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Abstract

Correlations are derived for local water activities, aw, unfrozen water contents, nw,
ice contents, nI, effective heat capacities, C, thermal conductivities, k, and specific
enthalpies, H, as functions of temperature, T , in foods at subfreezing conditions.The
validity of the correlations has been demonstrated for many foods. The correlations
can be used to provide thermal properties data for freezing and thawing calculations,
including numerical solution of partial differential equations (PDEs) describing heat
transfer during freezing and thawing. Finite element and finite difference methods
for solving such PDEs are described, particularly enthalpy step methods. Local T
versus time, t, histories for food freezing and thawing obtained by the use of these
methods are presented.

1 Engineering calculations

Food process engineers often have to calculate heat transfer loads for freezing and
thawing, how fast such heat can be transferred, how changing product or process
variables affects transfer rapidity, how freezing rates and T differ in different parts
of a product, and how T rises in frozen food exposed to abusive conditions. Thermal
property correlations and computational methods presented here can be used for
such calculations.

2 Freezing points

Pure water and normal ice, i.e. ice Ih, are in equilibrium at temperature To
(273.16K, 0◦C, or 32◦F) at atmospheric pressure. This chapter deals with freezing
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62 Heat Transfer in Food Processing

and thawing of normal ice in foods. Other ice crystal forms exist at higher
pressures [1].

2.1 Freezing point depression

Dissolved solutes depress water’s freezing point. The greater the solute concen-
tration, the greater the depression. As water in a solution changes to ice, solute
concentrations increase in the remaining solution, and the equilibrium temperature,
T , decreases. Equilibrium T for aqueous solutions during freezing and thawing are
governed by eqn (1) [2]

ln (aw) = ln (γwXw) = −18.02�Hav(To − T )

RToT
(1)

where aw is water’s thermodynamic activity, γw its activity coefficient, Xw its mole
fraction in the solution, 18.02 its molecular weight, and �Hav its average latent
heat of fusion between To and T . To and T are in degrees kelvin. The ideal gas
law constant R = 8.314 kJ/(kg mol K). �Hav = �Ho + 0.5(CI − Cw)(To − T),
where the heat capacity of ice CI = 2.093 kJ/(kgK); Cw, the heat capacity of pure
water averages 4.187 kJ/(kgK); and water’s latent heat at To, �Ho = 333.57 kJ/kg
(143.4 BTU/lb).

�Hav/TTo ≈ �Ho/T2
o

Therefore, with very little error,

ln (aw) = −18.02�Ho(To − T )

RT2
o

(2)

Equation (2) and methods based in part on earlier derivations [3–6] are used to
derive thermal property correlations presented here. All the right-hand terms in eqn
(2) except (To − T ) are constants. Thus, during freezing, −ln(aw) is proportional to
and is solely a function of (To − T ). Substituting for �Ho, R, and To, one obtains

ln (aw) = 0.00969TC (3)

where TC is T in degree centigrade. Equation (3) provides aw with less than 1%
error at TC as low as −40◦C. Values of γw are difficult to predict for foods for
Xw < 0.8, but for Xw > 0.9, γw ≈ 1.0, and Xw can replace aw in eqn (2), yielding
Raoult’s law for freezing,

ln (Xw) = −18.02�Ho(To − T )

RT2
o

(4)

2.2 Bound water

Aqueous solutions contain both solvent water and water bound to solute molecules.
Bound water acts like part of the solute, does not freeze, and does not contribute
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to aw or freezing point depression [7–10]. Thus Xwe, the effective mole fraction of
the solvent water in the solution, is

Xwe = (nw − bns)/18.02

(nw − bns)/18.02 + ns/Ms
= nw − bns

(nw − bns) + Ens
(5)

where nw is the total weight fraction of water in the solution, ns the weight fraction
of solute, b the mass of water bound per unit mass of solute, Ms is the solute’s
effective molecular weight, and E = 18.02/Ms. The effective molecular weight
of a solute that dissociates is its molecular weight divided by the number of
ions produced per solute molecule. Substituting Xwe given by eqn (5) for aw in
eqn (2)

ln (Xwe) = ln

[
nw − bns

nw − bns + Ens

]
= −18.02�Ho(To − T )

RT2
o

(6)

Foods usually contain many solutes. If none precipitates, their relative weight
proportions do not change during freezing. Therefore, when constants E and b
are determined by best fit methods, eqn (6) can be used for solute mixtures.

Equation (6) can also be used for moist solid foods with b representing both
water bound to solutes and water adsorbed by insoluble solids per unit mass of
solutes and insoluble solids combined. Riedel [7, 11–15] and Duckworth [8] list b
for various foods. Pham [9] lists both bns and Ti, the food’s initial freezing point.

2(Xwe − 1)/(Xwe + 1) is the first term of a series expansion for ln (Xwe) [16].
For Xwe > 0.8, it agrees with ln (Xwe) with less than 0.6% error. Substituting
2(Xwe − 1)/(Xwe + 1) for ln (Xwe) in eqn (6), one obtains

Ens

nw − (b − 0.5E)ns
= Ens

nw − Bns
= 18.02�Ho(To − T )

RT2
o

(7)

B = b − 0.5E. Errors caused by assuming ln (Xwe) = 2(Xwe − 1)/(Xwe + 1) and
�Hav/TTo ≈ �Ho/T2

o both increase as (To − T ) increases, but largely cancel
one another. Therefore, if γw = 1.0 or if b also accounts for water nonideality,
eqn (7) applies with less than 0.5% error even at −40◦C. Applying eqn (7) at
T = Ti, where nw = nwo, the weight fraction of water prior to freezing, one obtains

Ens

nwo − Bns
= 18.02�Ho(To − Ti)

RT2
o

(8)

3 Water and ice weight fractions

Dividing eqn (8) by eqn (7), one obtains

nw − Bns

nwo − Bns
= To − Ti

To − T
(9)

nI, the weight fraction of ice in a food, = nwo − nw. Therefore,

nI = (nwo − Bns)

[
Ti − T

To − T

]
(10)
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64 Heat Transfer in Food Processing

Equations (9) and (10) can be used with both T and Ti in kelvin, degrees centi-
grade, and degrees fahrenheit. ns = (1 − nwo). If, for example, Ti = −1◦C, half
the freezable water will be frozen when T = −2◦C, two-thirds when T = −3◦C
and three-quarters when T = −4◦C, and so on.

Bartlett [17, 18] was probably the first to use Raoult’s law for freezing to predict
nI and the thermal properties of food, but his equations are complex. Equations (6),
(7), or (10) or similar equations using b instead of B or with B omitted have been
used to determine nw and nI [3, 19–24]. Fikiin [25] reviewed methods for predicting
nI from Eastern European literature.

4 Effective heat capacities

At T > Ti, i.e. in the unfrozen state, the heat capacity C = Co. Co is often assumed
constant for freezing or thawing calculations. At T < Ti, i.e. for frozen or partly
frozen foods, H the specific enthalpy a food can be obtained by summing the
enthalpy contributions of the components

H = nwH̄w + nIHI + nsH̄s (11)

where HI is the specific enthalpy of ice, H̄w the partial enthalpy of liquid water, and
H̄s the partial enthalpy of solids and solutes combined. Xw remains larger than 0.9
during most of the freezing process. Therefore, we can assume that H̄w = Hw, the
specific enthalpy of pure water.

Food freezing takes place over a range of temperatures where the food’s effective
heat capacity C = dH/dT .

C = dH

dT
= nw

dHw

dT
+ Hw

dnw

dT
+ nI

dHI

dT
+ HI

dnI

dT
+ ns

dH̄s

dT
(12)

where dHw/dT , dHI/dT , and dH̄s/dT , respectively, equal Cw, the heat capacity
of water; CI, the heat capacity of ice; and Cs, the partial heat capacity of the
nonaqueous components. Further, −dnI = dnw, nI = nwo − nw, and Hw − HI =
�HT , ice’s latent heat of fusion at T . Based on eqn (9)

dnw

dT
= (nwo − Bns)(To − Ti)

(To − T )2 (13)

Substituting for dnw/dT from eqn (13), for (nw − Bns) from eqn (9) and noting that
�Ho = �HT + (Cw − CI)(To − T ), one obtains after algebraic manipulation

C = CF + (nwo − Bns)(To − Ti)�Ho

(To − T )2 . (14)

where CF = nsCs + (nwo − Bns)CI + BnsCw. Figure 1 is a plot of eqn (14) based on
measured C versus T values for codfish muscle [11]. For meats [12, 26], the height
of the C peak at Ti decreases as fat content increases and water content decreases.
Differential scanning calorimetry curves [27, 28] for sucrose, glucose, fructose,
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Figure 1: Effective heat capacity C versus T for cod above and below Ti, based on
data of Riedel [11].

solutions of mixed sugars, orange juice, grape juice, raspberry juice, grapefruit
juice, apple juice, cod, and tuna resemble Fig. 1 except for small irregularities
around −40◦C or shifts in C at low T .

Schwartzberg [3–5] and Chen [29–31] derived equations like eqn (14) but with
b replacing B. Chen used Ms rather than E = Mw/Ms as a variable. Succar and
Hayakawa [32] used (To − T)n instead of (To − T)2 in Schwartzberg’s equation.
The n values, empirically found for each food, were close to 2.0, e.g. 1.9.

