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Abstract

Biological organisms must be structurally efficient. Hence it is not surprising that nature has 
embraced the compliant membrane structure as a central element in higher biological forms. 
This chapter discusses the unique challenges of modeling the mechanical behavior of 
compliant membrane structures. In particular, we focus on several special characteristics, such 
as large deformation, lack of bending rigidity, material nonlinearity, and computational 
schemes.  

1 Introduction 

1.1 Motivation 

Biological organisms must be structurally efficient. They have benefited from millions of years 
of evolution to achieve, for example, high load carrying capacity per unit weight. It is not 
surprising then to find that compliant membrane structures play a significant role in nature, for 
membranes are among the most efficient of structural elements. Long ago, engineers adopted 
membrane structures for solutions where structural efficiency was critical. As an example, 
consider the working balloon. For a given balloon volume, the total lift available is fixed, 
implying a zero-sum trade between structure and payload. Modern high-altitude scientific 
balloons (Fig. 1), made of thin polymer film fractions of a millimeter thick with areal densities 
of a few grams per square meter, support payloads of a few tons! 
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Figure 1: Preparing to launch a high-altitude scientific balloon in Antarctica (courtesy NASA). 

     The subject of the mechanics of membranes is quite broad and challenging, being a special 
application of nonlinear continuum mechanics, and entire books are written on the topic. This 
chapter seeks to provide a very concise summary of the important features of membrane 
mechanics. We hope to give the reader some background and exposure to the subject, a 
“flavor” if you will, with references provided for those who desire to pursue deeper study. The 
first part of the chapter is a general foundation used in many applications besides membrane 
mechanics, while the latter part is more specific to membrane applications 

1.2 Brief historical review 

The first membrane structures were biological organisms, which may well represent the widest 
usage of this structural type even today. Examples range from cell walls (Fig. 2) and bat wings, to 
the bullfrog's inflatable throat. Historical use of membranes in engineering structures may be 
traced to the sail (Figure 3) and the tent. Kites, parachutes, balloons, and other flying structures 
followed. Musical instruments, notably drums, were comprised of membranes formed from 
stretched animal skin or parchment. In modern times, membranes have seen increasing use in civil 
structures such as temporary storage facilities and large-span roofs. Recently, there has been 
considerable interest in large membrane/inflatable structures for space applications. 
     The earliest formal analysis of membranes was begun by acousticians during the Renaissance 
period. This dynamic analysis was limited of course to simple geometries and linear problems. The 
first nonlinear analysis occurred during the early part of the 1900s, as a membrane solution to the 
so-called von Karman plate equations. Only since the advent of modern computers has the solution 
to problems with strongly nonlinear membranes of arbitrary geometry been accomplished. [For a 
complete review, see references 1–3.] 
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Figure 2: The paramecium wall is typical of cell walls formed from compliant membranes. 

Figure 3: The sail may be one of the first human engineered compliant structures. 

1.3 Definition and unique behavior of compliant membrane structures 

To the structural engineer, membrane may mean an idealized model of a plate or shell structure, 
wherein the in-plane response dominates away from domain and load boundaries; hence, the stress 
couples may be neglected in this interior region. To the applied mechanician, membrane may 
mean a surface (thin film) with zero bending rigidity, resulting in nonexistent compressive 
solutions. In the present work, the term “membrane model” will be used in the sense of the 
structural engineer and the term “membrane” will be reserved for zero bending rigidity structures; 
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the term elastic “sheets” will be adopted for those structures with small but non-negligible bending 
rigidity.  
     In the case of membranes or sheets, their lack of bending rigidity, due to extreme thinness 
and/or low elastic modulus, leads to an essentially under-constrained structure that has equilibrium 
configurations only for certain loading fields. Under other loading conditions, large rigid-body 
deformations can take place. In addition, these same characteristics lead to an inability to sustain 
compressive stress. Time-dependent and nonlinear behaviors are also common features of typical 
membrane materials. The formalism for describing such behaviors is that of nonlinear continuum 
mechanics, in which the mathematical language of tensors is central.

2  Tensor analysis

The mathematical analysis of nonlinear continuum mechanics is usually presented using 
tensors. This is primarily due to the invariance of such a formulation, in that it is then general 
for any coordinate system. A secondary benefit is the conciseness of the resulting mathematics. 
For a more complete discussion of tensor analysis than can be provided here, see for example 
references [4, 5]. 
     A tensor is a mathematical operator, specifically a linear transformation. Physical 
quantities that require a number of descriptors for their specification may be represented by 
tensors of the required order. For example, a quantity like temperature requires only one 
descriptor (magnitude) and is representable as a zero-order tensor (or scalar). Force requires 
more descriptors (magnitude and direction) and is representable by a first-order tensor (or 
vector). Stress and strain (9 descriptors) can be represented by second-order tensors. In 
“operator language,” we might say that the second-order “rotation” tensor Q operates on the 
position vector r to form a new (first order) tensor r*, i.e., r* = Qr.
     Two types of notations are used to denote tensors: (i) direct notation – similar to matrix or 
vector notation, e.g., x or {x}; and (ii) indicial notation – subscripts or superscripts attached to 
main letters called “kernel letters,” e.g., xi or xi, i = 1, 2, 3. The number and range of the indices 
depends on the number of descriptors of the quantity. There is a physical meaning associated 
with the subscript or superscript notation. Subscripts and superscripts denote “covariant” and 
“contravariant” components, respectively; the physical meaning is given below. 
     Two other concepts are important for the understanding of tensor analysis. The first is the 
summation convention. We replace the summation operator  with a simple rule: in any given 
term, whenever an index is repeated once it is a dummy variable indicating summation over the 
range of the index. For example: 

3

1

3
3

2
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1
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i

i
i

i
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Formally, summation always occurs “along the diagonal” among sub and super indices. 
     The second concept is that of expansion in terms of a basis. Recall that a vector r in the 
rectangular Cartesian x-y-z coordinate system can be represented as a linear combination of
basis vectors, say the unit vectors ei associated with each coordinate direction. Then we may 
write

r = r1e1 + r2e2 + r3e3 = riei           (2) 

     We can expand higher-order tensors in the same fashion, once a suitable basis is identified. 
The set of so-called unit dyads {eiej}, derived from the outer product of ei with itself (see 
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below), forms a basis for expansion of second-order tensors, e.g., S = Sijeiej . Thus quantities 
like ri or Sij are seen to be components of the tensor relative to a specific basis (or coordinate 
system). 
     A sample of important tensor operations is given below: 

Kronecker delta: ij = 1, i  j; 0, i = j

Inner product of two vectors: u v = uiei vjej = ukvk

Outer product of two vectors: u v = uv = uivjeiej

uv(w) = u(v w)

Outer product of two 2nd-order tensors: ST = SijTkleiejekel

Single inner product of two 2nd-order tensors: S T = SijTjkeiek

Double inner products of two 2nd-order tensors: S:T = SijTij, S T = SijTji

     The following conventions are used: Latin indices take the values 1,2,3; Greek indices take the 
values 1,2; capital and lower case Latin letters refer to the undeformed and deformed state, 
respectively; and bold type indicates vector or tensor quantities.

3  Coordinate systems and configurations 

Geometric nonlinearity requires formulating the equilibrium equations in the deformed 
configuration of the body, which may be substantially different from the undeformed
configuration (and which is not known in advance). We also, however, consider an elastic body 
to have a natural, unstressed, reference state, and we expect the elasticity to be derivable from 
a thermodynamic potential written in this reference state. Hence, we have a need for coordinate 
systems in the reference configuration and in the current configuration. Also, for analysis of 
membranes (as in shells), it will prove convenient to have coordinate systems aligned with the 
membrane mid-surface.
     Consider the rectangular Cartesian (RC) coordinates X-Y-Z of a point X on the reference 
membrane midsurface that becomes point x on the current midsurface with RC coordinates x-y-z 
(Fig. 4). (Note that rectangular refers to orthogonal coordinates, while Cartesian refers to straight
coordinate lines.) We also define curvilinear midsurface coordinates XI and xi in the reference and 
current configurations, respectively. These coordinate lines will be in general neither straight nor 
orthogonal, but they remain tangential and normal to the midsurface at every point. It is obvious, 
then, that a single coordinate system will not suffice for midsurface coordinates. Also, the 
reference and current configurations are typically taken as the undeformed and deformed states, 
respectively. 
     Vectors (basis vectors) are chosen that characterize the coordinates (see Fig. 4). In the RC 
coordinates, the vectors EI and ei are orthogonal and of unit magnitude (orthonormal). In the 
curvilinear coordinate system, covariant basis vectors GI and gi lie tangent to the respective 
coordinate curves XI and xi. In general, they are neither orthogonal nor of unit magnitude. 
(Reciprocal bases, consisting of the contravariant vectors GI and gi can also be defined, such that 
GIGJ = I

J and gi gj = i
j, but these bases will not be discussed further here.) 

