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Abstract

A connectionist model (using a Neural Network) applied to the transformation inflow-outflow
phenomena of an experimental urban basin has been developed.

It has been made a software, using a Matlab Toolbox, simulating a Standard Back
Propagation Neural Network, which has been applied to the experimental data of Luzzi's ba-
sin. In a previous paper, this application gave encouraging results even if the authors had
worked only with twenty five experimentally measured events of the inflow-outflow phenom-
ena.

In the present paper the authors present the results of the application of the Neural Net-
work to the same inflow-outflow phenomena of Luzzi's basin, obtained working with fifty
nine experimental inflow-outflow events.

The authors improved the Neural Network efficiency using a variable learning rate and
tried to work with inflow-outflow events in the frequency domain in order to obtain better re-
sults and faster computation times. To do so, the authors have presented to the Neural Net-
work, inflow-outflow events as complex numbers.

The results can be regarded good considering the complexity of the engineering problem,
which is non linear and time dependent.

1 Introduction

The transformation phenomenon of inflow-outflow in a generic basin - urban or
natural - is one of the most interesting issues of the Technical Hydrology that
summarizes all the hydrological and hydraulic processes which influence the
meteoric inflow in each point of the basin producing variable flowrates in the
closing section Maione et al.[1].

The present study is a further step of a research Giustolisi et al.[2] which
aims at the definition of a connectionist model  capable of simulating the trans-
formation phenomenon of inflow-outflow for a quite complex physical system.
This aim has been reached by means of pairs  pluviogram-hydrogram reordered
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in the experimental urban basin at Luzzi (Cosenza, Italy) in a three-year period
Calomino et al.[3].

The connectionist model simulating the hydrological basin has been realized
by means of a Backpropagation Neural Network, Matlab [4] Cammarata [5]
[6], characterized by the property to learn the solution of a problem by the di-
rect interaction with known events through experimental available pairs of
events pluviogram-hydrogram.

Using the standard procedure the physical phenomenon has been acquired
by the Neural Network employing about 80% of the inflow-outflow pairs, dur-
ing the so-called  training phase or model set-up.

The set-up model has been tested on the basis of the remaining 20% of the
inflow-outflow pairs to assess the level of reliability of the mathematical model
through the evaluation of its prediction or generalization grade, that is, its ca-
pacity of predicting the functioning of the basin system.

Another innovative contribution to the present research, compared with the
previous one, is the use of an advanced software: Matlab and its Neural Net-
work library installed on a IBM-compatible PC with 166MHz Pentium proces-
sor. This allowed a high velocity during the built-in routines, an easier manage-
ment of the Backpropagation Neural Network, and the graphic visualization of
several information during the training phase.

2 Architecture of the Back Propagation Neural Network

In this phase of the research Giustolisi [2] a three layer Neural Network Cam-
marata [5][6] completely connected to an Error Back Propagation training al-
gorithm and transfer functions associated with non-linear neurons (figure n.1).

Figure 1

The Neural Network chosen (even though it cannot be the ideal one to
simulate the physical phenomenon) allows, after a suitable training, the simula-
tion of very complex physical systems; this feature has been recently regarded
sufficient.
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The three layers of the Neural Network have been dimensioned as follows:
- input layer: 139 neurons
- hidden  layer: 50 neurons
- output layer: 165 neurons
to associate each neuron of the input layer with a value of the experimental
pluviogram sampled with an interval of 1 minute, and each neuron of the output
layer with a value of the experimental pluviogram also sampled with an interval
of 1 minute.

Actually, rainfall have not the same duration and for this reason a number
of neuron equal to the number of values sampled of the longest pluviogram (139
minutes) has been employed for the input layer.

Similarly, the number of neurons of the output layer has been fixed equal to
the number of the values sampled of the maximum hydrogram (165 minutes).
As for the hidden layer, being that there are not methods to determine the suit-
able number of neurons, a number of 50, experimentally obtained, was accepted.
In fact, a lower number (5 and 10 hidden neurons) made the Neural Network
unsuitable already during the training phase, whereas a higher number (100 and
200 hidden neurons) did not enable it to generalize in a better way, on the con-
trary delayed the learning capacity due to the increased calculations.

The choice made is also based upon the fact that the capacity of the Neural
Network to simulate the physical phenomenon do not vary substantially with the
number of hidden neurons taking into account the uncertainties of the knowl-
edge of the physical system.

The 59 events available were organized in 4 matrixes (table I), whose col-
umns represent each event equaled to the number of components of the corre-
spondent event of maximum duration, adding a suitable number of zeros at the
end.