5 Enthalpies

H values are measured with respect to a reference temperature, TR, where H is
assigned a value of zero. Riedel [11–15] and others used −40◦C as TR. If Ti is used
as TR, H will be negative at T < Ti and positive at T > Ti.

Integrating eqn (14) between TR and T , one obtains for T < Ti

H = (T − TR)

[
CF + (nwo − Bns)�Ho

(To − TR)

(
To − Ti

To − T

)]
(15)

For T > Ti, H = Co(T − Ti) + H(Ti), where H(Ti) is the value of H at Ti. Thus,

H = (Ti − TR)

[
CF + (nwo − Bns) �Ho

(To − TR)

]
+ Co(T − Ti) (16)
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66 Heat Transfer in Food Processing

5.1 Use of T i as TR

If Ti = TR, eqn (15) yields for T < Ti

HTi = (T − Ti)

[
CF + (nwo − Bns)�Ho

(To − T )

]
(17)

HTi indicates that Ti is the reference temperature. For T > Ti

HTi = Co(T − Ti) (18)

HTi clearly = 0 when T = Ti.

5.2 Use of −40◦C as TR

Using −40◦C as TR in eqn (15) one obtains H−40. For T < Ti

H−40(T ) = A + CFTC + (nwo − BnS)�Ho(Ti)

TC
(19)

A = 40CF − [(nwo − Bns)�HoTi]/40, and TC and Ti are in degree centigrade.
Figure 2 is a plot of experimental and predicted H versus T for lean beef [12] with
Ti as TR (right axis) or −40◦C as TR (left axis). Best fit values of (nwo − Bns)�Ho
treated as a single variable, and of Ti, Co, CF were used in eqns (17)–(19). H versus
T curves for other foods [3, 11–15, 26, 27, 30, 33–36] are similar. H changes more
between −40◦C and Ti when nwo is high and fat content is low. Pham et al. [35] and
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Figure 2: Enthalpy H versus T for lean beef: TR = −40◦C left axis; TR = Ti right
axis. Based on data of Riedel [12].
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Lindsey and Lovatt [36] determined Ti and measured H−40 versus T for 43 foods
and correlated their data by an equation formally identical to eqn (19). Correlation
coefficients for their predicted and experimental H−40 were 0.999–1.000 for most
foods and 0.992–0.998 for a few foods, mostly fatty ones. This degree of correlation
lends support to the validity and utility of eqns (17)–(19).

6 Departures from equilibrium

Slow nucleation can cause T to drop below Ti before ice crystals form at chilled
food surfaces and in chilled water drops suspended in nonaqueous media. Hetero-
geneous nucleation usually occurs around Ti − 6◦C for most foods, and subcooling
is brief and confined to a shallow region near the foods surface. At high sucrose
concentrations, e.g. 40% sucrose, nucleation may occur only at Ti − 8◦C and after
several minutes at some chilled surfaces, e.g. aluminum, but occurs at Ti − 6◦C
with much less delay at other chilled surfaces, e.g. stainless steel [37]. Slow nucle-
ation or absence of ice nuclei can cause subcooling in isolated, small regions in
food, but at normal freezing conditions is rarely detected by temperature measure-
ment in normal size portions of foods with normal solute concentrations. Slow ice
nucleation in dispersed drops of water in butter does cause appreciable subcooling
when butter is frozen [38].

Based on comparisons between measured and predicted weights of frozen layers
scraped off the inside wall of externally chilled, thin-wall, stainless-steel tubes,
delayed nucleation affected short-term, frozen-layer growth rates at 20% sucrose
concentration when the chilling medium temperature was less than 12◦C below Ti
but not when it was more than 12◦C below Ti [37]. At high rates of heat removal
and sucrose concentrations above 20%, experimentally measured frozen layer
weights and thicknesses fell significantly below weights and thicknesses predicted
by methods described later in this chapter. At 30% and 40% sucrose concentration
or when 0.01% and 0.05% gelatin was added to 20% sucrose, the measured frozen
layer weights and thicknesses were markedly lower than predicted weights and
thicknesses [37]. Thus when heat removal rates are high and initial solute concen-
trations are much higher than normal or when agents that increase mass-transfer
resistance are present, water mass transfer as well as heat transfer has to be taken
into account in predicting freezing rates and T decrease rates. In such cases, freez-
ing rates and T decrease rates predicted based on heat transfer analysis alone will
be excessively high.

Water concentrations drop and solute concentrations rise outside ice crystal
growth surfaces as water changes to ice at those surfaces. Water diffuses to the
surfaces, but not fast enough to prevent surface concentrations from rising some-
what above the average solute concentration. Thus, T drops somewhat below its
equilibrium value at the average concentration. When initial solute concentrations
for foods are normal, i.e. Ti is around −1 to −1.5◦C, subequilibrium T during freez-
ing triggers increased nucleation and ice crystal branching, which prevents T from
departing too far from equilibrium as long as T is greater than −20◦C. But as T falls
below −30◦C, solution viscosity increases so markedly and therefore hinders water
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diffusion to ice surfaces so that T can drop well below its equilibrium value. During
commercial freezing, subequilibrium T can occur near outer surfaces of foods when
the ambient temperature, Ta, is very low or h, the surface heat transfer coefficient,
is very large, but only small parts of the food are affected. About 95% of freezable
water will have frozen when T in the affected region reaches −20◦C. Therefore,
little ice formation is prevented; the use of the thermal properties equations derived
here probably will not cause significant error for most freezing computations.

When cellular foods freeze, intercellular water nucleates and freezes more read-
ily than water within cells. Water diffuses out of cells and freezes in intercellular
space, particularly when freezing is slow [39–41]. This adversely affects texture
after thawing. When freezing is rapid, ice nucleates and grows within cells and less
water outdiffuses. Departures from concentration equilibrium occur over cell-sized
distances at commercial freezing rates, but are small. Excess subcooling would
cause ice nucleation and growth within cells. Predicted and measured T versus
time histories for freezing of cellular foods agree reasonably well. Therefore, water
out-migration from cells probably does not affect greatly the validity of the thermal
properties equations presented here.

7 Volume changes

The specific volume of ice is 8.5% larger than that of water. Therefore, aqueous
solutions expand as they freeze. Open gas-filled pores in fruits and vegetables can
more than accommodate volume increases caused by freezing. Therefore, fruits and
vegetable pieces may not expand during freezing. In liquid foods, freezing-induced
expansion causes small amounts of freeze-concentrated liquid to move ahead of
the freezing interface. Thermal properties for that freeze-concentrated liquid are
difficult to predict. Expansions of fat-rich foods during freezing are also difficult
to predict accurately.

8 Food composition variation

Compositions of foods vary naturally and can be changed artificially. If concentra-
tion remains uniform when water is added or removed from a food, the composition
balance of the nonaqueous components affecting freezing will not change. There-
fore, E and B will not change and can be used with the new nwo and ns in eqn (8) to
find the new value of (To − Ti). Then E, B, and the new nwo, ns and (To − Ti) can
be used as parameters in equations correlating nw, nI, C, and H versus T behavior,
e.g. CF = nsCs + (nwo − Bns)CI + BnsCw using the new ns and nwo.

During cooling, fats undergo heat-generating phase transitions both above and
below Ti. This may cause problems in determining C and H for fat-containing
foods. H versus T data for fat-rich foods containing at least moderate amounts of
water, e.g. ice cream, sausage meat, cheeses, fat-containing meat, beef fat, pork fat,
chicken fat, and butter, obey eqns (17) and (19); data for low water content lamb
fat, beef suet and rendered beef fat do not [35, 36]. When eqns (17) and (19) are
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valid, increasing fat content reduces (nwo − Bns) and therefore reduces how much
H changes during freezing.

9 Thermal conductivity

At T > Ti, the thermal conductivity in a food k = ko, its value in the thawed state.
k for ice is roughly 3.7 times as large as the k of water. Therefore, k increases
markedly during freezing. In foods with oriented grainy structures, k is anisotropic
and is greater parallel to the grain than across the grain. Ice crystals tend to grow
with their axes parallel to the direction of heat removal. Therefore, k for frozen
or partly frozen food may be anisotropic even in foods that initially did not have
oriented structures.

Equation (20) predicts k fairly well at T < Ti. It is based on the assumption that
increases in k are linearly proportional to the fraction of freezable water converted
to ice [4, 5]. That assumption is reasonable when ice crystals grow parallel to the
direction of heat removal.

k = kf + (ko − kf)

[
nw − Bns

nwo − Bns

]
= kf + (ko − kf)

[
To − Ti

To − T

]
(20)

where ko and kf, respectively, are the thermal conductivities of the food in the
unfrozen and in the fully frozen state. The thermal conductivity of ice increases as
T decreases. Equation (21) partially accounts for that increase.

k = k′
f + m(Ti − T ) + (ko − k′

f)

[
To − Ti

To − T

]
(21)

where m accounts for the increase in ice’s thermal conductivity. k′
f is used instead

of kf. Agreement is good between experimental k and k predicted by eqn (21) when
best fit m and k′

f are used. Figure 3 is a plot of eqns (20) and (21) and corresponding
experimental k versus T data for beef [42]. k versus T plots for other foods [3, 34,
42–47] are similar. Willix et al. [44] presented Ti, gross composition, and measured
k versus T data for 27 foods. They used an equation proposed by Pham and Willix
[45] to correlate their k versus T data. Equation (21) correlates that data equally
well and eqn (20) slightly less well.