     A metric tensor g in the deformed state is defined by metric coefficients gkl = gk gl, where gi =
r/ xi is the basis vector in xi and r is the position vector from o to x; similarly, in the undeformed 

state, GKL = GK GL, where GI = R/ XI is the basis vector in XI and R is the position vector from 0 
to X. The significance of the metric tensor is that it contains all the information about how length
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(specifically squares of length) is measured in different coordinate systems (hence the name 
metric). As a simple example, consider that the (square of the) length of the infinitesimal element 
dl in rectangular Cartesian coordinates (x, y, z) is  

(dl)2 = (dx)2 + (dy)2 + (dz)2          (3.1) 

But in cylindrical polar coordinates (r, , z), the same value is given by 

(dl)2 = (dr)2 + (rd )2 + (dz)2         (3.2) 

since the angular coordinate is not of and by itself a measure of length. So to measure length in 
the -direction, in this case one uses the metric coefficient (r)2.
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     In the general curvilinear coordinates above, we would have similiarly: 

(dr)2 = dr dr, (dR)2 = dR dR            (4) 

In order to evaluate these expressions, we realize that 

i I
i Id dx , d dX

x X
r Rr R             (5) 

Figure 4: General configuration sketch for nonlinear continuum mechanics.
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Substituting in from above we have 

i
i I

Id dx , d dXr g R G               (6) 

Then, using the fact that gij = gi gj and GIJ = GI GJ, we combine (4) and (6) to get 

(dr)2 = gijdxi dxj , (dR)2 = GIJdXIdXJ                 (7) 

 The use of general curvilinear coordinates (i.e., non-rectangular, non-Cartesian) provides 
for an elegant and fundamental formalism when developing the general theory of nonlinear 
membrane response. Noting, however, that the general curvilinear basis is always referred to a 
rectangular Cartesian basis, some simplifications can be made in the formulation, particularly 
for computations and in reporting of engineering quantities. To this end, we can establish a 
local rectangular Cartesian coordinate system at each point on the deformed midsurface. We 
will see how this is accomplished later. 

4  Kinematics of Deformation 

4.1 Motion and deformation 

We take a material particle originally at location X in the reference configuration, and track its 
motion (viz., time-dependent response to loading) to its new location at position x in the 
current configuration, or 

x = x(X, t)              (8) 

We assume that matter cannot be created nor destroyed (the axiom of continuity), hence the 
motion is invertible or 

X = X(x, t)             (9) 

Figure 4: General configuration sketch for nonlinear continuum mechanics.This invertability 
can equally be expressed through the so-called Jacobian J of the deformation as 

0
k

K

xJ
X

                 (10) 

where  denotes the determinant operation. 
     We can define the deformation for each instant of time t of the motion, or as a quasi-static 
process:

x = x(X)      (11) 
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4.2 Deformation gradient, stretch, and polar decomposition 

Consider two neighboring material particles, located at X and X + dX, which deform to x and x
+ dx, respectively. Then we can determine dx from 

d d dxx X F X
X

           (12) 

where F is called the deformation gradient tensor. Using (12), the initial gage length dL (dL =
(dXT dX)1/2 is a natural and convenient choice for measuring deformation) is stretched to a 
length dl by 

dxT dx = dXT dFT dF dX         (13) 

The stretch ratio of the gage lengths is 

T

T

dl d d
dL d d

x x
X X

                 (14) 

     An important postulate in continuum mechanics is that a deformation can be decomposed 
into a rigid rotation Q followed by a stretch along principal directions (the maximum or 
minimum stretches possible), or stretch first then rotation, such that 

F = U Q = Q V                (15) 

where U and V are the left and right stretch tensors, respectively. Consequently, V and U
describe the stretch relative to the reference and current configurations, respectively. 
     The rotation tensor Q can be used to define a local RC basis for every point on the 
membrane surface, as discussed below. Following our convention that the XI and xi are RC, the 
current basis vectors gi are related to the reference basis GI by 

gi = Q GI           (16) 

4.3 Strain definitions 

Although stretch provides an adequate measure of deformation, it is convenient to formulate 
measures that have zero value when undeformed (stretch equals unity in the undeformed state). 
These measures are called strain and are non-unique. It is intuitive, then, to refer strain from 
the undeformed or reference configuration, i.e., a Lagrangian strain definition. 
     A very fundamental approach to developing a strain definition is to simply measure the 
difference in gage lengths before and after deformation (stretching and/or rotation). This 
accounts for the fact that rigid body rotation should not contribute to strain, i.e., (dr)2 = (dR)2.
Then using (6) and taking the difference: 

(dr)2 – (dR)2 = gijdxi dxj - GIJdXIdXJ    (17a) 

       2EIJ(X,t) dXIdXJ                     (17b) 
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Now recalling (12), dxi = Fi
J dXJ, where Fi

J = xi/ XJ, and equating (17a) and (17b) above, it 
must be that  

EIJ(X,t) = ½ (gijFi
I Fj

J – GIJ)          (18) 

which are the components of the Green–Lagrange strain tensor, and gijFi
I Fj

J are components 
of the so-called Green’s deformation tensor. It is readily seen that this strain measure is 
referred to the reference configuration. If, as we have assumed, the midsurface coordinates are 
RC coordinates, g and G become the identity tensor 1, and the Green–Lagrange strain tensor 
may be written as: 

      E = ½ (FT F – 1)         (19) 

(A similar development leads to an Eulerian strain tensor, but this will not be discussed further 
here. Moreover, many materials, including some that may be useful for compliant membranes, 
have a response that is dependent on the rate of straining; this topic will also not be discussed 
further here.) 

5 Stress and balance laws 

5.1 Concept of stress  

The idea of stress in a body is a way of characterizing the internal force reaction to loads. 
Physically, the loads create deformations that lead to changes in interatomic distances relative 
to the unloaded equilibrium state. Resistance to the deformation (e.g., due to van der Waals 
forces), averaged over a large group of atoms (the continuum point), is what we call stress. The 
goal then is to relate the loads to the (internal) stress. 

A remarkable hypothesis attributed to Cauchy allows us to do this. It is an extension to 
deformable media of Newton’s law of action/reaction. The first step is to define a stress vector
or traction t that is the limit of an increment of force p per unit increment of current area a:

0a

p
lim a

t             (20) 

Without additional development, we then simply state Cauchy’s Stress Hypothesis:

The surface traction t (the body load b vanishes in the limit) acting on a 
body, or portion of a body, is related to the stress in the neighborhood of 
the traction by: 

t =           (21) 

where is the outward unit normal to the surface, and is the Cauchy (or 
true) stress tensor.  

