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Abstract 

A gravity current originated by a power-law viscous fluid propagating in 
axisymmetric geometry on a horizontal rigid plane below a fluid of lesser density 
is examined. The intruding fluid is considered to have a pure power-law 
constitutive equation. The set of equations governing the flow is presented, under 
the assumption of buoyancy-viscous balance and negligible inertial forces. The 
conditions under which the above assumptions are valid are examined and a self-
similar solution in terms of a nonlinear ordinary differential equation is derived 
for the release of a fixed volume of fluid. The space-time development of the 
gravity current is discussed for different flow behavior indexes.  
Keywords: non-Newtonian fluid, density current, gravity current, viscous flow, 
self-similar solution. 

1 Introduction 

Gravity currents, also termed density or buoyancy currents, are usually defined 
as flow of one fluid into another, driven by a density difference. These currents 
are mainly horizontal and are a common feature in many natural and artificial 
phenomena. Spreading of a gravity current along a rigid horizontal surface is 
governed by an interplay between buoyancy, inertial, and viscous forces. In the 
process, a gravity current passes through several distinct flow regimes which are 
characterized by the relative balance of forces. Immediately after its release, a 
gravity current usually experiences an adjustment phase that is strongly 
influenced by the release conditions. Subsequently, the balance between the 
buoyancy and inertial forces governs flow (this phase being thus termed the 
inertial regime) and holds until the current becomes so thin that viscous effects 

Advances in Fluid Mechanics VI  399

doi:10.2495/AFM06040

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



become comparable with the inertia of the current, if this ever happens. In this 
later stage (the viscous regime), flow is governed by the buoyancy and viscous 
forces. Typical currents which eventually evolve into the viscous regime include 
mudflows, lava flows, and those originating by discharge of effluents into rivers 
or lakes. 
     A large body of literature exists on gravity currents in different geophysical 
[1], environmental and industrial applications: for a review see Simpson [2, 3]. 
Horizontal gravity currents were studied by Hoult [4], Huppert and Simpson [5] 
and Didden and Maxworthy [6] among others. Huppert [7] derived, under a 
lubrication approximation, a spreading relationship (rate of advance of the front) 
for plane and axisymmetric gravity currents in the buoyancy-inertia and 
buoyancy-viscous regimes. His theoretical findings are in a good agreement with 
the experimental work by Huppert and Simpson [5], Didden and Maxworthy [6] 
and Maxworthy [8] for the release of a constant volume or constant inflow rate. 
Rottman and Simpson [9] extended these experimental results to the slumping 
phase of an inertial gravity current. There also exists a number of stability 
analyses of analytical solutions for inertial gravity currents [10, 11, 12] and for 
viscous gravity currents [13]. Thomas et al. [14] and Marino and Thomas [15] 
included a porous substrate in their analysis of the inertial gravity currents. 
Ross et al. [16] incorporated in their analysis the effect of a sloping lower 
boundary. 
     Despite significant progress in understanding gravity currents of Newtonian 
fluids, there is a relatively poor number of studies of this phenomenon for non-
Newtonian fluids. However, many fluids of geophysical or industrial interest 
exhibit a non-Newtonian rheology, with or without a yield stress. The simplest 
non-Newtonian rheological model is the Ostwald power-law model [17], which 
may be successful in describing the behavior of colloids, suspensions, fresh 
magma, and polymeric liquids. The power-law rheological model can also be 
seen as the asymptotic behavior of the Herschel-Bulkley model (in the limit as 
the yield stress tends to zero), which is widely adopted to describe flow of fine 
sediment-water mixtures [18, 19, 20]. Adopting a pure power-law model may 
facilitate the derivation of exact similarity solutions, such as that of Wilson and 
Burgess [21] for two-dimensional steady-state flow down a sloping plane. In the 
present paper, we derive the similarity solution for radial flow of a constant 
volume of a non-Newtonian power-law fluid with arbitrary flow behavior index. 
We do so in a way that generalizes earlier results of Huppert [7] obtained for a 
Newtonian fluid. Analogous results for the release of a fixed volume of fluid in 
plane geometry were obtained in [22] and later generalized for time dependent 
influx volume in [23].  

2 Flow modeling 
Consider a horizontal, radial gravity current of an incompressible non-
Newtonian fluid of density ρ at the bottom of an ambient fluid of depth H and 
density ρ-∆ρ. (For the coordinate system see Fig. 1). In the shallow water 
approximation, the pressure distribution is hydrostatic, so that pressure satisfies 
(see [7]). 
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where h is the non-Newtonian fluid depth and p0 is the constant pressure at z = 
H. Neglecting inertial forces, while accounting for buoyancy, gravitational, and 
viscous forces, results in the following momentum balance in cylindrical 
coordinates 
 

0=+
zr

p zr

∂
∂τ

∂
∂     (2) 

 

where r, z are the radial and axial and coordinates, respectively; p is pressure and 
τzr is shear stress. The validity of the simplified buoyancy-viscous balance (2) is 
explored in the Appendix, where the ratio between inertial and viscous forces is 
shown to be a decreasing function of time; thus, inertial forces are negligible for 
t >> t1, where t1 is a threshold time value that renders equal inertial and viscous 
forces; its expression is derived explicitly in the Appendix. 
     An intruding fluid is considered to obey a pure power-law constitutive 
equation (see [17]). 
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where u is radial velocity, m consistency index, n flow behavior index (a positive 
real number). When n < 1, the model describes pseudoplastic (shear-thinning) 
behavior, whereas n > 1 represents dilatant (shear-thickening) behavior. When n 
equals unity, (3) reduces to the constitutive equation for a Newtonian fluid and m 
becomes Newtonian viscosity µ. 
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Figure 1: Sketch of flow domain. 