Cogné et al. [34] and Reynaud et al. [47] provide methods that predict how food
composition affects k versus T behavior at T < Ti, but which do not account for k
anisotropy. Cogné et al. [34] obtained k versus T curves similar to those for eqns
(20) and (21). They also found that effects of air inclusions on k in foamed foods
could be predicted using the Maxwell–Euken equation, i.e.

kd(T ) = k(T )[2k(T ) + ka − 2ε(k(T ) − ka)]

2k(T ) + ka + ε[k(T ) − ka]
(22)

where kd(T ) is the thermal conductivity of the foamed food (e.g. ice cream) at T ,
k(T ) the thermal conductivity of the foam-free food at T , ka the thermal conductivity
of air, and ε is the volume fraction of the food occupied by air. k(T ) for use in eqn
(22) can be obtained by use of eqns (20) or (21).
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Figure 3: Thermal conductivity, k, perpendicular to and parallel to beef grain versus
T for lean beef. Data of Jason and Long [43].

10 Freezing time estimation

Freezing times, tf , are estimated to predict needed residence times for foods in
freezers. As foods freeze, a frozen layer forms next to the outer surface and moves
progressively inward. Ice grows and heat is removed mainly at or near the inward
moving freezing interface. This heat transfers over progressively larger distances
as freezing progresses, and the rate of inward front movement slows down. Plank’s
equation [48, 49] is based on freezing front movement in foods, where: (1) T
initially = Ti and is uniform; (2) complete freezing occurs at the boundary between
the frozen and unfrozen zones; (3) k = kf in the frozen zone and ko in the unfrozen
zone, i.e. k changes sharply at Ti; (4) volume changes are negligible; and (5) freezing
is complete when the front of the frozen layer reaches the food’s center. Lopez-
Leiva and Hallstrom [50] note that for the following shapes – infinite slab, infinite
cylinder, infinite square rod, cylinder whose length equals its diameter, sphere and
cube – Plank’s equation and a similar equation, Rjutov’s equations [51], reduce to

tf = VFρ(�HE)[1 + 0.25Bi]

hAS(Ti − Ta)
(23)

The food volume is VF, its density is ρ, and its exposed surface area is AS. The
temperature of the cooling medium is Ta, and the coefficient of heat transfer between
the food and the medium is h. �HE is the amount of heat required to freeze a unit
mass of the food. The Biot number Bi = 2ha/k = Bif = 2ha/kf, where 2a is the
thickness or diameter of the piece and kf is the thermal conductivity of the frozen
layer. Note: Some authors, e.g. Carslaw and Jaeger [52], use Bi = ha/k.

Based on the amount of water in a food, �HE should equal �Ho(nwo − Bns).
Rjutov [51] used �HE = [H(Ti) − H(−10◦C)]. H(Ti) is the specific enthalpy of
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the unfrozen food at Ti and H(−10◦C) the specific enthalpy at −10◦C. If Ti =
−1◦C, Rjutov’s �HE = 9CF + 0.9�Ho(nwo − Bns). Lopez-Leiva and Hallstrom
[50] indicate that eqn (23) can be used to estimate tf for shapes other than those
previously cited by using the shortest dimension of the bulkiest section of the food
as 2a and by multiplying Bif by 0.29 instead of 0.25. Many other methods [50,
53–56] have been proposed for adapting eqn (23) to deal with shapes other than
those previously listed.

10.1 Thawing-time estimation

In thawing, an unfrozen layer moves progressively inward from the food’s outer
surfaces toward its center. Equation (23) can be used to predict thawing times by
replacing kf in Bi with ko, the thermal conductivity of the food when thawed. Since
kf is several times as large as ko, thawing is slower than freezing, particularly when
h and a are large.

10.2 Precooling and subcooling

Engineers often have to predict the time, tC, required to cool a food from an initial
temperature, T1 > Ti, to T2c, a specified final T at the food’s center, with T2c
usually being well below Ti. Many methods [45, 51–59] have been proposed for
accomplishing that goal. Lopez-Leiva and Hallstrom [50] found Levy’s method
[57], eqn (24), to be simple and fairly accurate.

tC = tf(H1 − H2)[1 + 0.008(T1 − Ti)]

(nwo − Bns)�Ho
(24)

where H1 is the specific enthalpy at T1, H2 the specific enthalpy at T2, the desired
final T and tf is obtained from eqn (23). When TR = Ti, H1 = Co(T1 − Ti), and H2
is obtained by substituting T2 in eqn (17).

Pham’s method [60], presented below, is one of the most accurate.

tC = Vρ

hA

3∑
i=1

�Hi

�Ti

[
1 + (Bi)i

fi

]
(25)

Here

f1 = 6, f2 = 4, f3 = 6,

�H1 = Co[T1 − Tfa], �H2 = �Ho(nwo − Bns), �H3 = CF[Tfa − T2a],

(Bi)1 = 2ha/ko, (Bi)2 = [(Bi)1 + (Bi)3]/2, (Bi)3 = 2ha/kf,

�T1 = [T1 − Tfa]/ ln [(T1 − Ta)/(Tfa − Ta)], �T2 = [Tfa − Ta], and

�T3 = [Tfa − T2a]/ ln [(Tfa − Ta)/(T2a − Ta)].

The mean effective freezing temperature in degree centigrade Tfa = Ti − 1.5. T2a =
T2c − (Bi)3(T2c − Ta)/[2(Bi)3 + 2], where T2a is the average final temperature and
T2c, the desired final center temperature.
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11 Heat transfer coefficients

Uncertain values for h limit the accuracy of freezing and thawing calculations. Cor-
relations for h are only moderately accurate and usually apply only for flow channels
unimpeded by shelf supports, product surfaces not resting on support grids, and for
fully developed flow. Local values of h vary markedly on meat carcass surfaces
[61] and to moderate extents on other food surfaces. Local h can be determined
accurately by analyzing recorded T versus time behavior for a highly conductive
dummy load insulated at its nonexposed surfaces and placed at different sites in a
freezer. The load should be shaped like the product or like part of it, depending on
whether an overall h or h values for different sites on a product are desired.

12 Unsteady-state freezing and thawing

T versus time, t, and position behaviors during unsteady-state freezing and thawing
are described by well-known partial differential equations (PDEs) and associated
initial conditions (ICs) and boundary conditions (BCs) [52, 62]. A PDE for sym-
metric heat transfer in infinite slabs, infinite cylinders and spheres is

Cρ
∂T

∂t
= ρ

∂H

∂t
= 1

rν−1

∂

∂r

[
rν−1k

∂T

∂r

]
(26)

For slabs, ν = 1 and r is the distance from the center plane. For cylinders, ν = 2
and r is the distance from the cylinder axis. For spheres, ν = 3 and r is the distance
from the spheres center. For three-dimensional (3D)objects [52, 62],

Cρ
∂T

∂t
= ρ

∂H

∂t
= ∂

∂x

[
k
∂T

∂x

]
+ ∂

∂y

[
k
∂T

∂y

]
+ ∂

∂z

[
k
∂T

∂z

]
(27)

where x, y, and z are distances along Cartesian coordinates. When heat transfer is
symmetric, it is convenient to use the object’s center as the origin for the coordinates.
The IC usually used is T = T1 for all r or all x, y, and z at t = 0, but heat transfer
PDEs can be solved analytically or numerically if the internal values of T initially
are nonuniform. T1 can be greater, equal to, or less than Ti. For freezing and thawing,
the convective BC is used most frequently, i.e.

k

[
∂T

∂r

]
j
= hj[(Ta)j − Tj] (28)

The subscript j means at the jth surface; hj, Tj and (Ta)j, respectively, are the heat
transfer coefficient, object temperature, and the external medium temperature at that
surface. Often equal hj are assumed; actual hj usually differ. (Ta)j also differ, but
usually less markedly than hj does. If hj = ∞, Tj = (Ta)j. If hj = 0, (∂T/∂r)j = 0.
(∂T/∂r) = 0 is also used as a BC at center points or center planes in objects where
heat transfer is symmetric.

Cooling due to evaporation of water from exposed surfaces occurs when
unwrapped food is frozen. Heating due to water condensation on food surfaces
occurs during thawing. Such cooling and heating significantly affect freezing and
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thawing rates and local T versus t behavior, but can be accounted for by modify-
ing eqn (28) to account for water vapor transfer to or from exposed surfaces and
associated heat release or heat absorption at those surfaces.

13 Explicit numerical solution of PDE

Equation (26) can be solved approximately but fairly accurately by machine com-
putation using explicit methods, e.g. Euler’s forward difference method.