Newton’s law of action/reaction follows since t(– ) = –t( ). The components of t and likewise 
depend on the coordinate system chosen as a basis.
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5.2 Stress definitions 

The Cauchy stress is the most accurate measure of stress at a point. However, for constitutive 
relation development, other forms of the stress tensor are desirable (see the discussion below 
on stress conjugacy.) Several options are available: 

Kirchhoff stress: = J (simply a “weighted” Cauchy stress) 
1st Piola–Kirchhoff stress: P = JF–1 (which is not a symmetric tensor) 
2nd Piola–Kirchhoff stress: S = JF–1 F–T (for small strain, the 2nd P – K stress can be 
shown to be merely the Cauchy stress rotated as if acting on the originally oriented 
surface)

5.3 Energy, mass, and momentum balance 

The principle of energy balance (energy conservation) states that the time rate of change of the 
kinetic plus internal energy is equal to the sum of the rate of work of external forces plus all other 
power (energy/time) sources or sinks (e.g., from heat energy, electrical energy, chemical energy, 
etc.). Mass balance (conservation of mass) provides the mathematical description for the physical 
observation that matter can neither be created nor destroyed. Moreover, mass must be invariant 
under motion.  
     For linear elastostatics, the equilibrium equations are special cases of the balance of momentum 
equations. In this case, the inertia term is neglected, either due to vanishing mass and/or 
acceleration of the body. The equilibrium equations can be grouped into force (translational) and 
moment (rotational) equilibrium.  
     For global translational equilibrium, we sum all of the surface tractions t and body forces b
over any arbitrary portion of the body of volume v and enclosing surface area a in the current 
configuration: 

a v
da dvt b 0      (22) 

     The internal stress within the volume can be related to the surface tractions through the 
Cauchy stress hypothesis (21): 

a v
da dvn b 0      (23) 

     The surface integral on the left can be converted to a volume integral through use of 
Gauss’s theorem [6], giving, after some manipulation: 

v
dvb 0                   (24) 

Since the original volume v was arbitrary, it must follow that 

 + b = 0             (25) 

This single local vector equation contains the familiar three scalar equations of translational 
equilibrium. 
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 Rotational or moment equilibrium follows in a similar fashion, namely 

a v
( x )da ( x )dvt x b x 0               (26) 

Again, use is made of Gauss’s theorem to convert the closed surface integral to a volume 
integral. The conclusion drawn from the result is that the stress tensor must be symmetric. 
Conversely, the symmetry of the stress tensor automatically satisfies rotational equilibrium. 
(This result assumes, however, that there are no local “stress couples”). 
     For nonlinear elastostatics, the moment equilibrium may be satisfied in an interesting way. 
Since the body can deform largely, global moment equilibrium is automatically satisfied, as 
shown in Figure 5. 

Figure 5. A single lap joint rotates to satisfy moment equilibrium 

5.4 Weak form of translational equilibrium 

For computational purposes, it is convenient to replace (25) with an equivalent single scalar
weak or integral form. The pointwise equation (25) is multiplied by a test function and 
integrated over the entire body. If the test function is the virtual velocity field v (which is an 
arbitrary function that must satisfy kinematic constraints), the weak form is called the principle 
of virtual power:

0
v

dvb v       (27) 

After some manipulation [6], we get 

v a v
: dv da dvd t v b v                 (28) 

where d is the deformation rate tensor. Stated plainly, the rate of work done by the external 
forces for any virtual velocity field is equal to the rate of work done by the internal stresses for 
the same velocity field.

 
 www.witpress.com, ISSN 1755-8336 (on-line) 
WIT Transactions on State of the Art in Science and Engineering, Vol 20, © 2005 WIT Press



96 Compliant Structures in Nature and Engineering

5.5 Conjugate stress and strain 

As stated earlier, we expect the elastic response of a material to be derivable from a 
thermodynamic potential function that is referred to the original, undeformed state (i.e., has 
zero potential when undeformed, which implies that the stress and strain are zero as well). 
Hence, we form the rate of work per unit volume in the reference state as  

d W = [stress]: d[strain] 

where [stress] and [strain] are work conjugate stress and strain tensors, respectively. 
     We now generalize the concept of conjugacy by considering the virtual power (work rate) 
equation previously derived: 

v a v
: dv da dvd t v b v        (29) 

where the integration was taken over the current volume v. Knowing that dv = J dV, we can 
take the integration over the reference volume (recall that work conjugacy is referred to the 
reference state). Then the internal virtual power (left hand side) can be taken as: 

v V
: dv J : dVd d             (30) 

We conclude that = J is work conjugate to the strain whose (deformation) rate is d; is the 
Kirchhoff stress tensor. 
     Other conjugate stress–strain pairs are possible, including that the 2nd Piola–Kirchhoff stress 
S is work conjugate to the Green–Lagrange strain E, and that the Cauchy stress is work 
conjugate to the Hencky or logarithmic strain  

ln(U) = ½ ln (F FT)                 (31) 

where F FT is the Finger tensor. (Remark: although it is conceivable to write the constitutive 
relations in the current configuration, there are fundamental reasons [7] and practical reasons 
[6, 8] that call this approach into question.)

6 Constitutive equations 

6.1 Introduction 

Many structural materials exhibit at sufficiently small strains, i.e. under sufficiently small stresses, 
a linear-response regime. In that regime the accumulation of damage due to cyclic loading is 
typically relatively small. At higher stress levels the strain response typically deviates from 
linearity. Generally, the rate of accumulation of damage due to cyclic loading or due to sustained 
loading increases with the stress level. The onset of non-linear response often signals some 
irreversible changes and the acceleration of damage accumulation. Therefore, in technological 
applications, the operational design-strength threshold, at least in a nominal sense, is often limited 
to well below the onset of significant deviation from linear response.  
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     Some materials deviate from this response behavior. Materials that exhibit linear strain response 
up to failure are brittle. Their technological application is quite limited; it requires special 
precautions. Successful technological applications of brittle materials typically avoid features that 
locally raise stress levels as predicted by the theory of elasticity solutions, such as holes and voids 
within the load path, or re-entrant corners. These features cause local stress peaks that exceed the 
stress level of the remote uniform cross section in the load path by a large factor (in strength of 
material terminology, this is the stress concentration factor). To reduce that effect it is generally 
necessary to round out re-entrant corners using as large a radius as possible. Unless the stress peaks 
in a brittle component are accurately predicted, it is generally necessary to severely limit the 
exploitation of the tested material strength. Applications may require the limitation to be one 
quarter to less than one tenth of the tested strength.  
     Technological applications of the materials discussed so far justify the use of linearly elastic 
constitutive laws in the analysis of structural systems. In general, theories developed for linearly 
elastic materials are limited to small strains. 
     There are materials that exhibit elastic, hence reversible response well into their non-linear 
range. Some of those materials remain elastic for very large strains. These are elastomers. In 
continuum mechanics, they are termed hyper-elastic. Theories developed for hyper-elastic 
materials typically extend into large strains. 
     The analytical methods and tools available since the last quarter of the 20th century, such as the 
non-linear finite element method, allow in principal the analysis of structural systems that use a far 
broader collection of classes of material. In principal, in an incremental analysis such as performed 
via the non-linear finite element method, any response mechanism can be programmed and hence 
executed during the numerical process. For the outcome of the solution process to make sense, 
however, it is necessary that the implemented constitutive laws mimic the material responses and 
satisfy the conservation laws of mechanics and the first and second fundamental laws of 
thermodynamics. In developing new constitutive relations that do not fit within established 
formulations from empirical observations on test specimens, it is necessary to assure that these 
laws are not violated. For a loading process that is adiabatic and isothermal, this requirement can 
be simply stated: Under monotonic up-loading from the unstrained state the external load system 
must perform non-negative (non-negative rather than positive is used here to include the friction of 
an incompressible material) work on the solid element upon uploading, that is: 

d ij d  ij  0.                            (32) 

     This requirement demands that the incremental (or tangent) moduli of the material for direct 
stress, shear stress, and hydrostatic stress must be positive. An application of this requirement 
yields the range of possible Poisson’s ratios for isotropic solids.

6.2 Thermomechanics 

Events in solid mechanics are governed by three types of equations that must be solved 
simultaneously. These are 1) the equilibrium equations, which may be either static or dynamic, 
2) the kinematic relations, and 3) the constitutive laws. The equilibrium equations and the 
kinematic relations are general. The equilibrium equations are directly derived from physics. 
The kinematic relations connect displacements to the deformation quantities, i.e., they are just 
geometric relations. The constitutive laws by contrast are material specific; and, they can be 
quite complex. Indeed it may be difficult if not impossible to specify such a law for a specific 
material that suits all its applications. Often the analyst must be satisfied with a constitutive law 
that in some narrow way captures the material response that is pertinent for his particular 
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application. In an earlier time, when analytical solutions were principally of the closed-form 
type, i.e. the strong solution of differential equations, constitutive laws were sought that made 
the solution of solid mechanics problems by these methods tractable. This limitation on the 
choice of constitutive equations was quite severe. Modern analysis methods such as the various 
discretization methods and semi-discretization methods accept a much broader class of 
constitutive laws. Using these methods, which are usually available to the analyst as a 
commercially supplied numerical tool, even material failure modes can be included in the 
analysis. This section describes a number of mechanical material response phenomena 
connecting stress, strain and temperature and it provides an overview of their mathematical 
description in sufficient detail to be useful to the analyst. A given material may exhibit one or 
more of these phenomena. Where appropriate and expedient, the description is limited to the 
two-dimensional sheet. 
     Not until the second half of the 20th century did the field theory of thermomechanics come 
into being. By contrast the field theory of mechanics dates back to 1775 for fluids, due to 
Euler, and 1822 for solids, due to Cauchy. Thermodynamics, which treats the state of matter 
and transformation of energy within matter is due to Carnot (1824) and Clausius (1850). Until 
recently, it has been limited to the treatment of homogeneous states. Still, its importance in the 
development of constitutive relations in mechanics has long been recognized. The limitations 
placed on constitutive laws by the first and second fundamental laws of thermodynamics have 
been properly regarded. An example of this will be discussed in the section that deals with 
linear elasticity. 
     The first fundamental law of thermodynamics, when written for an element of matter, states 
that there exists a state function u(ak, ), the internal energy per unit mass, such that: 

du = dw + dq             (33) 

