 100 150
time [min] time [min]

Figure 6
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Validation-set event n.4

Validation-set event n.5

45 40
40 + 35 + .
35 + 30 | 2
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=25+ = 20 | Y
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NI 10 -+ |
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Figure 6

7 Conclusions

The present paperonfirmedthe results ofGiustolisi etal.[2] pointingout an
improvement ofthe predictingcapacity ofthe connectionist model, astici-
pated at a theoreticédvel, thanks tahe availability of alarger set ofevents
used for its setting up.

The connectionist model working the frequency domaiproduced an in-
crease, even ifiot remarkable, of theapacity ofthe NeuralNetwork to simu-
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late the urbarbasin, that is a regdhysical situation. Thisnetwork is much
quicker in the set-up phase due to its propertgitwlate a non linegshysical
phenomenon also assigning lingeansfer functions to its hidden amaditput
neurons. The results obtained are encouragimgidering thathe connection-
ist model used isisually aimed athe recognition of shapes, whereas in the
physical situation under investigation the input-output events are time series.

The Authorswill, then, approach a second research orathgevement of
different results:

- simulation ofother experimental basins by meansaainnectionst models to
generalizethe results obtained in the pres@miestigation also considering
that different basins could have different levels of comiylex

. acquisition ofstructures of the Neurdetwork capable of supplyingpetter
simulation as a function of the particular physical system under investigation;

. comparison between tlsgmulation connectionist models atitbse ofidenti-
fication of linear systems;

. employment of simulation model as support for the knowledge qfttyscal
characteristics of the urbdasinwhose data arpartly implicitly contained in
the events used to set up the mathematical model.

The choice of the Neurdletwork architecture, iparticular of thenumber
of neurons of its hidden layer, m®t thecritical point duringthe set-up of the
connectionist model by meanstbe experimentablata of theurban basinThis
particular situation derives frome circumstance thamall differences of the
predicting capacity ofhe model as function othe variation of its architecture
have been evaluated also considethmg uncertaintieproper to theknowledge
of a physical system through experimental input-output curves only.
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