To treat one-dimensional (1D), symmetric heat transfer, an object is divided into
n lamina, the outermost and center lamina being 0.5�r thick and all others �r
thick. �r = a/(n − 1), a being the object’s half thickness or radius. Values of T are
defined or sought at aligned points, one at the object’s center, one at its outer surface,
and all others at the centers of all other lamina, all points being �r apart. The T at the
points are identified by subscript j indicating how many �r increments separate the
point from the object’s center, and by superscript i indicating the current time step.

Geometric factors relate lamina volumes to (�r)ν and lamina surface areas to
(�r)ν−1. The net rate of heat flow across a lamina’s surfaces equals the lamina
volume times Ci

jρ(∂Tj/∂t). After common terms and (�r)ν−1 cancel from this
equation, the geometric factors for lamina volume and surface area, respectively,
become α and β, which vary with position.

For interior points

Ti+1
j = Ti

j +
[

�t

αjCi
jρ(�r2)

]

× [(βj+1/2)ki
j+1/2(Ti

j+1 − Ti
j ) − (βj−1/2)ki

j−1/2(Ti
j − Ti

j−1)] (29)

ki
j+1/2 is obtained by averaging k at Ti

j+1and Ti
j and ki

j−1/2 by averaging k at Ti
j−1and

Ti
j . For T < Ti, k is obtained by substituting T in eqn (20) or eqn (21). For T > Ti,

k = ko. For T < Ti, Ci
j is obtained by substituting Ti

j for T in eqn (14). If T > Ti,

Ci
j = Co. ρ is assumed constant.
At j = 0, the center of the object,

Ti+1
0 = Ti

0 + 2ν�t[ki
1/2(Ti

1 − Ti
0)]

(�r)2Ci
0ρ

(30)

ν = 1 for infinite slabs, 2 for infinite cylinders, and 3 for spheres
At j = n, the surface of the object,

Ti+1
n = Ti

n +
[

� t

αnCi
n(� r)2

]

× [hβn(�r)(Ta − Ti
n) − βn−1/2ki

n−1/2(Ti
n − Ti

n−1)] (31)

Equations (29)–(31) are solved numerically by machine computation to obtain Ti+1
j

for j = 0 to n. The Ti+1
j then becomes the Ti

j used in the next time step.
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Table 1: Values of geometric factors for different shapes [63].

Shape

Infinite slab Infinite cylinder Sphere

αj 1 j j2 + 1/12
βj+1/2 1 j + 1/2 (j + 1/2)2

βj−1/2 1 j − 1/2 (j − 1/2)2

αn 1/2 (n − 1/4)/2 (n2 − n/2 + 1/12)/2
βn 1 n n2

αj, βj+1/2, βj−1/2, αn, and βn for infinite slabs, infinite cylinders, and spheres are
listed in Table 1.

Computation becomes unstable if �t is too large. Stability is provided by use of
the smallest �t obtained from eqns (32)–(34) treated as equalities.

�t ≤ αjCi
jρ(�r)2

βj+1/2ki
j+1/2 + βj−1/2ki

j−1/2

(32)

�t ≤ Ci
oρ(�r)2

2νki
1/2

(33)

�t ≤ αnCi
nρ(�r)2

hβn(�r) + βn−1/2ki
n−1/2

(34)

Equations (32)–(34) are those effectively used by Mannaperuma and Singh [63]
for the enthalpy step method (discussed later). The allowable �t varies as freezing
or thawing proceeds, and should be re-evaluated after each time step.

When eqns (29)–(31) were solved for typical freezing conditions by machine
computation, 700–2,000 time steps were used for infinite slabs, 370–1,000 steps
for infinite cylinders, and 130–1,500 steps for spheres. The number of steps needed
is not only inversely proportional to a2 and proportional to n2(n + 1), but also
depends on Bif = 2ha/kf, T1, Ta, and T2c.

14 Implicit numerical solution of PDE

Larger �t can be used without instability by using implicit methods, e.g. the
Crank–Nicholson method [62, 64, 65]. When using the Crank–Nicholson method,
(Ti + Ti+1)/2 replaces each Ti on the right-hand side of eqns (29)–(31). For sym-
metric heat transfer in infinite slabs, infinite cylinders, and spheres, the Crank–
Nicholson equation corresponding to eqn (29) is

2Ci
jραj(�r)2

�t
(Ti+1

j − Ti
j ) = [βj+1/2ki

j+1/2(Ti
j+1 − Ti

j + Ti+1
j+1 − Ti+1

j )]

+ [βj−1/2ki
j−1/2(Ti

j−1 − Ti
j + Ti+1

j−1 − Ti+1
j )] (35)
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Equations (30) and (31) can be converted to Crank–Nicholson form in similar
fashion. Because two or three unknowns appear in each of the n equations used
to calculate new T , one has to solve these equations simultaneously. Fortunately,
the equations are linear and the coefficients for unknown terms lie on or next to
the principal diagonal of the coefficient matrix, i.e. the matrix is tridiagonal. Such
equations can be solved readily using a simple, Gauss elimination based subroutine,
TRIDAG [66].

15 Lee’s method

In Lee’s method [65, 67], each Ti on the right-hand side of eqns (29)–(31) is replaced
by (Ti + Ti+1 + Ti−1)/3 and the time step doubled, so that on the left-hand side
of eqns (29)–(31) (Ti+1 − Ti−1)/(2�t) replaces (Ti+1 − Ti)/(�t).

Again, two or three unknowns appear in each equation, simultaneous solution of
n equations having a tridiagonal coefficient matrix is required, and TRIDAG can be
used in solving those equations. Lee’s method has the advantage of using C and k
for the middle of a time step rather than the C and k at the start of the steps. Ti−1 is
not available for the first time step. Therefore, the Crank-Nicholson method should
be used for the first time step.

One can use much larger �t with both Lee’s and Crank–Nicholson’s methods
than for the explicit method, but if �t is too large, ‘jumping’ and T oscillations
occur as T passes through Ti. Lee’s method and the Crank–Nicholson method save
computing time, but for 1D symmetric freezing and thawing the absolute amount
of time saved is small.

16 Enthalpy step method

By replacing C(�T ) with �H, eqns (29)–(31) can be rewritten so as to compute
changes in enthalpy, H, during �t [63, 68, 69]. Use of H based on TR = Ti is
convenient when solving these equations:

Hi+1
j = Hi

j +
[

�t

αjρ
(
�r2

)
]

× [(βj+1/2)ki
j+1/2(Ti

j+1 − Ti
j ) − (βj−1/2)ki

j−1/2(Ti
j − Ti

j−1)] (36)

Hi+1
0 = Hi

0 + 2ν�t[ki
1/2(Ti

1 − Ti
0)]

(�r)2ρ
(37)

and

Hi+1
n = Hi

n +
[

�t

αnρ(�r)2

]

× [hβn(�r)(Ta − Ti
n) − βn−1/2ki

n−1/2(Ti
n − Ti

n−1)] (38)

 
 www.witpress.com, ISSN 1755-8336 (on-line) 

© 2007 WIT PressWIT Transactions on State of the Art in Science and Engineering, Vol 13,



76 Heat Transfer in Food Processing

Once the Hi+1
j are obtained, the corresponding Ti+1

j in degree centigrade are found

from eqns (17) or (18) rearranged. If Hi+1
j > 0

Ti+1
j = Ti + Hi+1

j

Co
(39)

and if Hi+1
j < 0

Ti+1
j = F − √

F2 − 4CFLTi

2CF
. (40)

where L = (nwo − Bns)�Ho and F = (Hi+1
j + L + CFTi).

To prevent computational instability, the �t used must satisfy all of eqns (32)–
(34). The enthalpy step method described is essentially that of Mannaperuma and
Singh [63], who used equations in terms of volumetric enthalpies, HV = Hρ, and
in terms of volumetric heat capacities, CV = Cρ, when calculating �t.

Use of the enthalpy step method prevents T from jumping over Ti and eliminates
errors caused by use of C at the start of a time step rather than at its middle. Use of
k that apply at the start of time steps still causes some error.

16.1 Sample results for the enthalpy step method

In the enthalpy step based computations discussed below,

T1 = 10◦C, Ta = −40◦C, Ti = −1◦C, T2c = −18◦C

(nwo − Bns)�Ho = 260 kJ/kg, Co = 3.5 (kJ/kg ◦C), CF = 2.05 (kJ/kg ◦C), ρ =
1050 kg/m3, ko = 0.0005 kW/(m ◦C), kf = 0.0015 kW/(m ◦C), and k for T < Ti
were calculated using eqn (20).

Freezing and thawing times and T versus r and t histories were computed for
infinite slabs, infinite cylinders and spheres for a = 0.005, 0.01, and 0.02 m and
h = 30, 60, 120, 600, and 1,200 W/(m2 ◦C). Calculated freezing times, tf , for
combinations of these h and a are given in Table 2. In industrial freezers, h is
almost always less than 600 W/(m2 ◦C). The h = 600 and 1,200 W/(m2 ◦C) values
are used to show how Bif = 2ha/kf affects freezing times.

The data listed in Table 2 and corresponding T versus r and t data were calculated
using programs written in Quick Basic implemented on an IBM computer with a
Windows 98 operating system. Computing times ranged from 1.3 to 2.8 s for infinite
slabs, 0.5–2.5 s for infinite cylinders, and 0.3–2.9 s for spheres, and were greater
at low h and Bif, and, in most cases, greater for small a.