The second fundamental law of thermodynamics identifies a second state function s(ak, ), the 
entropy per unit mass, that satisfies  

 ds  0          (34) 

Here is the absolute temperature, dw is the external work supply per unit mass, dq is the heat 
supply per unit mass, and the ak are the collection of external and internal parameters that 
combine with external and internal force quantities in products that have the dimensions of 
work per unit volume. The entropy increment has two parts, a reversible part  

d(rev)s = dq/             (35) 

which is due to heat flow, and an irreversible part, the entropy production inside the element  

d(ir)s  0          (36) 

     Unlike ds, d(rev)s and d(ir)s are not total differentials. In the dynamic case, i.e., when matter 
accelerates, the first fundamental law as stated above must be amended by the addition of 
kinetic energy supply. 
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6.3 The linearly elastic isotropic solid 

The constitutive relation that governs the response of a linear-elastic solid in an isothermal and 
isentropic process is Hooke’s law. Written for the general stress state of an anisotropic solid it is 
given by   

ij = Dijkl kl .                                          (37) 

Both the stress tensor and the strain tensor are symmetric in their subscripts, and in addition the 
tensor D(ij)(kl) is symmetric with respect to the 1st and 2nd group of index pairs 
     The symmetries of the 4th-rank material tensor reduce the number of independent constants to 
21. The additional symmetries of an isotropic solid reduce the independent elastic constants to two. 
These are the Lamé constants and . Hooke’s law for this solid is given by 

ij = kk ij + 2 ij                                                     (38) 

     The response to uniaxial stress is   

11= ( + )/[ (3 +2 )] 11 = 11/E ,                                            (39)  

where E is the elastic modulus (or Young’s modulus).  
     The shear response is   

ij = ij/(2 ) = ij/(2 G) ,                                                      (40) 

where G =  is the shear modulus.                                           
     The response to hydrostatic stress is  

kk= kk /(3 +2 ) = kk /(3 K) ,                                                 (41) 

where K is the bulk modulus.  
     The two independent elastic constants used in the engineering literature are Young’s modulus 
and Poisson’s ratio  

= ( /2)/( + )                                                              (42) 

The shear modulus in terms of these constants is   

G = E/[2(1 + )]                                                             (43) 

Young’s modulus characterizes the strain response in the direction of a uniaxial applied stress. 
Poisson’s ratio is the ratio of contraction in a direction that is perpendicular to an elongation caused 
by a tensile stress that is in line with the elongation.  
     Thermodynamic considerations require that E, G, and K are non-negative. These requirements 
limit Poisson’s ratio for an isotropic material to the range between –1.0 and + 0.5. There is no real 
isotropic material known that has a negative Poisson’s ratio. Therefore, one may postulate for the 
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range of Poisson’s ratio 0.0  0.5. Typically, cork and other porous materials have Poisson’s 
ratios near the lower end and elastomers such as rubbers have Poisson’s ratios near the upper end 
of that range.  
     For later convenience, the stress tensor and the strain tensor may be decomposed into their 
isotropic part kk and deviatoric part 

ij = ij – ij kk /3                                     (44) 

for stress, and isotropic part kk and deviatoric part 

ij = ij – ij kk /3                                                 (45) 

for strain. The shear response can then be written as   

ij = ij/(2 G) .                                                            (46) 

6.4 The linearly elastic isotropic membrane 

The stress state of interest in compliant membrane mechanics is plane stress. For this state the 
constitutive equation for the isotropic membrane can be reduced to  

1 1

2 2

6 6

1 0
1 0

0 0 2 1

/ E / E
/ E / E

( ) / E

        (47) 

The inverse relation is an obvious simplification of the corresponding equation for the orthotropic 
membrane discussed below. The notation used here is common in the engineering community that 
deals with thin sheets and laminates: 

1 = 11, 2 = 22, and 6 = 12; 1 = 11, 2 = 22, and 6 = 12                                         (48) 

6.5 The linearly elastic orthotropic membrane 

The relations connecting stresses and strains in orthotropic films, when written in the material 
principal directions, are 

1 1 21 2 1

2 12 1 2 2

6 6

1 0
1 0

0 0 1

/ E / E
/ E / E

/ G

      (49) 

and

1 1 12 21 12 1 12 21 1

2 21 2 12 21 2 12 21 2

6 6

1 1 0
1 1 0
0 0 1

E /( ) E /( )
E /( ) E /( )

/ G

    (50) 
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     In any other reference coordinate system, the forms of the constitutive relations for the 
orthotropic membrane are indistinguishable from those for a general anisotropic membrane, i.e. 
the matrix [Dij] and its inverse [Cij] are fully populated. 
     In determining the thermodynamic restrictions for the Poisson’s ratios 12 and 21, it is 
necessary to take the through-thickness direction into account. These Poisson’s ratios may 
indeed be larger than 0.5. There is no general relation for G in terms of the Ei and the ij.
     An orthotropic membrane may be isotropic in the plane. In that case (47) holds but without the 
restriction on Poisson’s ratio in the plane to not more than 0.5. Also, balanced orthotropy in the 
plane, i.e. E1 = E2 , does not imply isotropy in the plane. While E1 = E2 implies 12 = 21 , it does not 
imply G = E /[2(1 + )].

6.6 Generalized elasticity: the Cauchy, hyperelastic, and hypoelastic solids 

Linear elastic materials obey (37), where the coefficients Cijkl are independent of stress and 
strain; they may, however, be dependent on temperature. These coefficients are restricted on 
grounds of the symmetries of the stress and strain tensors and the fundamental laws of 
thermodynamics. In particular, specific linear combinations of them, the elastic moduli, the 
shear moduli, and the bulk modulus, must be positive. The concept of elasticity can be 
expanded to more generality. Truesdell [9–11] categorized three classes of elasticity, which 
are:

1) A material is said to be elastic (Cauchy material) if it possesses a homogeneous stress-free 
state, the natural state, and if in some neighborhood of this state there exists a one-to-one 
correspondence between a work-conjugate pair of stress and strain tensors 

              ij = F( kl)                                                              (51) 

2) A material is said to be hyperelastic if it possesses a homogeneous stress-free state, and if 
there exists a strain-energy density function 0W, which is an analytic function of the 
strain tensor, the work done by the stresses equalling the gain in strain energy 

       ( 0W)/ ij = ij                                                                                        (52)
                      

3) A material is said to be hypoelastic, if the stress rate is a homogeneous linear function of 
the rate of deformation 

d ij/dt kj ik  ki kj = Cijkl dkl .                                          (53) 

Here   

ij = ½ ( vj/ xi vi/ xj )                                                  (54) 

is the spin tensor. 
In this definition the coefficients Cijkl are functions of stress or strain. The definition of the 

hypoelastic material can be restated by substituting the time derivatives of any work-conjugate 
pair of stresses and strains so that 

d ij/dt = Cijkl d kl/dt.                                                      (55) 
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     Furthermore, without violating the concept, one can replace the time derivatives with 
derivatives of a generalized evolution parameter.  With this identification it is clear that the 
only difference in the definitions of the Cauchy material and the hypoelastic material is the 
requirement of the homogeneous stress-free state in the Cauchy material. Clearly, the Cauchy 
material includes the hyperelastic material. Thus, the hypoelastic material is the most general 
definition of an elastic material. 
     Note: Some writers have questioned the admissibility of hypoelastic materials on 
thermodynamic grounds. While we caution anyone who develops a mechanical constitutive 
model for a material to make sure that under a complete loading cycle net energy cannot be 
extracted from a material, it is quite conceivable that the micro-structure of a continuum may 
contain elastic instabilities that exhibit snap-through like response at the sub-continuum 
mechanics scale. Such a material can be modeled as hypoelastic.   
     Interest in hyperelastic models has focused primarily on large deformation for which the 
dilatory component is deemed insignificant, so that only distortion is of concern; in that case 
the body is considered incompressible. It is clear from the context that the strain under 
discussion here is the logarithmic strain and the stress is the Cauchy stress in a reference frame 
that is rotated with the principal stretch axes. Also, since there is no volume change, the 
hydrostatic pressure does no net work.  
     A particular form of the elastic potential, which is due to Mooney, is 