Table I
Name Size Notes
INPUT 139x50 input matrix used for training/set-up
INPUTG 139x9 input matrix used for the generalization/prediction
OUTPUT 165x50 output matrix used for training/set-up
OUTPUTG 165x9 output matrix used for the generalization/prediction

For the set-up the 50 events were not randomly chosen, the first 50 in a
chronological order and for the prediction the remaining 9 events were taken.
This was aimed at approaching the operating conditions of a trained Neural
Network which is to supply hydrograms predicting new rain events whose hy-
drograms are unknown.

One of the constraint of the Error Back Propagation (EBP) with a constant
learning rate is the slowness of the learning process because it requires learning
rates not very high to avoid instability problems. Also the choice of the same
value of the learning rate is quite difficult for it has never been coded. The soft-
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ware used allowed to solve this problem using the momentum and the variable
learning rate Cammarata [5] Matlab Toolbox [7]:

- The former decreases the Back Propagation sensitivity to little details of
the error surface minimizing the risks to be staked in not very deep minima. This
happens modifying the law of updating weights as in figure n.1:

( ) ( ) ( ) ( )( )w t w t w w t w tij ij ij ij ij+ = − + ⋅ − +1 1∆ β

where β is a positive constant < 1 termed momentum whose function is that of
producing a sort of memory of the previous up-dating, standardizing the weight
variations; (t) and (t+1) are the instant related to a generic learning cycle and
the instant related to the cycle immediately after, respectively.

- The latter allows the learning rate to increase and to decrease on the basis
of the trend of the global error, thus reducing the training period of the Neural
Network since the ideal one is chosen automatically. The training method with a
variable learning rate can be written in the following way:

SSE SSE E
lr lr lr

SSE SSE E
lr lr lrdec inc

' ' '
' ' '

' '
' ' '

' ' '
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= =



β β β0 0

    ;     

where: lr = learning rate
lr inc = increase of learning rate
lr dec = decrease of learning rate
b = momentum constant
Emax = maximum increase of error

SSE = quadratic deviation ( )= −
==

∑∑ q qjk jk
jk

2

1

165

1

50

The increase and decrease coefficients of the training rate are the most in-
teresting aspects of the software used, that is, the capacity of speeding up the
learning when the global error of the training set shows a  descendent trend and
slowing down otherwise.

In table II the values of the used variables are listed, which allowed to link
the need for a quick learning with the learning efficiency during the whole ex-
perimentation.

Table II
 lr  lr inc  lr dec  b  Emax

 0,00000001  1,02  0,7  0,1  1,02

For the learning rate we started, for prudential reasons, from a very low
value of 10-8, thanks to the capacity of the Neural Network to increase rapidly
the learning rate when the global error of the training set decreases.

It is well known that the inflow-outflow phenomenon in a hydrological ba-
sin is sometimes not linear. It is also known that the choice of an hidden layer of
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the Neural Network having function of non-linear transferring, makes the choice
extremely versatile.  On the basis of these considerations, log-sigmoid functions
were used for the hidden layer.

The choice of a transferring function for the output was made analyzing
two different solutions:

- a log-sigmoid function;
- a linear function.

2.1 Output layer with log-sigmoid transfer function

The choice of a log-sigmoid transfer function also for the output layer supplies
values between 0 and 1, that is, always positive; this allowed to avoid the physi-
cal absurd of negative output flowrates.

The adoption of a log-sigmoid transfer function has the problem of the neu-
rons saturation, when the flowrate values reach the limits of the output domain
where the tangent of the function tends to be horizontal and so the correction
capacity if the Neural Network is equal to zero Cammarata [5][6].

In addition, the log-sigmoid transfer function has the superior limit,  so that
a Neural Network also has in output the superior limit.

In our case, the previous limitations give some problems with the character-
istics of the physical system under investigation. Putting zero values at the end
of each event rain-flowrate the Neural Network presents the output neurons
correspondent to the zeros saturated, whereas the need to normalize the ex-
perimental hydrograms to be fit in the interval [0,1] of the transfer function of
the output neurons creates the need to define a priori a maximum value of
flowrate that can be predicted by the Neural Network.

The fact that during the learning phase a Neural Network with log-sigmoid
can be more stable due to the particular shape of the function, has as its draw-
back the need to use, as in our case for the hydrograms, a normalization

( )
y

offset y

normalrete

sperimentale=
+

where the offset different from zero would serve to eliminate the saturation
problem caused by the zero values of the hydrograms ; and the large  normal
would eliminate the problem of the maximum value predicted.

Lastly, with the choice made, if properly carried out, the output neurons
would work in the area where the log-sigmoid function is equal to 0,5 and so in
the linear segment (in good approximation).