Substituting (1) and (3) in (2) gives 
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where ρρ∆=′ gg  is reduced gravity. Eq. (4) is subject to the boundary 
conditions 
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The second condition in (5) implies that shear stress at the interface between the 
two fluids is much smaller than within the current. Validity of this assumption in 
the regime of a buoyancy-viscous balance can be demonstrated by following the 
argument of Huppert ([7], see his Appendix B). Integration of (4) with (5) yields 
the following expression for the velocity u 
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For one-dimensional transient flow, the mass conservation takes the form 
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Substituting (6) into (7) yields  
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Equation (8) defines the problem together with the global continuity equation 
requesting a fixed volume Q to be released 
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where rN(t) is the radial coordinate of the head of the current. 

3 Solution to the problem and discussion 

Choosing 3/1Qh =  as a typical length-scale, dimensionless (primed) variables 
are defined as [22, 23]: 
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This recasts (8)-(9) in the dimensionless form (primes are dropped for 
convenience) 
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By introducing the similarity variable  
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and denoting the value of ξ for r = rN(t) by ξN, the similarity solution of (11)-
(12) takes the form 
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Substituting (13)-(14) in (11)-(12) yields respectively 
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The solution to (15) is 
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Substituting (18) into (16) gives 
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Finally, the (dimensionless) length of the gravity current is 
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For n = 1, governing equations and results reduce to those valid for a Newtonian 
fluid (see [1], [7]). 

4 Discussion and results 

Fig. 2 shows the shape of the function Ψ(z) for n = 0.50, 0.75, 1.00, 1.25, 1.50. 
The corresponding dynamics of the dimensionless current length is presented in 
Fig. 3. For t < 1, the head of the current advances farther as n decreases; the 
reverse is true for larger times.  
     Figs. 4, 5, and 6 illustrate how the gravity current develops in space and time, 
respectively for n = 0.50 (pseudoplastic fluid), n = 1.00 (Newtonian fluid), n = 
1.50 (dilatant fluid). In all cases, the rate of advance decreases (currents slow 
down) as time increases, as implied by (20). The prescribed fluid volume 
released slumps down more rapidly for dilatant gravity currents than for 
pseudoplastic ones: as a result, profiles of the former are more elongated than 
profiles of the latter. 
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Figure 2: Shape of the current Ψ(z) for various n. 
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Figure 3: Dimensionless current length as a function of time for various n. 
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Figure 4: Profile of the current at different times for n = 0.50. 
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Figure 5: Profile of the current at different times for n = 1.00. 
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Figure 6: Profile of the current at different times for n = 1.50. 

5 Summary and conclusions 

Our work leads to the following major conclusions: when studying horizontal 
gravity currents, at large times inertial forces are negligible as compared to 
buoyancy and viscous forces. Under the above assumption, we derive a set of 
equations which describe gravity currents of an incompressible power-law non-
Newtonian fluid at the bottom of an ambient fluid of lower density propagating 
on a horizontal plane. The intruding fluid is considered to have a pure power-law 
constitutive equation. A self-similar solution is then derived for the release of a 
fixed volume of fluid, allowing one to study the development of the gravity 
current as a function of time and flow behavior index. 

Appendix range of validity of viscous regime 

The purpose of this Appendix is to determine the transition time t1 when inertial 
and viscous forces are comparable. The order of magnitude of the fluid volume 
is ≈ h0R2, where h0 = Q/R2 is a representative thickness of the current and R its 
radius. Buoyancy, Fg, inertial, Fi, and viscous, Fv, forces are given by 
 

322
0 ' −=′≈ RQgRhgFg ρρ     (A1) 

2
0

2 −=≈ QRtRhUFi ρρ     (A2) 

nnnn
v tRmQRhUmF −+−== 322

0 )/(    (A3) 

where U = R/t is a representative velocity of the current. For a current 
propagating in the inertial-buoyancy regime, equating (A1) and (A2) yields 
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as obtained by Huppert ([7], see Eq. (A5b)). Equating (A2) and (A3) under a 
viscous-buoyancy regime, and deriving R from the dimensional form of (20), 
yields 

53
5253

1

134

34
+
+

−+

+

+









′

= n
nn

n

n

v

i t
gm
Q

F
F ρ    (A5) 

Thus the (dimensional) transition time at which inertial and viscous forces are 
comparable is 
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Finally, it is worth noting that for n = 1 all expressions in this Appendix reduce 
to the corresponding ones derived for a Newtonian fluid by Huppert ([7], see 
Appendix A). 
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