W(I1, I2) = C1 (I1  3)  C2 (I2  3) ,                                          (55) 

where I1, I2 are “stretch invariants”, and C1 and C2 are constants, seems to provide a suitable 
energy function for certain rubber-like materials. With C2 = 0 this function becomes the strain 
energy function for the so-called neo-Hookean solid of Rivlin.
     The coefficients in the constitutive equation of a hyperelastic material satisfy the 
fundamental laws of thermodynamics automatically. In developing constitutive equations for a 
Cauchy solid or for a hypoelastic solid, it is necessary to assure that the coefficients of the 
tangent stiffness are such that during monotonic uploading the external load system performs 
positive work on the element for each load increment. 

6.7 Visco-elasticity 

Visco-elastic solids are dissipative; i.e., they can undergo thermodynamically irreversible 
processes during deformation. They may or may not be restorable to their initial state by 
simply unloading and letting sufficient time pass. A convenient way to characterize the 
response behavior of these materials, at least in a qualitative sense, is to envision them to be 
performing like viscous elements (dash-pots) and elastic elements (springs) in some 
combination of series and parallel arrangement. Some examples of such visualizations in linear 
visco-elasticity are the Maxwell model – a non-restorable system, the Voigt model – a 
restorable system, and the standard linear model – also a restorable system. 
     A model that exhibits, at least qualitatively, most observed phenomena in the early response 
phases of many technological materials used in structural systems combines the Maxwell 
model and the Voigt model in series. This model, when loaded by a step load, which is 
maintained constant over time (this is the creep test), exhibits an instantaneous elastic response, 
a primary creep phase, which is transient, and a secondary creep phase with a constant flow 
rate.
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     Real materials that may, at least qualitatively, be characterized by the Maxwell and Voigt 
model in series, exhibit a tertiary creep phase of accelerated creep towards failure as a result of 
cross section reduction due to Poisson’s effect.
     Particularly in polymers, but in other materials as well, visco-elastic response is very 
sensitive to temperature. For some materials it has been observed that there is a time–
temperature correspondence that allows establishing a master curve together with a time-shift 
rule (these materials are sometimes referred to as thermorheologically simple). This reduces 
the analysis of visco-elastic response for a variable-load/variable-temperature history to a 
formulation with the dummy time variable of integration replaced by a scaled time. 
     If non-linear response can be similarly reduced to the master curve by some other time-shift 
rule, then the analysis of visco-elastic response to a variable-load/variable-temperature history 
can again be reduced to a formulation with the dummy time variable of integration substituted 
by the scaled time.  
     The creep function J(t) and the stress-relaxation function G(t) for complex visco-elastic 
response behavior can typically be characterized by a series made up of exponential terms, a 
so-called Prony series. Such a series is not an orthogonal series. Fitting a Prony series to test 
data can be done in two ways. The more traditional way is to choose exponential terms with the 
time decay coefficient separated by about a decade, and then using some weighted-integral 
method to determine the appropriate coefficients. Another way that generally requires a smaller 
number of terms is to determine both the coefficients associated with each term and the time 
decay coefficients in each term, using an optimization method. Both processes require the 
availability of appropriate software.  
     While with today’s computers and software the determination of the coefficients in a Prony 
series is rapid, the acquisition of suitable creep data or stress relaxation data is time consuming 
and expensive. Structural analysis tools, such as non-linear finite element codes, may require 
both the creep formulation and the stress-relaxation formulation during the incremental 
analysis. To avoid resource-intensive test repetition, one can invert the Prony series for creep to 
obtain a Prony series for stress relaxation and vice versa [12]. 

6.8 Fabrics 

While fabrics were one of the first structural materials used by humans in applications to 
membrane structures, to the structural analyst they are the least understood. Contrary to claims 
otherwise, a fabric does not behave like a two-dimensional continuum. Fabrics have internal 
mobility. This characteristic can be further classified into two distinct types of mobilities; these 
are the angular mobility and the transport mobility. Both types of mobilities contribute in 
different ways to the early success of fabric-made structural membranes, and to the difficulties 
that they pose to the analyst. 
     Angular mobility refers to the lack of resistance to shear distortion in the material reference 
frame. If this mobility is the only one active, then during deformation adjacent material points 
remain adjacent to each other, and in the topological sense in the same relative position. In 
particular, the crossing points of warp yarns and fill yarns do not shift. The recently developed 
solid mechanics subfield, theory of nets [13], is capable of addressing this aspect. As of now, it 
is still primarily an academic enterprise.  
     The standard apparatus of the theory of continuum mechanics is an inadequate tool for the 
analysis of structures that possess this characteristic. This is easily demonstrated by the 
following experiment. Fabrics have significant stiffness in both the warp and the fill (weft) 
direction. These can be characterized to some approximation by the elastic moduli EW and EF,
respectively. Fabrics exhibit Poisson’s effect, which can be characterized to some 
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approximation by the Poisson’s ratios WF and FW. The resistance to shear (angular distortion) 
in the material reference frame of the fabric (x W,x F) is typically several decades smaller than 
the resistance to extension in the material directions. Hence G, the shear modulus, is very 
small. It is observed when subjecting a simple weave fabric to uniaxial tension diagonally (in a 
reference direction rotated /4 relative to the warp direction) to the material reference 
coordinates, then, at least for small deformations, little resistance to the deformation is 
experienced.  
     Transport mobility refers to yarns sliding relative to each other. This aspect is even more 
difficult to formulate in a theoretical model. It is also responsible for the incredible toughness 
of fabrics, particularly loosely woven ones. This mobility prevents the stress concentrations 
that are found in linearly elastic solid continua to occur. 
     Still, fabrics make excellent structural membranes. Successful designs that use fabrics as 
structural membranes usually are constructed such that, under design critical loadings, the 
material directions are nearly coincident with the principal stress directions. To small 
deviations from this condition the fabric will respond by undergoing some significant but most 
often harmless angular distortion. Fabric structures, designed to this condition, can be 
analytically assessed by the methods of continuum mechanics as the shear stiffness, or lack 
thereof, plays a negligible role.  

7 Approximations

Similar to other technical fields, membrane theory is characterized by principles that can be 
stated in a relatively straightforward form, and problems that may involve prohibitive 
difficulties in using those principles. These difficulties necessitate the careful choice of a line 
of attack that often involves approximations. However, approximations may affect the 
predicted responses of membranes more profoundly than of other, more traditional structures. 
To appreciate and quantify these effects in the context of a given technical application, the 
engineer must be aware of how the final results may be influenced.  
     The quality degradation of response predictions due to solution approximations depends on 
the problem and is generally not straightforward to assess. We here address some selected 
aspects of the issue only. First, the relevance of the problem of approximations is placed in the 
context of up-to-date computational tools. The general sensitivity of membrane solutions to 
approximations is illuminated next. The discussion of some selected approximations follows, 
and a simple illustration is given. Finally, the notion of solution accuracy is addressed. 

7.1 Approximations in the era of computational mechanics  

Familiar with some of the gross simplifications needed for the solution of some mechanical 
problems prior to the computer age, one may be tempted to ignore the issue of approximations 
in the context of current technology. Indeed, solution approaches such as the finite element 
method (FEM) are almost universally applicable and are capable of close to arbitrary solution 
accuracy for certain problems. However, the need for the awareness of approximations is not 
eliminated by the availability of such tools. One should not ignore the issue of approximations 
because:

Numerical solutions also involve approximations.  