2.2 Output layer with linear transfer function

The choice of linear transfer functions allows, on the one hand, to avoid neurons
saturation problems, on the other hand, generates values of flowrate also nega-
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tive. However, once the learning phase was finished, this problem resulted of
neglectable proportions, since the Neural Network learns to supply flowrate
values almost always positive.

The adoption of a linear transfer function for the output neuron layer solves
saturation problems and also problems related to the fact that the transfer func-
tion has the superior limit. A normalization of the outputs in the interval [0,0.4]
was carried out though not necessary, using the equation previously introduced,
with offset=0 and normal=ymax /0,4.  The same was done for the input data of
rain in the normalization interval [0,0.4] to compare the results obtained with
those of other basins and to minimize saturation phenomena of the intermediate
layer when a log-sigmoid is chosen1.

The minor stability of the linear transfer function has been solved initializing
the weights and the biases with low values, as we shall see, and adopting a very
small momentum β.

3 Description of the Neural Network

Indicated with <r> the generic neuron of the input layer, with <i> the generic
neuron of the hidden layer, consisting in p neurons (p=50 in the present case),
and with <j> the generic neuron of the output layer, the Neural Network trans-
forms an input vector er (139 elements) into an output vector yj (165 elements)
through synaptic weights (wir;wji) and biases (θi;θj), connecting the input-hidden
and the hidden-output layers, and the hidden layer represented by vectors xi ac-
cording  to eqs. Giustolisi et al. [2] Cammarata [5][6]:

P w ei ir r i
r

= ⋅ −
=

∑ θ
1

139

P w xj ji i j
i

= ⋅ −
=
∑ θ

1

50

xi=g1(Pi) yj=g2(Pj)

selected as transfer functions:

( )g P
e P1

1

1
=

+ − (log-sigmoid)

( )g P P2 = (linear)

The flowrate al jth minute of kth event calculated by the Neural Network is
given by:

ν j j K ji ir r
ri

F X W g W g W e= = ⋅ ⋅
















==
∑∑( , ) 2 1

1

139

1

50

                                               
1 The constant normalization allow us to compare the starting learning rate, the star-

ting wieghts and SSE between trials.
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Lastly, the initialization of the Neural Network has been carried out simply
using the rands2 function of MATLAB:

a = 0,01·[rands]

which allowed to randomly assign to weight and biases values in the range of [-
0,01;+0,01] to avoid saturation problems of the transfer functions examined in
the previous paragraph.

4 Input-output pairs in time domain

The 50 pairs of input-output events used by the Neural Network in set-up phase
(training phase) were presented many times in several ways to obtain the
optimization of the Neural Network answers during the prediction phase
(generalization) of 9 pairs of input-output events.

In fact, the pairs available for the Neural Network training are related (table
III) to events of inflow-outflow featured by quite variable water volumes, and
also the maximum and mean values of rainfall and flowrates, lasting from few
minutes up to 165 minutes.
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Figure 2

The rainfall flowing into the basin is not equal to the downflow flowing out
from the same basin since only gross rainfalls are experimentally available, as re-
corded by the pluviographs, which are not reduced of the volume that thanks to
the basin configuration does not contribute to the formation of a downflow in
the monitored section of the Neural Network of urban drainage, but is lost due

                                               
2 The function rands(S,R) of Neural Network Toolbox gives us the SxR matrix of the

weights W and it gives us the Sx1 matrix of the biases θ with random elements in the range

[0,1].
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to infiltration into subsurface strata, to evapo-transpiration, into little storage
capacities, or for other physical causes Maione et al.[1].

To avoid the problem of
the different durations of the
inflow-outflow events it has
been necessary to uniform the
length adopting a number of
input neurons equal to the
maximum number of minutes
of the longest rain (139 min-
utes) and a number of output
neurons  equal to the maxi-
mum number of minutes of
the longest downflow (165
minutes). This criteria has
been adopted for the normali-
zation of the lengths of input-
output sequences to maintain
this information within the
pairs of events (figure n.2).

Consequently, observing
the curves of the 59 input-
output of the events used in
the various phases of set-up
of the connectionist model of
simulation of the physical
system of the urban basin at
Luzzi as sequences discrete in
time, the appear of very vari-
able order of magnitude and
affected by long series of zero
values at the end.