At low Bif, tf was roughly inversely proportional to h and roughly proportional to
a. At larger Bif, h had less influence on tf; and tf was slightly less than proportional
to a2, with tf approaching proportionality to a2 at very large Bif.

Calculated thawing times (not listed in Table 2) were only moderately longer
than corresponding calculated tf at low Bi, where overall heat transfer rates depend
mainly on h.At larger Bi, k influences overall heat transfer rates more, and calculated
thawing times were much larger than corresponding tf.
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Table 2: Freezing times for infinite slabs, infinite cylinders, and spheres for different
h and a combinations.

Infinite Infinite Spheres
a (m) h (W/m2 ◦C) Bif slab tf (s) cylinder tf (s) tf (s)

0.005 30 0.2 1,617 805 532
0.005 60 0.4 849 421 278
0.005 120 0.8 464 229 151
0.005 600 4 157 79 53
0.005 1,200 8 118 60 41
0.01 30 0.4 3,394 1,684 1,111
0.01 60 0.8 1,855 917 603
0.01 120 1.6 1,086 538 359
0.01 600 8 474 240 164
0.01 1,200 16 398 203 139
0.02 30 0.8 7,421 3,670 2,413
0.02 1,200 32 1,438 737 503
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Figure 4: Predicted temperature, T , versus time, t, behavior at 0.2r/a intervals
during freezing of a 0.02-m thick infinite slab when Ta = −40◦C, h =
120 W/m2 ◦C, and the previously listed thermal properties apply.

Figure 4 depicts computed T versus t at different r/a during the freezing of an
infinite slab where a = 0.01 m and h = 120 W/(m2 ◦C). Figure 5 shows computed
T plotted versus r/a at different t for the same situation. For infinite slabs and all
a or h, T varied roughly linearly with r/a over most of the frozen zone during
freezing front penetration. During freezing front penetration, T in outer parts of the
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Figure 5: Predicted temperature, T , versus r/a behavior at selected times, t, during
freezing of a 0.02-m thick infinite slab when h = 120 W/m2 ◦C, Ta =
−40◦C, and the previously listed thermal properties apply.

frozen zone varies roughly linearly with ln (a/r) for infinite cylinders, and roughly
linearly with (a/r) for spheres.

Mannaperuma and Singh [63] compared experimental freezing and thawing time
data from the literature with results computed using the enthalpy step method and
obtained agreement similar to that obtained by Lee’s method. Toumi et al. [70]
obtained good agreement between experimental tf and T versus t data for cylindrical
string beans and corresponding results computed by the enthalpy step method.

17 Multidimensional problems

Program for multidimensional problems are more complex and require more com-
puter time to run than 1D problems.

17.1 Enthalpy step method

Mannaperuma and Singh [69] developed enthalpy step methods for freezing and
thawing problems involving finite cylindrical domains and two-dimensional (2D)
and 3D rectangular domains.

A Cartesian grid for a rectangular block of food, X long, Y wide, and Z high
would have points �x = X/2J apart in the x direction, �y = Y/2K apart in the
y direction and �z = Z/2M apart in the z direction, where J , K , and M, respectively,
are half the number of x, y, and z layers in the grid. T and H at these points are
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labeled Ti
j,k,m and Hi

j,k,m with i indicating at the current t. Again (i + 1) indicates
at t + �t. The subscripts j, k, and m, respectively, indicate the number of �x, �y,
and �z steps between a point and the x, y, z origin. Subscript j runs from −J to J .
At the x midplane of the grid j = 0. Similarly, k and m, respectively, run from −K
to K and −M to M; with k = 0 and m = 0, respectively, indicating the y and z
midplanes of the grid.

At interior points in the grid,

Hi+1
j,k,m = Hi

j,k.m +
(

�t

ρ

)
× [Pi

j − Pi
j−1 + Pi

k − Pi
k−1 + Pi

m − Pi
m−1] (41)

where

Pi
j = ki

j+1/2,k,m(Ti
j+1,k,m − Ti

j,k,m)

(�x)2 (42)

Pi
k = ki

j,k+1/2,m(Ti
j,k+1,m − Ti

j,k,m)

(�y)2 (43)

and

Pi
m = ki

j,k,m+1/2(Ti
j,k,m+1 − Ti

j,k,m)

(�z)2 (44)

where Pi
j−1, Pi

k−1 and Pi
m−1, respectively, are obtained by replacing subscript j by

(j − 1) in eqn (42), subscript k by (k − 1) in eqn (43) and subscript m by (m − 1)
in eqn (44). For 2D problems, eqn (44) and subscript m are not used, and Pi

m and
Pi

m−1 are dropped from eqn (41).
For symmetric heat transfer: (1) a grid for only one eighth of a 3D object or for

only one quarter of a 2D object need be used; (2) Ti−1,k,m = Ti
1,k,m for T adjacent

to the j = 0 plane; and (3) similar conditions apply for T adjacent to the k = 0 and
m = 0 planes and at the grid’s center. Thus H and T for points along these planes
and at the grid’s center can be determined by use of eqns (41)–(44) without need
of special equations for those points.

For convective heat transfer at the j = J surface

Hi+1
J ,k,m = Hi

J ,k,m + �t

ρ

×
[

2hJ (Ti
aJ − Ti

J ,k,m)

�x
− 2Pi

J−1 + (Pi
k − Pi

k−1 + Pi
m − Pi

m−1)J

]
(45)

where hJ and TaJ are the heat transfer coefficient and external medium tempera-
ture at j = J . Subscript J after (Pi

k − Pi
k−1 + Pi

m − Pi
m−1) means that these P are

evaluated along j = J . Similar equations apply for the surfaces at j = −J , k = K or
−K , and m = M or −M. Cases where h and/or T differ at different object surfaces
and heat transfer and temperature profiles consequently are not symmetric can be
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handled readily. Equation (45) with subscript m dropped and with Pi
m and Pi

m−1
left out can be used to compute Hi

J , along the sides of 2D objects.
Equation (45) is not valid at the edges and corners of surfaces of 3D objects or

at corners of 2D objects. At all points except the corners on the edge between the
J and K surfaces

Hi+1
J ,K ,m = Hi

J ,K ,m + �t

ρ
[2Qi

J − 2Pi
J−1 + 2Qi

K − 2Pi
K−1 + (Pi

m − Pi
m−1)J ,K ]

(46)

where

Qi
J = hJ [(Ta)J − Ti

J ,K ,m]

�x
(47)

Qi
K = hK [(Ta)K − Ti

J ,K ,m]

�y
(48)

Subscript J , K after (Pi
m − Pi

m−1) in eqn (46) indicates that m and m − 1 lie on
the edge between surfaces J and K . Equations similar to eqns (46)–(48) apply for
edges between other combinations of surfaces. Hi+1

J ,K for corners in 2D objects can
be computed from eqns (46) to (48) with subscript m dropped and Pi

m and Pi
m−1

deleted.
At the corner formed by the intersection of the J , K , and M surfaces

Hi+1
J ,K ,M = Hi

J ,K ,M + 2�t

ρ
[(Qi

J )K ,M + (Qi
K )J ,M

+ (Qi
M )J ,K − (Pi

J−1 + Pi
K−1 + Pi

M−1)] (49)

where

(Qi
J )K ,M = hJ [(Ta)J − Ti

J ,K ,M ]

�x
(50)

(Qi
K )J ,M and (Qi

M )J ,K are similarly defined. Hi+1 for the other corners are deter-
mined from equations similar to eqn (49) and with other Q combinations, e.g.
(Qi−J )K ,M , (Qi

K )−J ,M , and (Qi
M )−J ,K .

Mannaperuma and Singh [69] also provided equations for calculating Hi+1 at
surfaces where heat flux is prescribed or where T remains constant.

To prevent computational instability when treating 2D or 3D problems, �t must
be less than or equal to the smallest limiting �t for grid interior points and points
on outer surfaces, edges, and corners. Except at the very start of computation, the
smallest �t usually will be either that for an interior point or that for the coldest
corner for freezing or for the hottest corner for thawing. We derived equations for
limiting �t for all sites in a grid, but present only those usually needed, i.e. those
for �t for interior points and for corners.
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For grid interior points, usable �t are given by

�t ≤ ρCi
j,k,m

Si
j + Si

k + Si
m

(51)

where

Si
j = ki

j+1/2,k,m + ki
j−1/2,k,m

(�x)2 (52)

Si
k = ki

j,k+1/2,m + ki
j,k−1/2,m

(�y)2 (53)

and Si
m is defined similarly.