Before their predictions can be deemed acceptable, numerical models must be 
benchmarked both within their own context (convergence and parameter sensitivity 
studies) and against alternative solutions. The alternative solutions often need to be 
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derived symbolically because physical test results for membranes with a quality 
comparable to numerical/theoretical predictions are virtually non-existent and are 
often prohibitively difficult to obtain.  

Parametric studies with a need for only limited accuracy may be based on closed-form 
formulas, as opposed to numerical models.  

The knowledge of underlying approximations may prevent the abuse of numerical 
analysis in some cases.  

     By the way of the last point we stress that the unintentional abuse of a numerical tool may 
be due to attempts to obtain results despite the unusual difficulties of a membrane problem. 
Such difficulties are typically related to overcoming a common limitation of many analysis 
programs, namely, the inability of most regular numerical solution procedures to handle 
singular structural states such as a flat membrane state with no lateral stiffness, before 
pressurization or prestressing. In order to obtain results at all, one may have to “trick” a 
program through such a singular configuration. In so doing, one should take care not to modify 
the problem in a mechanically or mathematically illegitimate manner, such as via adding 
bending stiffness to the film.  
     Regardless of whether an analysis tool has to be outsmarted to produce results, typical 
membrane problems generally necessitate full geometric nonlinear capabilities in the program. 
One of the problem features necessitating nonlinear analysis is the extreme sensitivity of 
membranes to physical details, and membrane models to modeling details. As geometric 
nonlinearity is a standard feature of modern computational tools, one may safely require its use 
in all membrane analyses. This requirement becomes imperative for precision applications 
such as inflatable RF reflectors.  
     So far in this section we peculiarly omitted concerns of material nonlinearity. This omission 
reflects the state of the art in membrane engineering in the aerospace industry where, despite 
the availability of more “exotic” material models, the engineer is still practically limited to 
linear elasticity in the overwhelming majority of cases. This limitation need not cause concern 
when the subject membrane is smooth and is operated with sufficiently low stresses. However, 
stresses potentially higher than the material proportionality limit or a creased membrane state 
(which increases global film compliance in a highly nonlinear fashion) clearly call for 
nonlinear material models. Unfortunately, properly quantified (measured) parameters of 
constitutive behavior beyond the proportional limit of films commonly used in space are rarely 
available and the rigorous test study of wrinkled membranes is still in its infancy [14, 15]  

7.2 The nonlinear nature of membrane problems 

Film bending and compressive compliance entails a malleable global geometry: membranes re-
configure their shape, at the cost of wrinkling if necessary, to enable the bearing of certain 
loads. “While their thinness makes them incapable of sustaining bending moments, it also 
renders them incapable of ... preserving their shape under certain kinds of loading” [16]. 
     That, except for some simplistic examples, the re-configuration of geometry is an integral 
aspect of their response renders membrane behavior similar to post-buckling response in that 
geometrically linear analysis is simply incapable of capturing their mechanics. Thus geometric 
simplifications  approximations  can have a significant impact on a membrane solution. A 
pronounced example of this influence is illustrated in Figure 5.16 on page 263 of reference 
[17]. Shown among the insets of this figure are the shapes of a membrane cylinder subject to a 
perimeter load as predicted with shell theory with bending effects, with small-strain nonlinear 
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membrane theory, and with large-strain nonlinear membrane theory. The three shapes differ 
significantly.  

7.3 Approximations in the context of the governing equations 

A subject of mechanics, the behavior of membranes is governed by the three sets of equations 
stating equilibrium, stress–strain relations, and geometric compatibility. To prepare the 
illustration of solution approximations, we first present these equations in a complete and 
general form uncorrupted by any simplification. (Equivalent forms of these equations other 
than those presented below also exist: our choice is for convenience only.) We then discuss 
some classic types of approximations.

7.3.1 An exact form of the governing equations 
Describe membrane mechanics locally at an internal, smooth point. Use a rectangular 
coordinate system with its x and y axes tangent to the membrane mid-surface and aligned in the 
directions of the surface principal curvatures in the load-carrying state. (These mutually 
perpendicular directions exist at any point on any smooth surface.) Thus the third, z, axis will 
be the surface normal. Define all (stress, strain, etc.) quantities in this coordinate system, and 
interpret all derivatives with respect to these coordinates.  
     Also, ignore membrane thickness: use through-thickness resultant quantities (such as 
membrane forces obtained by stress integration through the membrane thickness). Accordingly 
assume that, where necessary, even relations often stated in a general continuum-based form 
(such as the constitutive law) are now modified to involve through-thickness resultant 
quantities.  
     State equilibrium as  

 nx/  x +  nxy/  y + qx =  ax           (56)  

 ny/  y +  nyx/  y + qy =  ay           (57)  

nxy = nyx          (58)  

p – nx/R1 - ny/R2 p =  az       (59)  

where nx, ny, and nxy are the direct and shear membrane stress resultants in units of force per 
deformed length, qx and qqy are the in-plane surface loads in the x and y directions, p is the 
surface load normal to the surface (such as pressure), is the membrane surface density, ax, ay,
and az are the components of the acceleration vector, and R1 and R2 are the principal radii of 
curvature along the properly aligned x and y coordinate axes.  

The constitutive law F can be generally stated as  

N = F(history(E))                (60)  

where N is the tensor of membrane stress resultants and the term “history(E)” refers to the full 
history of the strain tensor E to accommodate time- or path-dependent nonlinear material 
responses. As an example we recall that for linear elasticity F is

N = F(history(E)) = F(E) = C:E             (61)  

 
 www.witpress.com, ISSN 1755-8336 (on-line) 
WIT Transactions on State of the Art in Science and Engineering, Vol 20, © 2005 WIT Press



Mechanics of compliant structures  107 

where C is a fourth-order tensor and “:” denotes double contraction. As no time dependence is 
involved, history is limited to the current instant. (By rearranging the membrane force and 
strain tensor components into a vector and those of C into a simple matrix, Eq. (61) is often 
presented as a matrix equation.)  
     Finally, geometric compatibility implies a proper displacement-based definition of the 
strains

E = L(u)         (62)  

where L is a differential operator and u is the displacement vector field.  
     The constitutive and geometric relations, Eqs. (60) and (62), have been presented in a rather 
general form in comparison to the equilibrium equations to permit variations. Strains can be 
defined in a number of ways, with the constitutive law varied accordingly and also according to 
the assumed material behavior. The equilibrium conditions, however, can only vary in form, 
not in essence.  
     The difficulties in directly using relations, Eqs. (56) through (62), for the solution of a 
particular problem can be enormous. Consider, for example, the xyz coordinate system used. 
This reference frame, which permits writing the exact equilibrium equations in the relatively 
simple form Eqs. (56) through (59), is defined according to the instantaneous geometric 
conditions on the load-bearing membrane. These conditions generally vary over the surface as 
well as through the loading process, as the membrane shape evolves. Moreover, it is typically 
this very evolution  or its final state  that is sought by the solution. To manage the field 
equations in a frame of reference defined point-wise over a spatial surface among ephemeral 
conditions varying in an initially unknown manner would be difficult, to say the least.  
     To illustrate another practical difficulty, consider the membrane stress resultants nx, ny, and 
nxy. For the equilibrium conditions Eqs. (56) through (59) these are defined as force per 
distorted length  a membrane-thickness resultant version of what is called the Cauchy stress 
in continuum mechanics. However, the constitutive laws often relate strain to the material 
response referred to the stress-free state. (For example, according to the common approach to 
linear elasticity, the Young's modulus E is obtained by dividing the load endured by a test 
coupon with the initial coupon cross section, as opposed to the one laterally contracted under 
the load due to Poisson’s effect.) To avoid all approximations, the governing equations should 
involve the translation of the latter membrane force definition to the former.  
     Similar difficulties could be identified for most of the other variables as well. As a result, 
the above equations are rarely used as is. Instead, they are cast in equivalent forms in 
coordinate systems defined conveniently for particular problems. To manage the complexities 
of these alternative forms, approximations must be used. Resulting equations, derived for 
particular (classes of) problems, are established, analyzed, and solved in a number of reference 
works for shells and membranes  see, for example, [17] or [18]. (Shell-governing equations 
stated in terms of stiffness reduce to membrane equations as the bending and lateral shear 
stiffnesses diminish.) 