In the Back Propagation
the equation which regulate
the correction of weights
during the learning are:

( ) ( ) ( )

( ) ( )

∆

∆

W
E

W
y y f P x y y e x y

W
E

x
f P e x x e e x

ji
k

ji
j j j i j j

P
i j

ir
k

i
i r i i

P r
i
r

j

i

= − ⋅ = − ⋅ − ⋅ = ⋅ − ⋅ ⋅ ⋅

= − ⋅ ⋅ ⋅ = − ⋅ − ⋅ ⋅ ⋅

−

−

η
∂
∂

η η

η
∂
∂

η

'

'

2 

(1)

N . D ate t to tal h m ean i v olum e flux
ev en t m in m m m m /h m ^ 3 co ef f.

1 2 7/11 /8 7 1 8 3 .6 1 2.0 6 7.9 0 .4 1
2 2 7/11 /8 7 4 3 3 .8 5 .3 7 1.7 0 .4 4

3 0 9/12 /8 7 1 39 7 .8 3 .4 1 47 .1 0 .4 6

4 1 4/12 /8 7 3 6 7 .2 1 2.0 1 35 .8 0 .3 1
5 2 3/01 /8 8 7 2 7 .8 6 .5 1 47 .1 0 .4 9

6 2 3/01 /8 8 1 10 5 .6 3 .1 1 05 .6 0 .7 0

7 1 4/09 /8 8 3 8 8 .6 1 3.6 1 62 .2 0 .5 2
8 1 5/09 /8 8 4 0 1 3.8 2 0.7 2 60 .3 0 .7 3

9 2 1/09 /8 8 5 3 2 .4 2 .7 4 5.3 0 .6 3
1 0 0 8/10 /8 8 1 3 3 .0 1 3.8 5 6.6 0 .4 5

1 1 0 8/10 /8 8 5 9 4 .6 4 .7 8 6.8 0 .4 8

1 2 2 0/11 /8 8 9 4 4 .8 3 .1 9 0.5 0 .6 2
1 3 2 0/11 /8 8 5 3 2 .6 2 .9 4 9.0 0 .6 0

1 4 2 1/11 /8 8 2 5 1 .8 4 .3 3 3.9 0 .5 3

1 5 2 1/11 /8 8 1 5 2 .0 8 .0 3 7.7 0 .4 9
1 6 2 1/11 /8 8 6 9 5 .2 4 .5 9 8.1 0 .5 9

1 7 2 1/11 /8 8 1 07 8 .8 4 .9 1 66 .0 0 .6 7

1 8 2 2/11 /8 8 4 2 3 .8 5 .4 7 1.7 0 .5 1
1 9 2 2/11 /8 8 1 11 5 .6 3 .0 1 05 .6 0 .5 9

2 0 2 3/11 /8 8 1 2 1 .0 5 .0 1 8.9 0 .4 5
2 1 2 3/11 /8 8 6 7 3 .8 3 .4 7 1.7 0 .8 1

2 2 2 4/11 /8 8 1 7 1 .4 4 .9 2 6.4 0 .6 8

2 3 2 5/02 /8 9 4 8 6 .6 8 .3 1 24 .5 0 .5 9
2 4 2 6/02 /8 9 1 2 1 .4 7 .0 2 6.4 0 .5 9

2 5 2 6/02 /8 9 4 4 4 .0 5 .5 7 5.4 0 .5 5

2 6 2 7/02 /8 9 4 0 2 .0 3 .0 3 7.7 0 .5 1
2 7 2 7/02 /8 9 6 2 4 .2 4 .1 7 9.2 0 .5 9

2 8 2 7/02 /8 9 6 0 3 .4 3 .4 6 4.1 0 .7 9
2 9 2 7/02 /8 9 3 2 1 .6 3 .0 3 0.2 0 .7 8

3 0 2 8/02 /8 9 6 7 4 .6 4 .1 8 6.8 0 .8 1

3 1 2 8/02 /8 9 1 27 6 .0 2 .8 1 13 .2 0 .7 6
3 2 2 8/02 /8 9 1 8 1 .0 3 .3 1 8.9 0 .8 3

3 3 2 8/02 /8 9 4 0 1 .2 1 .8 2 2.6 0 .6 6

3 4 0 2/03 /8 9 5 9 4 .8 4 .9 9 0.5 0 .6 8
3 5 0 2/03 /8 9 6 0 5 .4 5 .4 1 01 .8 0 .7 2

3 6 0 2/03 /8 9 1 2 1 .8 9 .0 3 3.9 0 .7 8
3 7 0 4/03 /8 9 4 1 .0 1 5.0 1 8.9 0 .3 9

3 8 0 4/03 /8 9 4 4 7 .4 1 0.1 1 39 .6 0 .6 7

3 9 0 4/03 /8 9 2 9 2 .6 5 .4 4 9.0 0 .7 5
4 0 1 3/04 /8 9 1 4 1 .6 6 .9 3 0.2 0 .5 5