For the corner between surfaces J , K , and M, the maximum usable �t is

�t = ρCi
J ,K ,M

2[(Ni
J )K ,M + (Ni

K )J ,M + (Ni
M )J ,K ]

(54)

where

(Ni
J )K ,M = hJ (�x) + ki

J−1/2,K ,M

(�x)2 (55)

(Ni
K )J ,M = hK (�y) + ki

J ,K−1/2,M

(�y)2 (56)

Subscript J means at j = J , K means at k = K , and K , M means along the edge
between K and M. (Ni

M )J ,K is provided by an equation similar to eqn (55) or (56).
Equation (54) is used for only the coldest corner for freezing or for only the

hottest corner for thawing. Use of the smallest �t given by eqn (51) or (54) prior
to each time step provides stable computation. If h is very large, short-lived T
oscillations occur near the start of computation at edge points close to the chosen
corner, but do not affect predicted T significantly at later times. Such oscillation
can be prevented by initially using smaller �t, e.g. �t = 0.25 times the smallest
�t obtained from eqns (51) and (54) for the first 40 time steps.

Pham [71] provides a way to use larger, fixed �t without instability by combining
elements from the enthalpy step method and Lee’s method.

17.1.1 Computed results for 2D, enthalpy step method
A computer program written in Quick Basic was used to solve eqns (41)–(50) for
symmetrical freezing in infinitely long, square slabs of food. The �t used was the
smaller of the two determined through use of eqn (51) at the square’s center and
eqn (54) at one of the square’s corners. Computer runs for freezing were carried out
using the same thermal properties, IC and BC used for the enthalpy computer runs
for 1D freezing. Figure 6 shows computed isotherms for −0.75◦C, −1◦C, −5◦C,
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Figure 6: Predicted −0.75◦C, −1◦C, −5◦C, −10◦C, −15◦C, and −20◦C isotherms
for one quarter of an infinitely long, 0.02-m wide square rod 322 s after
the start of cooling when h = 120 W/m2 ◦C and Ta = −40◦C and the
physical properties previously listed apply.

−10◦C, −15◦C, and −20◦C at t = 322 s for one-quarter of a 0.02-m thick square
rod for h = 120 W/(m2 ◦C) and Ta = −40◦C.

Similar computations were made for all h and a used for 1D calculations. As
h and Bif decreased, distances between 5◦C-spaced isotherms increased. For
the 0.02-m thick square rod, tf ranged from 1,720 s for h = 30 W/(m2 ◦C) to
234 s for h = 1,200 W/(m2 ◦C), and computation times ranged from 57 s at h =
30 W/(m2 ◦C) to 28 s at h = 600 W/(m2 ◦C). Computation times for the other
thicknesses were not greatly different.

17.2 Explicit, temperature step method

Equations (41), (45), (46) and (49) are converted into equations that directly pro-
vide Ti+1 instead of Hi+1 by using C(�T ) instead of �H. The time steps needed
to maintain stability are the same as for the enthalpy step method. Again, direct
computation of Ti+1 causes T to jump over the initial freezing point, Ti, and errors
arise due to use of C at the start of time steps. Therefore, the enthalpy step method
is preferred over the T -step method for multidimensional problems.

17.3 Alternating-direction implicit (ADI) methods

The Crank–Nicholson method and Lee’s finite difference method usually gener-
ate too many simultaneous equations when used directly for multidimensional
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problems. ADI methods reduce the number of equations that have to be solved
simultaneously at one time and are preferred. In the Peaceman and Ratchford
method [72], the Crank–Nicholson method is used in one direction and the explicit
method in all other directions for one time step. The directions in which each method
is used are changed for the next time step. The method has been used for problems
in the x–y plane and for symmetric heat conduction in finite cylinders. It is stable
for all �t for two dimensions, but is only conditionally stable for three dimen-
sions. Other ADI methods and how such methods are used for multidimensional,
food-freezing problems are described in references listed by Cleland [65].

18 Irregular shape and nonuniform composition

Fairly complex programs based on finite difference methods have been used to treat
freezing of irregularly shaped foods [73–78] and nonuniform composition [73, 76].

18.1 Coordinate transformation

Califano and Zaritzky [79] used coordinate transformations to generate irregular
quadrilateral grids that fitted closely the shapes of irregular 2D objects. Predicted
T versus t histories for points in those grids were computed by a finite difference
method for freezing and thawing of minced beef and tylose. Good agreement with
experimental data was obtained. Computation times were short, computer codes
less complex and computer memory requirements much smaller than for a finite
element method (FEM) based program providing similar accuracy.

18.2 Finite element method

Nowadays, programs for computing freezing and thawing behavior in irregularly
shaped food and food of nonuniform composition are based mainly on the use of
FEM.

18.2.1 Literature about FEM use for freezing and thawing problems
Journal articles [80–91] dealing with food freezing and thawing problems solved
through the use of FEM rarely discuss FEM basics or provide program details. Infor-
mation about noncommercial FEM programs can be found in M.S. and Ph.D.theses,
e.g. [92]. Several books [93–95] provide good, lengthy treatments of FEM basics.
Briefer treatment of FEM basics for the widely used Galerkin method and discus-
sion of how FEM can be used for freezing and thawing problems are presented
below. Books by Lewis et al. [96] and Huang and Usmani [97], and chapters in
references [92, 94, 95] treat use of FEM for heat transfer problems.

18.2.2 Galerkin’s method of weighted residuals
In the FEM, the space in an object is subdivided into adjoining, nonoverlapping
elements sharing common boundaries and junction points (nodes). Accuracy is
better when more elements are used, but computation time increases [93, 96].
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FEMs are based on minimizing values of integrals over the entire object space
and over elements in that space. Development of FEM by means of the method
of weighted residuals [93–95] is examined below. FEM development by means of
variational methods [98] will not be covered.

Though symmetric freezing in infinite slabs is treated efficiently by finite differ-
ence methods, FEM-based treatment of such freezing will be used in explaining
the method of weighted residuals. Consider a slab of width 2a convectively cooled
at a and −a. T varies spatially only in the x direction. Therefore linear elements
can be used.

Though CV (∂T/∂t) is often used instead of ∂HV /∂t in programs analyzing heat
transfer by FEM, use of ∂HV /∂t is advantageous when treating freezing or thawing.
In rearranged form, the PDE for heat conduction in an infinite slab is

∂

∂x

(
k
∂T

∂x

)
− ∂HV

∂t
= 0 (57)

Because of symmetry, only the region between x = 0 and x = a is treated. The BCs
are ∂T/∂x = 0 at x = 0, and k∂T/∂x = h(T − Ta) at x = a. The line from x = 0 to
x = a is divided into (m − 1) linear elements, lying end to end, with m nodes, each
node lying at a junction point between elements. Though element lengths could be
unequal, equal lengths are used here. Let T and (∂HV /∂t) that approximately solve
eqn (57) and satisfy the BC and IC be

TA =
m∑

j=1

Nj(Tj)

(
∂HV

∂t

)
A

=
m∑

j=1

Nj

(
∂HV

∂t

)
j

(58)

The Nj are assumed functions of x, and Tj and (∂HV /∂t)j are values at nodes j.
There very likely will be error or a residual, R, when assumed TA and (∂HV /∂t)A

are substituted in eqn (57). The method of weighted residuals seeks to determine
(∂HV /∂t)j and Tj that cause R to be small over the entire problem domain, i.e.
between x = 0 and x = a in this case. It does this by choosing m linearly indepen-
dent weighting functions, Wj, and requiring that∫ a

0
RWjdx = 0. (59)

If so, R ≈ 0 for the entire slab. In the Galerkin method [93], the Wj are chosen to
be the same as the Nj. This requires that∫ a

0
Nj

[
∂

dx
k

(
∂TA

∂x

)
−
(

∂HV

∂t

)
A

]
dx = 0 j = 1, 2, . . . , m (60)

Equation (57) applies at any point in the domain. Therefore, it applies for any
collection of points defining an element in the domain. Thus, we can write∫

(e)
N (e)

j
∂

dx

(
k

(
∂TA

∂x

)(e)
)

dx −
∫

(e)
N (e)

j

(
∂Hv

∂t

)(e)

A
dx = 0 j = 1, 2, . . . , r

(61)
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The symbol (e) indicates that the range of integration is restricted to one element.
In eqn (61), the integral for an element is written as the sum of two integrals, r is
the number of nodes in an element, and N (e)

j serves as an interpolating function as
well as a weighting function for the element. For line elements, r = 2; the Nj that
ultimately provide suitable spatial continuity for T , ∂T/∂x, and ∂HV /∂t are

N1 = x2 − x

x2 − x1
N2 = x − x1

x2 − x1
(62)

where the superscript (e) has been omitted.
∂TA/∂x = �Tj(dNj/dx), which replaces ∂TA/∂x in the first integral in eqn (61).

Then, the first integral is integrated by parts. This reduces the x derivative order by
one, satisfying derivative continuity requirements for FEM use [93] and yields

k

(
∂T

∂x

)∣∣∣∣
2
− k

(
∂T

∂x

)∣∣∣∣
1
+
∫ 2

1
k

[
dN

dx

]
{T}(e) dNj

dx
dx (63)

[dN/dx] is a row vector, {T}(e) is a column vector and k(∂T/∂x)|1 and k(∂T/∂x)|2
are k(∂T/∂x) evaluated at node 1 and node 2, respectively. Expression (63) replaces
the first integral in eqn (61). Then �Nj(∂HV /∂t)j is substituted for (∂HV /t)A in the
second integral, and it and the unintegrated part of the first integral are integrated.
This yields a pair of equations. Similar pairs are obtained for each element.