7.3.2 Some geometric approximations  

We here review three classes of geometric approximations. For this illustration, we borrow the 
nomenclature of [17], and denote by  the angle of slope with respect to a reference plane (at a 
generic point) of the unloaded membrane surface. Furthermore, the angular change of this 
slope during the loading process is denoted .
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Moderate rotation theory 
Moderate rotation theory assumes that the angles of rotation experienced by membrane 
surface points are small: o( ) << 1 Consequently, o( 2) <<< 1 is also implied and the following 
substitutions can be made:  

cos ( + ) = cos ( ) –  sin ( )
sin ( + ) = sin ( ) –  cos ( )
cos ( ) - cos ( + ) =  sin( ) + 1/2 2 cos ( )
sin ( + ) - sin ( ) =  cos( ) – 1/2 2 sin ( )

where is the initial slope of the surface with respect to a reference plane, measured in the 
direction where is taken.  

Shallow shell theory
If, in addition to moderate rotations, the initial slope of the surface is also low (o( )<<1, 
o( 2)<<<1), the following approximations can be used:  

cos ( + ) = 1 
sin ( + ) =  + 
cos ( ) – cos ( + ) =  + 1/2 2

sin ( + ) – sin ( ) =

The same approximations can be stated in other forms as well, depending on the frame of 
reference adopted. For example, an alternative but equivalent condition is ( z,x

2 + z,y
2) << 1, 

where x and y are coordinates within the particular reference plane, and z is the surface position 
normal to this plane [17, p.442].  

Föppl–Kármán equations
The Föppl–Kármán equations, a classic formulation of the axishell (axisymmetric shells under 
axisymmetric loads) equations, involve small-strain approximations in the context of a 
particular version of shallow shell theory [17]. 

7.4 On accuracy and modeling  

The need for faithful response prediction pervades by nature the entire gamut and history of 
engineering. The following discussion of this need is particularly relevant for precision 
inflatable space structures where application tolerances, manufacturing reliability, and 
modeling capabilities often appear at conflict.  
     Accuracy  in the sense of how well intent or assessment turns out to coincide with reality 

 is directly relevant to almost all steps of the engineering process. A few of these steps are 
presented in Table 1 with the errors qualitatively referred to and the statistical issues ignored.
     One can state as a general condition for successful engineering endeavor that  

ea > ef        (63)  

In plain English: fabrication must adhere to tighter tolerances than necessary for the operation 
of the product. 
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Table 1: Modeling errors. 

Error  Associated accuracy Example 
ea (“application”) The accuracy required of a particular 

application: how close to ideal the 
hardware should be in terms of shape, 
material, etc. 

The maximum rms surface 
error acceptable for a 
reflector. 

ef (“fabrication”) Workshop accuracy: how close to the 
specifications can the product be 
fabricated

Fabrication tolerances, 
quality scatter.  

em (“modelling”) The accuracy of modeling assumptions: 
how well the principles underlying a 
model correspond to reality. 

Is the material really linear 
elastic? Can dynamic effects 
really be ignored?  

es (“solution”) Accuracy of solving the model: how 
well the mathematical and physical 
principles in the focus of the model are 
actually reflected by the solution.  

Prediction errors due to the 
math. approximations that 
rendered the governing 
equations solvable. 
Numerical errors.  

epr (“prediction”) Response prediction accuracy: how 
well physical reality can be predicted. 

epr is a compound of em and es.

Calculated vs. measured 
response, if all significant 
aspects of the test are 
accounted for in the 
calculation.

     For the responses that drive a design (those onto which much of the engineering effort 
focuses), prediction must be better than the allowable tolerances for the operability of the final 
product for the governing responses:  

ea > epr = em + es                (64)  

     Furthermore, one can also observe that, in terms of the governing responses, an analysis tool 
must also reliably predict the impact of likely (fabrication and other) errors on the operational 
conditions for the governing responses:  

ea > ef > epr = em + es     (65)  

The state of the art of space inflatable structural engineering in general, and of precision 
inflatables in particular, does not yet consistently reflect the relative order of error magnitudes 
just outlined.   
     Historically, classical shell and membrane theory has been primarily concerned with es, with 
improving model solution accuracy by alleviating as many of the solution approximations as 
possible for membranes of various characteristics and geometries. In some way, the 
development of solution methods for additional classes of problems (such as wrinkled 
membranes) also falls in this category because it aims at enabling the solution at all of certain 
models.  
     The concern with the solution error es is secondary today because properly designed and 
used numerical tools can reduce es to limits of computer arithmetic and discretization. 
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However, these methods do not reduce any of the other errors reviewed above. Actually, it is 
the uncertainties and the magnitudes of the fabrication error ef and of the modeling error em that 
primarily hamper precision membrane engineering. While generally no established estimates, 
prediction methods, or rules of thumb exist for the assessment of these errors, they clearly 
violate the rules spelled out above in some of cases. For example, the modeling with a linear 
elastic material model of a reflector canopy subject to low to moderate pressurization after 
deployment from a creased stowed state is clearly inadequate for a precision application 
because the creases entail a highly nonlinear material behavior. Such a wrong modeling 
approach entails

em > ea         (66) 

which is in obvious violation of Eq. (64) and thus renders the results useless. Another faulty 
approach that entails the same contradiction is to benchmark precision membrane shape 
predictions to approximate symbolic or empirical membrane shape formulas (such of those 
collected in [19]).  
     Modeling errors similar to those just highlighted continue to haunt recent membrane 
engineering efforts. (Some of these common mistakes are examined quantitatively in [20].) The 
trend to overlook such mistakes in the context of newly pursued precision membrane 
applications (which include RF and even optical reflectors) is unfortunate. The operational 
error limit ea of such devices can be orders of magnitude lower than common structural 
engineering tolerances. An engineer not keenly aware of this fact may consider his results 
acceptable because ef, em, and es are within the limits he is used to. However, a low value of ea
can still render the predictions unacceptable by violating conditions (64) through (66).

8 Analysis of wrinkled membranes 

8.1 Introduction 

Due to their lack of bending stiffness, membranes cannot sustain compressive stresses. The 
membrane responds to an in-plane contraction, due to external agencies other than that of 
Poisson’s effect from tensile stresses that act perpendicular to the contraction, by out-of-plane 
displacements that oscillate about the mean plane; i.e., the membrane wrinkles (Fig. 6). 
Wrinkles are seen in biological organisms, such as the wrinkles in the skin of humans (Fig. 7). 
     The strength of material model for the membrane cannot model this response behavior. A 
suitable model for this response behavior is the tension field (TF). Different from other 
strength of material models, the TF model is non-linear. This is the case even when the 
membrane material is linearly elastic. 
     The TF responds to a planar strain field where one of the principal strains is extensional the 
other contractive by a stress field with a single non-zero stress component of tension in the 
direction of the extensional principal strain. All other components of the stress tensor are zero. 
     The first mention of a tension field model was due to Wagner (1929) [21]. Wagner was 
concerned with the load-carrying capability of web-stiffened steel plate girders that were 
capable of carrying loads with a buckled web far in excess of their load carrying capability in 
the unbuckled state. The mode of performance of these plate girders is akin to the mode of 
performance of parallel cord trusses, where the bending moment is carried by the cords in 
tension and compression, respectively, and the shear stress resultant is carried by vertical cross 
members in compression and by diagonal cross members in tension. In the case of the plate 
girder, the stiffeners take the role of the vertical members of the truss, and the wrinkled web 
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takes the role of the diagonal tension members. Wagner’s theory is an equilibrium theory only. 
The full set of solid mechanics equations as specialized to the structural elements is only used 
to predict the onset of buckling, not the tension field response. By contrast, the TF model for 
membrane mechanics uses the full set of solid mechanics equation as specialized to the two-
dimensional sheet. 

Figure 6. Wrinkles in a thin metallized polymeric foil are easily observed. 

Figure 7. Wrinkles in the skin are seen under the eye. 