4 1 1 3/04 /8 9 2 6 1 .2 2 .8 2 2.6 0 .5 0

4 2 1 4/04 /8 9 3 9 3 .2 4 .9 6 0.4 0 .6 3
4 3 1 4/04 /8 9 4 4 5 .2 7 .1 9 8.1 0 .7 2

4 4 1 4/04 /8 9 6 5 7 .4 6 .8 1 39 .6 0 .7 8

4 5 1 5/04 /8 9 7 1 .8 1 5.4 3 3.9 0 .7 4
4 6 0 1/05 /8 9 3 9 3 .2 4 .9 6 0.4 0 .7 5

4 7 0 2/05 /8 9 7 3 4 .0 3 .3 7 5.4 0 .7 7
4 8 0 2/05 /8 9 1 37 7 .8 3 .4 1 47 .1 0 .7 9

4 9 1 8/05 /8 9 1 4 2 .2 9 .4 4 1.5 0 .3 3

5 0 1 8/05 /8 9 5 9 2 2.6 2 3.0 4 26 .2 0 .6 6
5 1 1 2/06 /8 9 3 1 3 .6 7 .0 6 7.9 0 .4 1

5 2 1 7/06 /8 9 2 2 6 .6 1 8.0 1 24 .5 0 .5 6

5 3 2 6/03 /9 0 3 7 8 .8 1 4.3 1 66 .0 0 .5 4
5 4 2 9/03 /9 0 2 5 2 .2 5 .3 4 1.5 0 .7 4

5 5 3 0/03 /9 0 3 7 3 .2 5 .2 6 0.4 0 .8 0
5 6 0 4/04 /9 0 8 9 4 .8 3 .2 9 0.5 0 .7 1

5 7 0 9/04 /9 0 2 3 2 .2 5 .7 4 1.5 0 .5 3

5 8 1 0/04 /9 0 3 93 2 6.6 4 .1 5 01 .7 0 .7 6
5 9 1 0/04 /9 0 8 0 2 .4 1 .8 4 5.3 0 .7 7

Table III
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where r, i, j are the indexes of the input, hidden and output layers, respectively.
Eq. (1) is directly proportional to the input  ePj and the output yj; therefore, the
corrections will be the more remarkable, the higher the inflows (rain input) and
the outflows (flowrate output) will be. This is an anomalous learning which
gives a different weight to the events to recorder.

The set-up in Giustolis et al.[2] of the Neural Network with the pairs of in-
flow-outflow in time domain, made of 20+5 pairs available between model set-
up and its validation, supplied satisfactory results considering the modest num-
ber of experimental measurements compared with the theoretical need of con-
nectionist models.

Now, having a larger number of pairs of experimental events, the training
process has been repeated to point out the improvements of the connectionist
model deriving from the increased width of the learning set available and to a
greater expertise acquired on the functioning of the Neural Networks.

In the present paper, in fact, the Neural Network used, similar to the one
used in Giustolisi et al.[2], presents some innovative technical solutions adopted
in the learning phase as pointed out in the previous chapter, and as for its archi-
tecture, the linear transfer function of the output layer chosen to avoid satura-
tion probelms during the learning caused by the high number of zeros at the end.

5 Input-output pairs in frequency domain

As new solution, an alternative to the presentation in time domain of the inflow-
outflow pairs has been illustrated.

To this aim a Neural Network, similar to the previous one, has been tested
presenting experimental pairs in the frequency domain, that is, as sum of circular
functions.

Such a solution has been adapted to better the efficiency of the simulation
model through a specific pre-elaboration of the set-up data. This elaboration of
the 50 pairs of experimental events was aimed at supplying information to the
Neural Network in a better shape to its comprehension without loosing infor-
mation in this step.

The idea to present to the connctionist model pairs of rainfall-flowrate
events in the frequency domain is originated by the consideration based upon a
specific result of the theory of linear systems invariant with translation, which
should be pointed out.

It is known that a linear system invariant with translation Oppenheim et al.
[8], in this discrete case, can be characterized in time domain by the answer to
the unitarian impulse δ(n) in the following way,

h n T n

x k h n k
k

( ) = [ ( )]

y(n) =

δ

( ) ( )⋅ −
=−∞

∞

∑
(2)
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where h(n) is the answer to the unitarian impulse of the T[] system and y(n) is
the output of the system generated by the generic input x(n).

This system is, then, completely described with a sum of convolution, sec-
ond equation in (2), once the answer to δ(n) is known.

