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Abstract 

The modeling of debris flow poses serious numerical problems, particularly with 
regard to the significant distortions of the numerical grid, as it is usually applied 
in both Eulerian and Lagrangian mesh based approaches. In alternative, mesh-
less type techniques have been proposed by different authors. Among others, 
SPH (Smoothed Particle Hydrodynamics) is a purely mesh-free Lagrangian 
method well suitable for computing highly transitory free surface flows of 
complex fluids in complex geometries. However, a drawback of SPH method is 
the modelling of the interaction between the fluid and the solid boundaries, for 
which different approaches have been proposed. Accordingly, we developed a 
2D SPH research numerical model, also in order to both implement different 
kind of SPH algorithms and perform sensitivity analysis based on experimental 
test outcomes, as already discussed previously. Hence the content of this paper is 
aimed at discussing further insights, in particular, about how much the numerical 
variability of the parameters requested to apply the selected Herschel-Bulkley 
non Newtonian constitutive rheological equations, describing a viscoplastic 
material like mudflows, affect the numerical results. Moreover further 
comparisons among numerical results are given and discussed. 
Keywords: SPH, 2D numerical modeling, parametric studies, muddy debris flow. 

1 Introduction 

The SPH method is a numerical technique that was initially developed to solve 
astrophysical problems [1]. Its meshless and Lagrangian nature makes it very 
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attractive for solving fluid flow problems where free surface boundary 
conditions and large strain rates are involved. Thus, this approach is particular 
attractive regarding the simulation, in particular, of fast muddy debris flow. On 
the other hand, some drawbacks should be properly addressed, in particular, in 
the application of this method to simulate the interaction of the flow with solid 
boundaries. So, in order to provide a flexible tool, suited for easy implementation 
and testing of different numerical SPH approaches proposed in literature, we 
developed a research code, written in 2005 Fortran language [2–4]. Then we 
performed many numerical parametric analyses compared with a selected 
laboratory experimental test [5], some of which were discussed in [4]. Some 
issues emerged, among which the influence of the numerical values uncertainty 
of the parameters of the rheological Herschel-Bulkley law on the calculated flow 
velocity. Therefore, in the following sections, after a brief summary of the 
selected mathematical and numerical approaches, insights coming from further 
numerical experiments are discussed. 

2 Mathematical modeling 

In order to study the flow of an incompressible non-Newtonian fluid we resort to 
the basic ‘First Principles’ governing the motion of a continuum, namely the 
mass and the momentum balance (Navier Stokes equations) in Lagrangian form 
as: 
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where v  is the local velocity of the continuum ρ is the local density of the 

continuum; f is the body force per unit of mass exerted on the continuum; σ  is 

the local total stress tensor. The stress tensor decomposition is indicated as 
follows in the paper: τIσ  p , where: p  is the isotropic pressure; I  is the 

unit tensor; τ  is the deviatory part of the total stress tensor. Regarding the 

constitutive law selected to simulate the behaviour of a mudflow, assumed as 
incompressible, we used the Herschel-Bulkley law, modified by Papanastasiou 
[6] in order to regularize the viscosity that, otherwise, would diverge to infinity 
for strain rate approaching to zero: 
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where p  is the local regularized dynamic viscosity of the fluid; τc is the yield 

stress; K is called the liquid consistency; n is called the power law index; ε  is 

the strain rate tensor. The physical meaning of the yield stress is immediate, 
representing the stress threshold below which the fluid starts to behave like a 
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rigid body. The parameter B  (equal to 10 [s] for all simulations discussed in this 
paper) is related to the maximum viscosity returned by the regularization when 
the strain rate is zero. In this case the maximum viscosity value is given by 

cmax B   .

2.1 Overview of the SPH method 

The SPH key idea on which the method is based is the well-known use of a 
convolution integral with a Dirac delta function to reproduce a generic function 
f(x), replaced by a ‘bell-shaped’ kernel function W [4]. The kernel function is 
chosen to be non negative, even and with a support domain (usually circular) 
whose radius is a multiple of a length h, named smoothing length. The kernel 
function is zero outside the support domain and the smoothing length serves as a 
scaling parameter for its arguments. It also has the property of converging to the 
Dirac function as the smoothing length approaches to zero. The kernel that has 
been used for the simulations in the present work is the C4 (quartic) Wendland 
kernel [7].  