Node 2 of a line element is also node 1 for the next element. Pairs of equations for
(∂HV /∂t)j at the same node are added to solve for the (∂HV /t)j. Thus, at all interior
nodes −k(∂T/∂x)1 and k(∂T/∂x)2 for neighboring element cancel. Since no ele-
ment precedes x = 0, −k(∂T/∂x)1 is not cancelled there. Since no element follows
x = a, k(∂T/∂x)2 is not cancelled there. From the BC, (∂T/∂x) = 0 at x = 0,
and k(∂T/∂x) = h(Tm − Ta) at x = a, i.e. at node m, where Tj = Tm. Integration
by parts, whether in one dimension, two dimensions (Green’s theorem), or three
dimensions (Gauss’s theorem) introduces BC into equations pertaining to nodes on
external boundaries [93].

Complete integration of eqn (61) yields matrix eqn (64). Details of intermediate
steps in that process are provided in references [93–95].

[C]{H ′
V } + ([Kc] + [Kh]){T} = {Rh}. (64)

In eqn (64), braces { } indicate a column vector, and brackets [ ] a square matrix,
2 × 2 in the present case. (H ′

V )j means (∂HV /∂t)j, and

{T} =
{

T1
T2

}
{H ′

V } =
{(

H ′
V

)
1(

H ′
V

)
2

}
(65)

In this example, T1 and T2 are current values.

[Kc] = kA

(�x)

[
1 −1

−1 1

]
(66)

(�x) = (x2 − x1), the element length, and kA = (k1 + k2)/2.
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[Kh]{T} and {Rh} are utilized only at the node at x = a, where they are

[Kh]{T} = hTm {Rh} = hTa (67)

Matrix [C] has two forms: (1) the ‘consistent’ form

[C] = �x

6

[
2 1
1 2

]
(68)

and (2) the ‘lumped’ form

[C] = �x

2

[
1 0
0 1

]
(69)

Lumped [C] should be used when HV changes are determined by explicit methods
[93], as in the present case.

Because column vectors {T} and {H ′
V } contain two rows, there are two equation

for each element. (2m − 1) equations are obtained after eqn (64) is evaluated for
all elements. The Tj are known; the (H ′

V )j- have to be found. Except for the first
and last elements, (H ′

V ) in the second equation for an element is the same as (H ′
V )

in the first equation for the following element. At internal nodes, the two equations
for H ′

V ) are added before solving for the (H ′
V )j. This yields m uncoupled algebraic

equations, one for each node. In the present case, these equations are the same as
those used to determine (∂HV /∂t) at points in infinite slabs by the explicit, enthalpy
step, finite difference method. The FEM-based equations provide no advantage in
the present case, but methods and concepts used in deriving them can be employed
profitably in FEM treatment of more complex freezing and thawing problems.

18.2.3 Explicit time-stepping methods for FEM
Explicit FEMs generate uncoupled algebraic equations, even for complex 2D and
3D freezing and thawing problems. For such equations,

a. (HV )i+1
j = (HV )i

j + (H ′
V )j(�t) for all j;

b. (Tj)i+1 are computed from the (HV )i+1
j for all j by using eqn (40);

c. the (Tj)i+1 then become the (Tj)i used to compute new kj, (HV )i
j and (H ′

V )j for
all j;

Steps (a)–(c) are repeated until a desired (Tj)I+1 is reached at a given node.
Program sections for the time-stepping part of explicit FEM are easy to write, but

small �t must be used to prevent instability [91, 93, 98]. Step-by-step determination
of allowable �t is often burdensome for complex 2D or 3D freezing and thawing
problems. Therefore, a trial �t is often used and �t is reduced when instability
or oscillation is detected [91]. After �t is reduced, the (H ′

V )i
j, (HV )i+1

j , and (T )i+1
j

for the step just completed are recalculated. Pham [99] devised a self-correcting,
enthalpy-based, explicit FEM which is stable even when large, normally intolerable
�t are used.
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18.2.4 Implicit time-stepping methods for FEM
FEM programs often use implicit time-stepping methods, particularly methods that
are stable for all �t and which permit use of large �t. These methods generate large
sets of coupled equations that have to be solved simultaneously. In the backward
difference method (BDM), the (H ′

V )i
j are obtained by using Ti+1

j instead of Ti
j in

{T}. This generates equations containing variables from both time i and time i + 1.
BDM are oscillation free, can use relatively large �t, but when �t was too large
have yielded inaccurate results for FEM-based treatments of freezing and thawing
problems [91].

The extended trapezoid rule (ETR), Hi+1
j = Hi

j + (�t)((H ′
V )i

j + (H ′
V )i+1

j )/2, has
also been used in programs for solving freezing and thawing problems by FEM. It
has also yielded inaccurate results when �t was too large [91].

18.2.5 2D problems
Triangular elements can fit irregular curves closely and completely fill areas sur-
rounded by such curves. Thus, they are used most frequently for 2D FEM problems
[93], e.g. computing freezing and thawing behavior in infinitely long rods of any
shape and in axisymmetric or nearly axisymmetric bodies such as hamburgers,
straight sausages, finite cylinders, and many fruit. Figure 7 shows finite element
layouts for half cross-sections of Rome apple and Bartlett pears [100]. The apple
layout contains 39 triangular elements and 28 nodes; the pear has 37 triangular
elements and 29 nodes.

Quadrilateral elements can be used for 2D problems involving domains well-
fitted by such elements. Highly irregular curved areas have been treated by FEM
using small numbers of ‘isoparametric’ elements with curved edges, and nodes at
points along their edges as well as at vertices between edges [93, 94].

Rome apple

Bartlett pear

Figure 7: Layout of triangular elements for Rome apple and Bartlett pear treated as
axisymmetric bodies by Carrol et al. [100].
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Equation (63) is also used for triangular elements. [C] and [Kc] now contain Ae,
the element area, as a prefactor and 3 × 3 matrices, e.g. [C] = (Ae/3)[G], where
[G] is a matrix, 3 × 3 in the present case, whose only nonzero entries are 1, 1, 1
along its principal diagonal. {T} and {H ′

V } now have three rows, and three equations
per element are generated initially. Thus, 117 equations are generated for the apple
layout. Adding equations for (H ′

V ) at the same node reduces this number to 28, one
equation for each node.

Combining, arranging, and solving FEM equations can be complicated even for
the simple element layout used for the apple. Solving such equations by matrix
methods is facilitated by node-numbering practices and program subroutines that
sequence equations so coefficients for the Tj form a compact group around the main
diagonal of the coefficient matrix for the overall set of equations [93, 94, 97].

18.2.6 3D problems
Tetrahedral elements provide good volume-filling and surface-fitting ability and
frequently are used for 3D objects. Figure 8, an element layout for a quarter of an
ellipsoid whose axes are all of different length, contains 1,979 tetrahedral elements
and 491 nodes [91]. Because of symmetry, only a quarter of the ellipsoid had to
be modeled. Far fewer triangular elements could have been used if the ellipsoid
had been axisymmetric. Axial and lateral symmetry should be exploited whenever
possible when using FEM.

Small numbers of 3D isoparametric elements with curved surfaces have been
used for FEM analysis of heat transfer in highly curved 3D domains [101].

Equation (64) is used for tetrahedral elements also, but with 4 × 4 matrices,
four-row {T} and {H ′

V }, and four equations per element. Thus, 7,916 equations are
generated for elements in the ellipsoid in Fig 8. Equations relating to the same (H ′

V )j

are added, yielding 491 equations for the (H ′
V )j at nodes. Scheerlinck et al. [91]

used a commercial enthalpy-based FEM program run on interconnected parallel

Figure 8: Layout of tetrahedral elements used in modeling freezing in an ellipsoid
whose sides are of unequal length. Based on Scheerlinck et al. [91].
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computers to predict T versus t behavior during freezing for points along the ellip-
soid’s smallest axis. They also treated the same problem by FEM-based programs
and approaches of their own devising.

18.2.7 Meshing
Dividing object domains into elements is called meshing or discretizing. Large
numbers of elements have been used for meshing irregular or even fairly regular
3D objects. Cheung et al. [102] describe a number of meshing methods. Mesh-
ing is often implemented by programs or subprograms that generate domain-filling
arrays of contiguous elements, label all elements and nodes, determine the spatial
coordinates of nodes, and store that information in computer files. These programs
sometimes are used in conjunction with image acquisition equipment and soft-
ware, computer-aided design (CAD) software, and/or food image libraries [103].

18.2.8 Steps in solving freezing 3D problems by FEM
Full FEM treatment of unsteady-state, 3D freezing problems by enthalpy methods
involves: (1) generating a shape-fitting mesh with adequate numbers of elements;
(2) keeping track of the elements, nodes, and nodal spatial coordinates; (3) using
nodal coordinates to formulate weighting functions for the elements; (4) setting up
equations for T and H ′

V at the nodes in each element; (5) combining and ordering
these equations to yield a smaller number of well-ordered equations for the H ′

V at
nodes; (6) entering h and Ta values for equations for surface nodes; (7) inserting
initial or new T for the nodes; (8) using these T to compute k and HV at the nodes;
(9) solving equations to determine H ′

V at all the nodes; (10) using the H ′
V at nodes

and a suitable �t to determine Hi+1
V at nodes; (11) using eqn (40) to determine

corresponding Ti+1 values; and (12) repeating steps (7) to (11) for successive time
steps until a set freezing time has elapsed or a desired final T is reached at some
node. Step (6) is repeated whenever h or Ta changes at some or all surface nodes.