The theory of  linear systems invariant to the translation allows to describe
in the frequency domain the sequences in time x(n), y(n), h(n) by means of the
Discrete Fourier Series DFS Oppenheim et al.[8] obtaining the following equa-
tions

H e h n e

Y e y n e

X e x n e

Y e H e X e

i i n

n

i i n

n

i i n

n

i i i

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

⋅ ⋅ ⋅

=

∞

⋅ ⋅ ⋅

=

∞

⋅ ⋅ ⋅

=

∞

⋅ ⋅ ⋅

= ⋅

= ⋅

= ⋅

= ⋅

∑

∑

∑

ω ω

ω ω

ω ω

ω ω ω

0

0

0

(3)

which are valid provided that the series in (3) are convergent and then x(n),
y(n), h(n) can be summed:

x n y n h n
n n n

( ) ( ) ( )
=

∞

=

∞

=

∞

∑ ∑ ∑< ∞ < ∞ < ∞
0 0 0

        

This means that a linear system can be described in frequency domain in
terms of products of complex numbers (ei•ω) and H(ei•ω) which represent x(n)
and h(n) in terms of sum of cosines functions of pulses ω, to obtain complex
numbers Y(ei•ω).

The comparison between the relations of the linear systems in time domain
and the linear systems in frequency domain points out that in the second case
the description of the system is made easier being based on the product of
complex numbers.

This last result is obtained for linear systems invariant with translation, even
if the connectionist model is meant to simulate a physical system affected by
high non-linearities and does not answer to the property of invariance with
translation of the answer to the unitary pulse (Input Unitary Hydrogram), is es-
sential to consider that a Neural Network working into the frequency domain
could give better results than a Neural Network working into the time domain.
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5.1 Characteristics of the Neural Network in frequency domain

Based on the considerations of the previous chapter the 50 pairs of inflow-
outflow events have been pre-elaborated to obtained a description as the sum of
circular functions according to DFS before their presentation to the Neural
Network for the model set-up.

It has been confirmed the choice of giving to the shorter sequences a num-
ber of zeros to normalize the lengths of the events of inflows and outflows cal-
culated by the model at the maximum duration of the experimental data avail-
able Ninp=139 and Nout=165; the events, then, appear as finite and limited se-
quences, which can be summed in a model, according to which DFS could be
calculated as:

[ ] [ ]

[ ] [ ]

X e x n e

Y e y n e

i

j j
n

Ninp
i n

i

j j
n

Nout
i n
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⋅

=

−
− ⋅ ⋅

⋅

=

−
− ⋅ ⋅

= ⋅

= ⋅

∑

∑

ω ω

ω ω

0

1

0

1

         for j = 1,2,.....,50 inflows

          for j = 1,2,..... ,50 outflows

(4)

The calculation of (4) has been carried out using first the Discrete Fourier
Transformed DFT Oppenheim et al.[8],
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(5)

and Fast Fourier Transformer non power of two alghoritm.
[X(k)] j e [Y(k)]j calculated with (5) are formed by (Ninp -1) and (Nout -1)

complex conjugate numbers, for each of the 50 events j, related to (Ninp-1)/2=67
and (Nout-1)/2=82 circular functions to which two complex number are added
having the sole real part different from zero, related to the continuous compo-
nent given by the particular shape of (4) or (5) for ω=0 or k=0:
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∑

             per   j = 1,2,.....,50

              per   j = 1,2,.....,50

(6)

Eqs. (6) point out how the information supplied to the Neural Network
linked to inflows and outflows is contained in the first value of the complex se-
quences which represent the mean value of x(n) and y(n).
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In fact in eqs. (6), a meno terms of constant proportionality 1/Ninp and
1/Nout, the sums represents exactly the inflows and the outflows since the spe-
cific mean value is obtained not as a function of the effective duration of the
events but as function of the values of maximum duration Ninp and Nout.

From the point of view of its architecture, the Neural Network in the fre-
quency domain does not differ much from that in the time domain; in fact, the
latter is formed by Ninp and Nout input and output neurons, respectively, with the
same number of hidden neurons and the same learning rate and momentum of
the neural net previously adopted.

As for the transfer functions, two linear functions were used to avoid
whichever risk of saturation, being aware of the fact that in the frequency do-
main a completely linear Neural Network in which g1(P)=g2(P)=P can simulate
a non linear phenomenon since the input frequency is connected to all the out-
put.

A completely linear Neural Network also allows to minimize the impor-
tance of  initial Wir and Wji, to increase the learning speed and does not require
the normalization.

To the new Neural Network, on the contrary, the continuous component
and the real and the imagery parts correlated to (Ninp-1)/2=67 circular functions
of description of each of the 50 [X(ei•ω)]j were presented in the input neurons
Ninp, in ordinate sequence.