2.2 SPH discretization technique 

The SPH discretization of the mass conservation equation, used in the paper is 
based essentially on the following equation: 
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where mj represents the particle mass; vij = vi - vj represents the difference 
between the interacting particles velocity. A widely used SPH discretization of 
the momentum equation, in the case of Newtonian and non Newtonian viscous 
fluids, is as follows: 
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where rij = ri - rj represents the difference between the interacting particle 
position; Such an expression has been proposed by Cleary [8] and Monaghan [1] 
and accounts for the presence of spatial gradients in viscosity too. A possible 
alternative to eq. (4) is the following SPH approximation for its divergence (for 
more details, see [4]): 
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     Another possible formulation for the viscous term was proposed by Morris 
 [9] for the simulation of incompressible viscous flows at low Reynolds 

numbers. The equation exactly represents the viscous term of the momentum 
equation up to the 2nd order. In this paper, a small modification of the viscous 
term was introduced, yielding the following expression:  
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Thus the consequent numerical results were compared and discussed. 
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     The simulation of an incompressible flow requires the solution of a Poisson 
equation for the pressure, which often leads to an increase of the computational 
time. Therefore, it is more practical to approximate the incompressible medium 
with a weakly compressible one, thus allowing the calculation of the pressure 
from the density with a stiff equation of state which introduces an artificial 
compressibility in the fluid. The artificial equation of state used in this paper is 
based on a selected sound speed, not real but just for numerical purpose:  

  )(M/Hg)(cp iii 0

2

0
2   (7)

where ip  is the pressure associated to the i-th particle; c is the artificial speed of 

sound (the same for all particles); g is the gravity acceleration; H is the 
maximum initial dam height; M is the selected value (in input) of Mach number; 
ρi is the particle density; ρ0 is the reference density of the fluid at zero pressure.  
     Another important numerical issue is encountered in the computation of 
shocks waves, especially when low dissipation occurs. Numerical methods, 
including SPH, develop unphysical oscillations around the fronts of shocks, like 
a front of a fast flow, unless some special treatment is adopted [4]. A common 
approach of numerical methods is the one of dissipating the kinetic energy of the 
shocked region into heat by adding an artificial viscosity term ij  to momentum 

equation, as proposed by Monaghan and Gingold [10]: 
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where   and   are non dimensional coefficients, while the over line sign 

represent arithmetic average between quantities (more details in [4]). 
     The equations discussed so far are usually referred to as a ‘standard’ SPH 
scheme. The momentum equation formulation of the standard scheme is not very 
diffusive and works well in computing particle positions. Moreover, Ferrari et al. 
[11] suggest a correction to the continuity equation that both creates a density 
monotone scheme and leaves substantially unaffected the low diffusivity of the 
original SPH formulation, by adding a flux term devised from the Rusanov flux 
[12]: 
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     The SPH approach requires particular care regarding boundary conditions. In 
this paper, the Ghost Particles (also Image or Wall particles) approach proposed 
by Morris et al. [9] was selected. In the same article, in order to set no-slip 
conditions, the following extrapolated ‘virtual’ boundary particles velocities 
were given: 

freebound vv   ;  fwmax d/d,min  1   (10) 

where 51.max   and wd , fd  are, respectively, the normal distance of the 

involved wall particle and the selected free particle from the boundary. Time 
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integration has been performed by means of a symplectic Verlet scheme, as in 
[13]. The time step Δt is controlled by a CFL (Courant-Friedrichs, Lewy) 
condition depending on the artificial speed of sound, the viscous interactions 
between particles and on the interactions with boundary particles (for detailed 
discussion see [4]).  

3 Experimental test; consideration about data comparison  

The ability of the selected SPH approaches to correctly reproduce a fast mudflow 
has been tested by simulating the experiments performed by Laigle and Coussot 
[5] (L&C). The experimental setup they used is briefly sketched in the fig. 1. 
After the opening of the gate, the material stored behind it was released (like a 
dam break) and the three ultrasonic gauges, sketched in the picture, recorded the 
mudflow front heights in time. L&C used water-clay mixtures prepared in 
laboratory with different concentrations in order to recreate mudflows. Herschel-
Bulkley rheological parameters for the used mixtures were fitted to measures, 
carried out with a rheometer. Table 1 shows the obtained main parameter values. 
In particular, along with the experimental conditions of Table 1, represent a 
realistic natural material (with ρ0 = 2200 Kg/m3, τc = 900 Pa, K= 290 Pa·s1/3) in a 
120 m long slope, as detailed in [4]. 
     Data on arrival times for the selected test are affected by experimental errors, 
ranging from ±5 to ±15% and up to ±20% [5]. As a consequence, experimental 
uncertainties could be large enough to hide possible inaccuracies of the selected 
numerical models, as indeed is discussed in the cited article. Nevertheless, we 
tried [4] to devise probabilistic considerations in order to perform comparison 
between numerical results and available data which are affected by experimental 
errors. Thus, the ‘Performance Index’ k,NI , based on Gaussian distribution 

function, was introduced by Pasculli et al. [4]. The real experimental value of 
debris front arrival time at the k-th gauge was assumed to be a random variable, 
affected by only random errors (assumed to be %25 ), belonging to a Gaussian 
probability density function with a mean k  equal to the value assessed from 

experiments and with the statistical dispersion kk .   0760  (for more details 

see [4]). Such index aims at normalization with respect to the maximum pdf 
possible value and is introduced for each gauge arrival time and for each 
simulation. 
 