18.2.9 FEM Software
Commercial FEM software often provides graphical user interfaces, is user friendly
[103, 104], can be used without understanding FEM principles, and has been used
to treat complex [91] and noncomplex [87, 89, 90] freezing and thawing problems
including problems involving freezing-induced mechanical stress [90]. Expensive,
general purpose commercial FEM software, e.g.ABAQUS/Standard [105],ANSYS
[106], run on powerful computers were used to solve some of these problems. Now
such problems can often be handled on work stations or up-to-date PCs by less
expensive FEM software, e.g. FEMLAB [107],ALGOR Professional Heat Transfer
[108], ANSYS Professional/Introductory Level, and TOPAZ3D [109], many of
which are available at still lower cost for academic use. Students can obtain even
cheaper FEM software, e.g. ABAQUS Student Edition [110], for personal use.
FEM programs for freezing and thawing have been and will continue to be written
using general purpose, math-based software such as FORTRAN and MATLAB [91,
111] that run on PCs or work stations. CALFEM [112], an interactive program for
teaching FEM, can be used as an FEM toolbox for MATLAB.
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Nomenclature

A half thickness or radius of piece of food (m)
aw water activity
A 40CF − [(nwo − Bns)�HoTi]/40, see eqn (19)
Ae area of triangular element
As exposed surface area of piece of food
b water binding factor (kg bound and adsorbed water)/(kg solute +

solids)
B (b − 0.5E)
Bi Biot number = 2ha/k
Bif Biot number in the fully frozen state = 2ha/kf
C effective heat capacity of food during freezing or thawing [kJ/(kgK)]
CV Cρ, volumetric heat capacity of food [kJ/(m3 K)]
Co heat capacity of food in thawed state [kJ/(kg K)]
CF heat capacity of food in fully frozen state [kJ/(kg K)]
CI heat capacity of ice [2.09 kJ/(kg K)]
Cs partial heat capacity of solute + solids [kJ/(kg K)]
Cw heat capacity of water [4.18 kJ/(kg K)]
[C] capacitance matrix in finite element treatment of freezing and

thawing
E 18.02/Ms
fi numerical factor for ith period of freezing in eqn (25)
F (Hi+1

j + L + CFTi) (kJ/kg)
G square matrix with ones along its principal diagonal and zeros

elsewhere
h surface heat transfer coefficient between cooling or thawing medium

and piece of food [kW/(m2 K)]
H enthalpy per unit mass of food (kJ/kg)
HI specific enthalpy of ice (kJ/kg)
Hs partial enthalpy of the solids and solutes combined (kJ/kg)
H(Ti) value of H at Ti (kJ/kg)
HTi enthalpy per unit mass of food using as Ti as TR (kJ/kg)
H−40 enthalpy per unit mass of food using as −40◦C as TR (kJ/kg)
HV Hρ, volumetric enthalpy of food (kJ/m3)
Hw specific enthalpy of liquid water (kJ/kg)
Hw partial enthalpy of liquid water (kJ/kg)
H1 enthalpy per unit mass of food at T1 (kJ/kg)
H2 enthalpy per unit mass of food at T2 (kJ/kg)
H ′

V ∂HV /∂t (kW/m3)
�Hav mean latent heat of fusion of water between 273.16 K and T (kJ/kg)
�HE amount of heat removed per unit mass during freezing (kJ/kg), in

eqn (23)
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�Hi heat per unit mass removed in ith period of freezing (kJ/kg), in
eqn (25)

�Ho latent heat of fusion of water at 273.16 K (333.57 kJ/kg)
�HT latent heat of fusion of water at T (kJ/kg)
J half the number of (�x) layers in a heat transfer computation grid,

at the grid’s outer surface in the positive x direction
k thermal conductivity of food [kW/(m K)]
ka thermal conductivity of air [kW/(m K)]
kA average thermal conductivity in finite element [kW/(m K)]
kd thermal conductivity of dispersion [kW/(mK)]
kf thermal conductivity of food in fully frozen state in eqn (20)

[kW/(m K)]
k′

f thermal conductivity of food in frozen state in eqn (21) [kW/(m K)]
ko thermal conductivity of unfrozen food in eqn (20) [kW/(m K)]
K half the number of (�y) layers in a heat transfer computation grid,

at the grid’s outer surface in the positive y direction
[Kc] conductance matrix in FEM, see eqns (64) and (66)
[Kh] convective matrix in FEM, see eqns (64) and (67)
L (nwo − Bns)�Ho (kJ/kg)
Ms effective molecular weight of solutes and solids combined
M half the number of (�z) layers in a heat transfer computation grid,

at the grid’s outer surface in the positive z direction
m thermal conductivity correction factor used in eqn (21) to account

for increase in ice’s thermal conductivity as T decreases below Ti
m The number of nodes in a set of (m − 1) line elements eqn (60)
n (number of temperature nodes −1) for finite difference calculations

involving unidirectional freezing and thawing
nI weight fraction of ice in partially frozen food (kg ice/kg food)
ns weight fraction of solutes or solids in food (kg solids/kg food)
nw weight fraction of unfrozen water in partially frozen food nwo − nI
nwo overall weight fraction of water in food (kg water/kg food)
Nj weighting and interpolation factor in FEM, see eqns (58), (60) and

(61)
(Ni

J )K ,M term defined by eqn (55)
(Ni

K )J ,M term defined by eqn (56)
Pi

j term defined by eqn (42)
Pi

k term defined by eqn (43)
Pi

m term defined by eqn (44)
Qi

J term defined by eqn (47)
Qi

K term defined by eqn (48)
r distance from the center or center plane of an object (m) eqns

(26)–(28)
r number of nodes in an element, e.g. as in eqn (62)
�r a/(n − 1), distance between temperature nodes (m)
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R perfect gas law constant
R residual in FEM integral, see eqn (59)
{Rh} Ta-based convective column vector in FEM, see eqns (64) and (67)
Si

j term defined by eqn (52)
Si

k term defined by eqn (53)
T food temperature, local food temperature (K) (◦C sometimes)
T1 initial T (K or ◦C)
T2 final T (K or ◦C)
T2a average final T of food (K or ◦C) used in eqn (25)
T2c desired final T at center of food (K or ◦C)
Ta temperature of cooling or heating medium (K or ◦C)
TA T function specified by eqn (58)
TC T in ◦C
Tfa mean effective temperature during freezing stage 2 in eqn (25) (◦C)
Ti initial freezing point of solution or food (K or ◦C)
To freezing point of pure water (273.16 K)
TR reference temperature for enthalpy of food (Ti or −40◦C)
�Ti temperature driving force during ith period in eqn (25)
t time (s)
tC time to bring food from T1 > Ti to T2 < Ti; eqns (24) and (25) (s)
tf freezing time for food initially at Ti (see eqn 23) (s)
VF volume of piece of food (m3)
Wj weighting factor in FEM based on method of weighted residuals, eqn

(59)
X extent of Cartesian grid in x direction (m)
Xw mole fraction of water in solution or food, eqns (1) and (4)
Xwe effective mole fraction of water in solution or food, eqns (5) and (6)
x lateral distance from the center or a side of object (m)
�x X/J , distance between sets of temperature nodes in the x direction

(m)
Y extent of Cartesian grid in y direction (m)
y distance back from center of object or from its front surface (m)
�y X/K , distance between sets of temperature nodes in the y direction

(m)
Z extent of Cartesian grid in z direction (m)
z vertical distance from center of object or from its bottom surface (m)
�z Z/M, distance between sets of temperature nodes in the z direction

(m)
α volume geometric factor for lamina
β geometric factor for surface area of lamina
γw activity coefficient of water
ν geometric index: 1 for infinite slabs, 2 for infinite cylinders, 3 for

spheres
ε porosity (m3 pores/m3 food)
ρ density of food (kg/m3)
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Subscripts

A function designed to satisfy PDE, BC, and IC in FEM
i ith term in summation in eqn (25)
j at the jth surface of an object eqn (28)
j at jth position from the x or r axis in a grid
j jth node in FEM
j + 1/2 midway between j and j + 1
j − 1/2 midway between j and j − 1
J at a grid’s outer surface in the positive x direction
−J at a grid’s outer surface in the negative x direction
k at the outer surface of the kth layer from the y axis in a grid
K at a grid’s outer surface in the positive y direction
−K at a grid’s outer surface in the negative y direction
m at the mth or outermost node in a set of line elements
m at the outer surface of the mth layer from the z axis in a grid
M at a grid’s outer surface in the positive z direction
−M at a grid’s outer surface in the negative z direction
n at the surface of a 1D body, number of lamina in that body
0 at center of body

Superscripts

i at current time or at time i
i + 1 at the next step after the current time step, at time t + �t
i − 1 at time step just preceding current time step, at time t − �t
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