Similarly, the continuous component and the real and the imagery parts cor-
related to (Nout-1)/2=82  circular functions of description of each of the 50
[Y(ei•ω)]j were presented to the output neurons Nout, in ordinate sequence.

Such a Neural Network is capable of grasping the most important conse-
quence of (6) linked to the fact that the information on the volume exiting the
physical system, the hydrological basin at Luzzi, for the single event j of model
set-up before and after the assessment of the predicting capacity of the model in
a second time is contained in one single output value.

The Neural Network in the frequency domain, after a suitable set-up,
should be capable of recognize the outflow volume, contained in only one neu-
ron of the model, by the recording of the inflow volume, in only one input neu-
ron of the model, and of the other input neurons linked to the circular compo-
nents defining the shape of the rainfall pluviogram and also its duration.

This structure of the Neural Network is reasonable from a physical point of
view since the water volume lost by the hydrological basin can be considered
dependent both on the global water volume and on the pluviogram shape.

The non linearity of the Neural Network answer resides in the fact that
imagining an equal number of input and output neurons to have an equal inter-
val of sampling of the inflow and outflow sequences, so that the axis of the fre-
quencies of [X(ei•ω)]j and  [Y(ei•ω)]j would be of equal resolution, one would not
obtain a constant  answer Y(ei•ω) /X(ei•ω) of the model being w given.

The remarkable non linearity of the hydrological basin, on the contrary, is
easily assumed from the graphic (figure n.3) of the values of the ratios of the in-
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x(n)

flows to the outflows as in table III, and from the relative coefficient of outflow
which are not constant.

The Neural Network set up with the data of the frequency domain allows to
solve the conceptual problem deriving from the fact that the total connection
among the neurons of a Backpropagation Neural Network implies a functional
connection also among the neurons in the input and output layers, where the
former can physically correspond to minutes of rain falling after the outflows
represented by the latter.

This situation is not physically reasonable, even though it does not influence
the good functioning of the Neural Network in the time domain Giustolisi et
al.[2] since in the connectionist paradigm the possibility the weights adjust to
the situation assuming suitable values, is included.
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Figure 3

What previously said, can influence the number of neurons of the hidden
layer, and the total 0 weights of the Neural Network, since part of the functional
connections, as already said, could a priori be eliminated.

To conclude, from a schematic point of view, the Neural Network trained
in the frequency domain works as shown in figure n.4. The pre-elaboration of
x(n) data by means of DFT was followed by a output decoding by means of
IDFT to obtain y(n) that is a sequence still in the time domain. This last applica-
tion is also useful in the engineering field.

Figura n.4

y(n)Y(ei• ωω)X(ei• ωω)
FFT IFFTrete

                                                Transactions on Information and Communications Technologies vol 19, © 1997 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



6 Analysis of results

The learning process was controlled observing the curves volute and calculated
both in memorization and in generalization. This allowed to assess critically the
capacity of learning of the Neural Network and, when this does not occur, to
intervene on the main coefficients or on the architecture of the same Network.

To have a more objective criterion of evaluation, during the learning, a
suitable expression of the error has been chosen, which would be synthetic as a
number and significant as a graph. Various criteria exist to compare hydrograms
recorded and those simulated by the model, which allow to evaluate the model
performances with respect to the peak flowrate or to the hydrogram shape, that
is, with respect to the outflows or to the duration of the peak flowrate Calomino
et al.[9].

It should be remembered that the Neural Network approaches the problems
in terms of recognition of the curve shape and does not focus on the values of
the peaks.

Coherently with the engineering objectives of the model, to measure the ac-
curacy in the recognition of a generic hydrogram, the percentage error of the
inflow related to the single event defined as follows:

E = 100 ( Σ|qj-sim-qj-oss| ) / Qmedio

has been assumed, where Qmedio represents the effective mean value of the
flowrate, and so without the burden of the zeros at the end of each event. This
choice has been suggested by the need not to influence the value of the error of
the rain duration.

As predicted by the software, the learning has been guided by the minimi-
zation of the global error SSE and has been carried to a very large number of
cycles saving the Network configuration (weights matrix) to which the mini-
mum value of the error E  on the validation-set corresponded.