Table 1:  Rheological characteristics and experimental parameters (from [5]). 

density (ρ0) 1410 (kg/m3) 
yield stress (τc) 19 (Pa) 
power law index (n) 1/3 
liquid consistency (K) 3.5 (Pa·sn) 
Flume slope 21 (%) 
Initial height of material 
(measured at the gate) 

14 (cm) 
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Figure 1: 3D sketch of the selected experimental device (free adapted from [5]). 

 The following is the proposed expression: 
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where k,numX  was the value of the mudflow front arrival time (also assimilated 

to a random variable) at the k-th gauge, provided by each numerical SPH 
simulation. 

4 Numerical simulations 

The artificial Mach number was set to a value ranging from 0.03 up to 0.2. 
Another important parameter was the initial particles spacing dp (mm), which 

played the same role of the grid spacing in finite differences schemes. Since the 
physics of the flow was dominated by viscosity, the choice of the SPH 
discretization for the momentum equation played an important role. An 
important distinctive feature of a SPH model is related to how the selected 
approach simulates the viscosity interaction among particles. For this reason the 
performances of three different approaches, that can in principle correctly 
simulate a viscous non-Newtonian Herschel-Bulkley fluid, were explored. Some 
main features of the proposed models are briefly summarized below. 
 

 Model-0: detailed in [3]; .dp 3 mm; eqn. (5) as momentum equation; Mach 

number = 0.2; Monaghan boundary force [14]; no artificial viscosity eqn. (8). 
     Model-1: momentum equation, eqn. (5); artificial viscosity terms, eqn. (8); 
Morris wall particles were selected. 
     Model-2, Monaghan and Cleary approach: some simulations with Rusanov 
eqn (9); eqn. (4) for linear momentum; Morris wall particles. 
     Model-3, Morris approach: Rusanov eqn (9); eqn. (6) for linear momentum; 
Morris wall particles. 
 

     In relation to these properties a series of simulations were carried out (for 
more details see [4]). Table 2 summarizes the main features of the simulations. 

ultrasonic gauges 
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Table 2:  Main simulations and numerical results features (free adapted 
from [4]). 

4.1 Results summary 

Fig. 2 shows the direct comparison between numerical arrival times and 
experimental data, estimated within the range indicated by constant vertical bars 
and variable error bars. A brief discussion relating to each implemented models 
follows. 
     Model-0: this kind of SPH simulation is affected by some numerical 
diffusion, as the calculated front’s velocity is lower than the experimental data. 
Moreover, from the numerical arrival time at the third gauge, displayed in fig. 2, 
it is clear that the numerical front experiences unphysical accelerations on the 
last part of the transitory.  
     Model-1: differs from Model 0 for the use of artificial viscosity, eqn. (14) and 
for the use of Morris wall particles instead of Monaghan boundary particles. 
Simulation 1 differs from Simulation 2 (both using SPH Model 1) for the value 
of parameter   in eqn. (14) (Table 2). The outcomes of both Simulation 1 and 
Simulation 2, displayed in fig. 2, show a too diffusive behaviour of the flow. The 
conclusion is that the Model 1 is not suitable for the case under study. 
     Model-2: good performances have been observed applying this model. 
Nevertheless, numerical viscosity related to the spatial resolution (spacing of 

Simul. n. Artificial 
viscosity 

Density Momentum 
equation 

dp 
(mm) 

Mach 

0 = = eqn. 5 3.. 0.2
1 model-1 α=0.1; β=0. 

eqn. 8 
= eqn. 5 2.9 0.2 

2 model-1 α=0.05; 
β=0. 
eqn. 8 

= eqn. 5 2.9 0.2 

3 model-2 = = eqn. 4 2.9 0.2 

4 model-2 = = eqn. 4 2.0 0.2 

5 model-2 = Rusanov 
eqn. 9 

eqn. 4 2.9 0.2 

6 model-2 = Rusanov 
eqn. 9 

eqn. 4 2.9 0.06 

7 model-2 = Rusanov 
eqn. 9 

eqn. 4 2.9 0.03 

8 model-2 = Rusanov 
eqn. 9 

eqn. 4 2.0 0.03 

9 model-3 = Rusanov 
eqn. 9 

Morris 
eqn. 6; Vb=0. 