     TF theory ignores the minutia of out-of-plane wrinkling, neither the amplitude, nor the 
frequency of wrinkles are of concern. The direction of the wrinkles is determined and the total 
amount of in-plane contraction of the mean mid-plane of the field in excess of that due to 
Poisson’s effect are determined by displacements at the boundary of the tension field. 
     Since Wagner’s early work, numerous researchers have contributed to the development of 
TF theories. No attempt is made here to give a full account if these efforts. Reissner (1938)
[22], Kondo et al. (1955) [23], and Mansfield (1970) [24] developed solutions for geometrically 
linear problems. Wu (1981) [25] developed a model for finite plane stress theory. Pipkin (1986)
[26], and Steigmann and Pipkin (1988) [27] used the concept of relaxed strain energy density. 
Roddeman et al. (1987) [28] modified the deformation tensor. Jenkins and Leonard (1993) [29] 
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used modified strain energy and a modified dissipation function in the analysis of the dynamic 
wrinkling of visco-elastic membranes. 
     A particular simple approach for solving membrane mechanics problems that include 
wrinkling response is due to Schur (1994) [30, 31]. This approach is particularly suitable for 
use with a non-linear finite element (FE) code (be it a special purpose type or a commercially 
supplied general purpose code) [32, 33]. It treats the wrinkled region as a degenerate 
membrane for which it modifies the constitutive equation via a penalty parameter. This process 
diminishes the stiffness of the membrane in the wrinkling direction without rendering the 
stiffness matrix non-singular. By nature, this method is approximate. This method is outlined 
below. 

8.2 Tension-Field modeling via a penalty parameter modified constitutive law

The modification of the analysis process so to enable TF response remains entirely within the 
material module (i.e. the application of the constitutive law) of the FE code. In a non-linear 
finite element analysis an interim solution step starts with the strained state (i-1)  of the previous 
instance and advances under a load increment to the new strained state (i) = (i-1)  + . The 
inverse of the tangent stiffness matrix DTAN is used to advance the stress to its new state (i) . If 
the principal stresses of this state are both (plane stress) positive, then the membrane is non-
degenerate, i.e., the membrane model is appropriate and the constitutive model for the 
membrane sheet can be applied unmodified for the determination of the element tangent 
stiffness matrix. However, if one of the principal stresses is negative, then the membrane is 
degenerate.   
     There are two degrees of degeneracy. When both principal stresses are negative then the 
membrane is locally fully degenerate. The TF state exists when one of the principal stresses is 
positive and the other is negative. 
     For analysis to proceed in the fully degenerated state, it is necessary to return a zero stress 
state and a tangent stiffness that is severely diminished but not identically zero. If a zero 
tangent stiffness matrix were to be returned, then the analysis would terminate due to a singular 
stiffness matrix. The magnitude of that diminution must be supplied by the analyst, and 
methods are available to assist in choosing the optimum value [32]. It should be such that the 
solution can proceed yet the results of the analysis remain meaningful. 
     In the TF case the stiffness matrix is transformed to the principal stress axes. The off-
diagonal coefficients in the transformed matrix are set to zero. The stiffness coefficient on the 
diagonal of the transformed matrix that is associated with the compressive principal stress is 
diminished by a penalty parameter of the analysts choosing and the compressive stress is set to 
zero.
     Inversion of the diagonal tangent stiffness matrix is trivial. The tangent stiffness (or 
compliance) and the stresses are returned after transformation back to the material reference 
coordinate system. The transformation matrices that are required for this process are presented 
in the section on multi-layered membrane sheets.  
     This process is well suited for single-integration-point finite elements. In the case of 
elements with more than one integration point there exists the possibility that the iterative 
analysis process toggles indefinitely; thus preventing the progress of the solution process. 
 Although the classical TF model ignores details of the wrinkles themselves, progress has 
been made on predicting the wrinkle parameters of number of waves, wavelength, and wave 
height [32, 34]. 
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9 Experimental analysis 

9.1 Unique challenges for experimental analysis of membrane structures 

Their extreme thinness is central to the unique challenges when making experimental 
measurements on membrane structures. Thinness contributes in large part to the lightweight and 
high compliance of these structures. In addition, membrane materials are often comprised of 
polymer films, with lower modulus, higher elongations at failure, and time, temperature, and 
frequency dependence. Also, membrane space structures may be considerably larger than more 
conventional space structures. 
     All of this points to the fact that, in most measurement situations involving membrane 
structures, noncontact methods are usually called for. The following table summarizes some of 
these issues. 

Table 2. Contact problems in membrane measurements, and noncontact solutions. 

Measurement Contact Issues Noncontact Methods Limitations
Static Deformation Artificial 

stiffening 
Mass loading 

Eddy-current probes 

Capacitance probes 

Moiré  

Electronic speckle 

Measurement range 
Single-point measure 
Measurement range 
Single-point measure 
Optically quiet environ. 
Set up, grid placement 
Expensive 

Dynamic 
Deformation 

Artificial
stiffening 
Mass loading 

Eddy-current probes 

Capacitance probes 

Laser vibrometer 

Holography 

Moiré 

Electronic Speckle 

Measurement range 
Single-point measure 
Measurement range 
Single-point measure 
Expensive 
Not true full-field 
Sensitivity to noise, 
vibration 
Optically quiet environ. 
Set up, grid placement 

Expensive 
Thermal 
Deformation 

Artificial
stiffening 
Mass loading 

Infrared 
thermography 

Surface measure only 
Calibration 

     Details about each of these issues and solutions will be briefly discussed below. 

9.2 Static deformation measurement

Measurement of displacement and strain are often required and essential in membrane mechanics. 
However, conventional contact instruments like dial gages and strain gages cannot be used; the 
former may artificially add displacement, while the latter artificially stiffens material immediately 
surrounding the gage. Clip-on extensometers can be used for testing of some material coupons.  
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     The simplest noncontact techniques are electric field techniques, such as eddy current and 
capacitance probes. These inexpensive techniques are usually fairly precise over a small 
measurement range, which is limited typically to a few millimeters. They also are restricted to 
single-point measurements. Jenkins and co-workers reported on using capacitance techniques 
for measuring membrane wrinkling [35]. 
     Optical techniques offer high precision, full-field measurement, but only a few of the 
techniques are applicable to large deformations. The moiré family of interferometric techniques 
has considerable history in structural measurements. Since a typical object grating applied to 
the membrane would provide significant artificial stiffness, shadow moiré techniques are often 
used [36]. Speckle methods also hold much promise for displacement and strain measurements. 
A serious drawback is their expense and the need for complex data-analysis routines. Optical 
extensometers are available. 

9.3 Dynamic displacement measurement 

Conventional vibration measurement using accelerometers will not work on membrane structures, 
due to mass loading and artificial stiffening. Electric field techniques mentioned above are also 
applicable for dynamic displacement measurements. However, high frequency response may be a 
problem, and they are still single-point techniques. 
     Moiré interferometry described above may also be used for dynamic measurements, but 
data analysis becomes more challenging as the frequency increases, and lack of time-series 
may also be a problem. Holography has been used for the vibration analysis of plates for many 
years, but it requires a very quiet optical environment, which makes the technique less robust 
for many applications. 
     The laser vibrometer is a powerful tool for noncontact membrane vibration analysis. 
Vibrometers measure velocity changes due to the doppler (frequency) shift of laser light 
reflected from the moving surface. Lock-in amplifiers give good noise rejection. Scanning 
systems allow for fast raster scanning of the object, but this is only quasi full-field (in steady-
state vibration). Full systems are expensive. Jenkins and co-workers have reported on laser 
vibrometer measurements of membrane structures [3, 37].  

9.4 Thermal measurements 

Conventional structural temperature measurements are performed using the ubiquitous 
thermocouple. Thermocouples are inexpensive and relatively precise. As in the other cases 
described above, attaching thermocouples to membranes artificially stiffens and loads them. 
     Infrared (IR) techniques provide good noncontact alternatives to thermocouples [38, 39]. 
High-precision IR sensors are available, some of them supercooled by liquid nitrogen for good 
noise rejection. The primary disadvantage of IR techniques is that they are surface temperature 
measurements only (thermocouples can be embedded). For thin membranes at thermal 
equilibrium this is not too much of a problem. The other disadvantage is that the 
IR/temperature conversion is dependent on the emissivity of the membrane surface, which may 
be a function of temperature. Hence careful and frequent calibration may be required.

10 Conclusion 

The analysis of compliant structures in general and membrane structures in particular, is 
complicated by the nonlinear nature of the deformations and/or the materials involved. The 
natural language to describe such behavior is nonlinear continuum mechanics. This chapter has 
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attempted to provide some insight into the mathematical formalism, physical quantities, 
material constitution, and analysis issues associated with the nonlinear continuum mechanics. 
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