Table IV-a
TIME DOMAIN Events Error (%) Mean Error (%)

1 - 10 12 16 32 9 11 22 2 2 11 9
11 - 20 20 20 12 11 9 10 9 14 26 28

Training-set 21 - 30 16 11 6 13 12 26 11 14 13 16 13,15
31 - 40 26 20 14 16 8 10 18 6 14 13
41 - 50 15 6 7 4 10 8 15 10 13 1

Validation-set 1 - 9 33 17 11 12 30 17 15 22 45 / 22,44

Table IV-b
FREQUENCY DOMAIN Events Error (%) Mean Error (%)

1 - 10 10 14 26 6 10 18 3 2 12 7
11 - 20 16 21 14 14 8 9 8 14 24 23

Training-set 21 - 30 15 12 5 14 11 21 11 11 15 16 12,15
31 - 40 18 22 15 13 7 11 14 5 15 11
41 - 50 15 6 7 4 9 9 16 7 12 1

Validation-set 1 - 9 32 17 11 14 24 17 14 24 41 / 21,53
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Tables IV-a and IV-b show this value of the error for each event both dur-
ing the learning and the generalization in both domains of the Neural Network.

6.1 Time domain

Operating on a package of inflow-outflow events much larger than the one in
Giustolisi et al.[2] the Network could learn better the particularities of the
physical phenomenon and this lead to an increase of the predicting capacities of
the network. This result confirms the fact that having a training-set and a vali-
dation-set of adequate sizes, and so sufficiently large,  the performances of the
Neural Network on both sets tend to be the same.

The improvements in the generalization are more evident comparing the
sole two events of the training-set in common between the present investigation
and Giustolisi et al.[2] (figure n.5):
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Figure 5
Although the prediction of these two events resulted quite difficult in both

cases, a better prediction of the peak flowrate and of the shape of the hydro-
gram can be seen. The hydrogram presents isolated negative values which,
though not coherent with the physical reality, do not deprive to curves of their
significance.

6.2 Frequency domain

For each of the 9 events of the validation-set  and for one of the training-set,
the one characterized by the maximum error, a graph is presented comprising
two curves to compare the hydrogram given and the one calculated by the Neu-
ral Network (figure n.6).

The performances of the Neural Network in generalization are to be con-
sidered quite interesting since it showed to be capable of identifying the shape of
the curves and because of the accurate determination of the instants of the main
peaks of the hydrograms.
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As for the prediction of the peak flowrate, instead, it can be good for
events 2-3-4-5-6-8; the previous hydrograms calculated presented a trend dif-
ferent from the real one in the last segment of the flooding wave of those hy-
drograms characterized by minor duration.

As for the events 1-7-9, instead, though the prediction of the peak was as-
sessed sufficient, the hydrograms calculated by the Neural Network are not as
good as the previous ones.

During the set-up the Neural Network cannot, for the particular type of al-
gorithm of learning used, give equal importance to all events rain-flowrate used
for its set-up and focuses on the bigger ones both as outflow volumes and
maximum values of the flowrates often with respect to the water volumes. It is
difficult, in fact, to generalize the events 1-7-9 which are the three events of the
validation-set characterized by the lowest values of the maximum flowrate and
of the outflow volumes.

This last circumstance is anyhow acceptable from an engineering point of
view because the precise simulation of inflow-outflow events characterized by
the larger parameters is technically more interesting.
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Validation-set event n.4
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Figure 6

7 Conclusions

The present paper confirmed the results of Giustolisi et al.[2] pointing out an
improvement of the predicting capacity of the connectionist model, as antici-
pated at a theoretical level, thanks to the availability of a larger set of events
used for its setting up.

The connectionist model working in the frequency domain produced an in-
crease, even if not remarkable, of the capacity of the Neural Network to simu-
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late the urban basin, that is a real physical situation. This network is much
quicker in the set-up phase due to its property to simulate a non linear physical
phenomenon also assigning linear transfer functions to its hidden and output
neurons. The results obtained are encouraging considering that the connection-
ist  model used is usually aimed at the recognition of shapes, whereas in the
physical situation under investigation the input-output events are time series.

The Authors will, then, approach a second research on the achievement of
different results:

• simulation of other experimental basins by means of connectionst models to
generalize the results obtained in the present investigation also considering
that different basins could have different levels of complexity;

• acquisition of structures of the Neural Network capable of supplying better
simulation as a function of the particular physical system under investigation;

• comparison between the simulation connectionist models and those of identi-
fication of linear systems;

• employment of simulation model as support for the knowledge of the physical
characteristics of the urban basin whose data are partly implicitly contained in
the events used to set up the mathematical model.

The choice of the Neural Network architecture, in particular of the number
of neurons of its hidden layer, is not the critical point during the set-up of the
connectionist model by means of the experimental data of the urban basin. This
particular situation derives from the circumstance that small differences of the
predicting capacity of the model as function of the variation of its architecture
have been evaluated also considering the uncertainties proper to the knowledge
of a physical system through experimental input-output curves only.
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