2.9 0.2 

10 model-3 = Rusanov  
eqn. 9 

Morris 
eqn. 6; 
Vb= - θVfree

2.9 0.2 
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particles) and a bulk viscosity, due to the analytical structure of the model, are 
introduced by the numerical approach. If a constant dispersion is assumed, only 
Simulation 8 is roughly within the experimental error. 
     Model-3: this model, in the light of the theoretical analysis of its features [4], 
introduces a lower bulk viscosity than Model-2, but, strictly, it is only applicable 
when the motion is irrotational in the case of a non Newtonian fluid (proof 
provided in a next paper). Simulations 9 and 10 appear to be more satisfactory 
than the simulations belonging to Model-2. 
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Figure 2: Comparison between numerical arrival times and experimental data 
(after Pasculli et al. [4]). 

     Model-3 is less numerically diffusive than Model-2. Simulation 9 differs from 
Simulation 10 for a different way to calculate the Morris wall particles velocity. 
In the former case, a null velocity was assigned, while in the latter case an 
opposite velocity to the one of free particles was assumed freebound vv   . It 

is worth noting, comparing Simulations 8, 9 and 10, that the increase in the 
number of particles, not necessarily provides an improvement of performances. 

4.2 Uncertainty of Herschel-Bulkley rheological: sensitive analysis 

Besides the uncertainty on arrival times, significant experimental errors also 
affect the values of the Herschel-Bulkley rheological parameters characterizing 

the selected fluid. Typically, uncertainties on the measurements of c  and K 
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with clay dispersions are rarely less than 20%. Accordingly, in this paper we 
carried out further analysis to acquire more insights about how much the 
numerical variability of the parameters requested to apply the selected non 
Newtonian constitutive rheological equations, describing a viscoplastic material 
like mudflows, may affect the numerical results of the velocity evolution over 
time. Hence, we performed different parametric calculations, based on Simul. 10. 
     The c  and K values, related to Herschel-Bulkley rheological law, have been 

changed from their nominal values, respectively 19 and 3.5. Thus for each of the 
following three values of the consistency parameter: 452533053 ....K  , 

53.K   and 554533053 ....K  , three values of the yield stress have been 
adopted: 313193019 ..c  , 19c  and finally 724193019 ..c  . 

Fig. 3 shows the numerical results related to three sensitivity analyses varying 

c  around a fixed K  value, while fig. 4 shows the graph of the index k,NI , 

calculated for all the performed analyses, while in fig. 5 outcomes of some 
parameters values combinations are reported. It worth noticing that the index 

k,NI  is indicative of how high is the probability that the numerical result is close 

to the real value of the arrival time measured from experiments. The rationale of 
fig. 4 is related to statistical considerations, while figs. 2, 3 are more connected 
to physical features of the phenomena, as, for example, the acceleration of debris 
front. The figures show non vanishing effects of this kind of uncertainty which, 
hence, should be considered within the framework of the simulations of this kind 
of phenomena. 
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Figure 3: Herschel-Bulkley’s parametric analyses: arrival times. 
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Figure 4: All Herschel-Bulkley’s parametric analyses compared to the 
experimental data through the performance index k,NI . 

Arrival time (s)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

I N
,k

 (
%

)

50

60

70

80

90

100

K=2.45   c19.0 

               c24.7 

K=3.50   c19.0 

K=4.55   c13.3 

               c19.0 

C=[Pa]  [K]=[Pa][s]1/3

 

Figure 5: Selected Herschel-Bulkley’s parametric analyses compared to the 
experimental data through the performance index k,NI . 
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4.3 Indication of the influence of initial spacing on calculated pressure 

Fig. 6.a shows the numerical pressure distribution after 0.198 s, obtained by 
Model 2, Simulation 8 (table 2) [4], while fig. 6.b shows the numerical pressure 
distribution after 0.198 s, based on Model 3 and Simulation 10, table 2, renamed 
Simulation 11, with the initial spacing dp lowered from 2.9 mm to 2 mm. By 
inspection of the figures (within which some iso-pressure lines are sketched), it 
should be recognize that some boundary effects are present, causing small 
oscillations in pressure values close to the bottom of the flume. Moreover 
different pressure distributions emerge, highlighting a sensitiveness about 
modelling, which will require further investigations. 

5 Conclusion 

In this paper, some parametric analyses were discussed in order to explore how 
the calculated arrival time at each gauges of the selected experimental test 
depends on the numerical values uncertainty of the parameters characterizing the 
Herschel-Bulkely’s rheological law. Besides the correct selection of the most 
suitable SPH approach regarding in particular boundary conditions, a proper 
choice of the numerical rheological parameters should be pursued. Moreover, 
through a proposed index, it appears that the performance of the discussed 
simulations is poor at the starting of the transitory. Also, a demand of a better 
care on calculation of internal flow pressure distribution or, at least, more 
investigations about this issue should be advisable. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Pressure profiles of particles according to their pressure [Pa]. 
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