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Abstract

This chapter deals with a relatively new application domain of the generalized 
sound recognition technology, audio surveillance. The particular branch of com-
putational auditory scene analysis aims at detecting acoustic events that may be 
indicative of catastrophic situations (e.g., gunshot, scream, etc.) in timely fashion. 
In general, this kind of systems is meant to help the authorized personnel through 
a decision support interface toward taking the appropriate actions for minimizing 
the effect of the hazard. This chapter provides a thorough analysis on the way that 
the generalized audio recognition technology can be adapted to the needs of audio 
surveillance. The acoustic parameters and the pattern recognition algorithms 
that can be used for the specifi c domain are explained. Subsequently, this work 
provides a representative picture of the bibliography and discusses several aspects 
that could be of interest with respect to future directions. Lastly, it mentions 
several privacy concerns along with conclusions, where the merits of surveillance 
frameworks that are based on heterogeneous modalities are emphasized.

Keywords: Computational Auditory Scene Analysis, Sound Event Detection, 
Audio Pattern Recognition, Civil Safety

1 Introduction

Nowadays surveillance is becoming a common practice in various environments, 
like stores, agencies, and so on. Detection of situations that may include any type 
of danger (human injuries, damage of properties, etc.) is of particular importance 
for civil safety. As a result, there is a need for unattended space monitoring, 
which has motivated the signal processing community toward experimenting 
with various frameworks. Surveillance systems are typically based on the vis-
ual modality since the information they capture may provide an accurate picture 
of the region of interest [1]. However, there are several problems that need to 
be handled, like the fi eld of view of the sensor network for capturing the entire 
region as well as the fact that several scenes may look normal even though an 
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192 CRITICAL INFRASTRUCTURE SECURITY

atypical situation is in progress. On top of that the acoustic modality can cap-
ture information that may be diffi cult or even impossible to obtain by any other 
means. The basic advantages of the acoustic sensors over the visual ones are (a) 
lower computational needs during information processing and (b) the illumina-
tion conditions of the space to be monitored and/or possible occlusions do not 
have an immediate effect on sound.

In this chapter, audio surveillance includes capturing the audio information 
of a particular space and processing the incoming sequence toward detecting 
sound events that are indicative of catastrophic situations, that is, atypical sound 
events, for example, scream, gunshot, explosion, and so on. This defi nition clearly 
states that audio surveillance primarily constitutes a branch of the general-
ized sound recognition technology. The particular technology is a part of the 
scientifi c domain, which is often called computational auditory scene analysis 
(CASA), and aims at a complete description of the region of interest based solely 
on the acoustic modality. A complete description typically includes localization, 
enumeration, separation, and recognition of all the included acoustic emissions. 
Sound recognition has many interesting applications, which can be categorized 
as follows:

Voice activity detection (VAD): The principal goal of a VAD algorithm is to 
segment an audio signal into speech and nonspeech parts. This process is to 
assist a speech/speaker recognition system by elaborating on speech segments 
alone, thus improving its performance.
Applications as regards to processing of musical signals: Over the past decade, 
this application category has attracted the interest of a relatively large number 
of researchers [2–4]. It includes applications such as music transcription, iden-
tifi cation of music genre, recognition of performer, indexing and retrieval of 
musical data, and so on.
Applications as regards to processing of bioacoustic signals: This special kind of 
audio signals belongs to very different frequency ranges. Animal vocali zations 
may be employed for mate attraction, territorial defense, and so on. There exists 
a variety of applications, like tracking of animals, monitoring of endangered 
species, biodiversity indexing [5–7], and so on.
Applications of machine acoustics signal processing: This area encompasses 
processing of acoustic signals emitted by solids (e.g., metal, rock, ceramic, 
etc.) when they are subjected to stress. These emissions can be characteristic 
of internal fracture and/or deformation. The associated applications are non-
destructive testing, fault detection and function control, maintenance services 
[8,9], and so on.
Context recognition: The specifi c application domain essentially comprises the 
recognition of the physical environment around a device, including identifi cation 
of relevant sound events as well as recognition of the activity of the user. Context 
recognition gives the ability to a device to alter its functions according to the 
surrounding environment [10]. Other applications are memory extension [11], 
environment recognition for robots [12], acoustic surveillance [13], and so on.
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AUDIO SURVEILLANCE 193

This chapter is organized as follows: Section 2 focuses on the domain of gener-
alized sound recognition as seen from the scope of audio surveillance. Section 3 
provides an overview of the literature along with evaluation methodologies that 
are usually employed. Subsequently, Section 4 mentions some privacy concerns, 
while conclusions are drawn in Section 5.

2 Sound recognition for audio surveillance

The domain of audio recognition is currently dominated by techniques that are 
mainly applied to speech technology [14]. This fact is based on the assumption 
that all audio streams can be processed in a common manner, even if they are 
emitted by different sources. In general, the goal of generalized audio recogni-
tion technology is the construction of a system that can effi ciently recognize its 
surrounding environment by solely exploiting the acoustic modality. Every sound 
source exhibits a consistent acoustic pattern that results in a specifi c way of dis-
tributing its energy on its frequency content. This unique pattern can be discov-
ered and modeled by using statistical pattern recognition algorithms. Similarly, 
an audio surveillance system models and subsequently identifi es the spectral 
patterns of atypical sound events. However, there exists a variety of obstacles 
that need to be tackled when such a system operates under real-world conditions. 
When we have to deal with a large number of different sound classes, the rec-
ognition performance is decreased. Moreover, the categorization of sounds into 
distinct classes is sometimes ambiguous (an audio category may overlap with 
another), while composite real-world sound scenes can be very diffi cult to ana-
lyze. This fact has led to solutions that target specifi c problems, while a generic 
system is still an open research subject.

A typical sound recognition system as regards to classifi cation of N sound 
categories is depicted in Figure 1. Initially, the audio signal passes through a pre-
processing step, which usually includes mean value removal and gain normaliza-
tion. This stage is to remove inconsistencies for facilitating the parameterization 
step. Preprocessing is of particular importance with respect to acoustic surveil-
lance toward avoiding any loss of information. DC offset appears in the case 
where a waveform has unequal quantities in the positive and negative spaces. 
Our scope is the signal to have its middle point at zero for obtaining the maxi-
mum dynamic range. Furthermore, it is usual for an abnormal sound event to 
demonstrate the “clipping” effect. Gain normalization scales the audio data so 
that the amplitude of the respective waveform is increased to the maximum level 
without introducing any type of distortion. Subsequently, the signal is segmented 
into frames of predefi ned size using a windowing technique (e.g., Hamming). 
Then the hypothesis is made that inside a particular frame the characteristics 
of the audio signal are stationary. Moreover, an overlap is usually inserted with 
respect to adjacent frames for smoothing any discontinuities. Various frame 
and overlap sizes have been reported in the literature (30–200 ms). The opti-
mal choice depends on the specifi cs of the particular application, while it should 
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194 CRITICAL INFRASTRUCTURE SECURITY

be made after extensive experimentations. Afterwards, a feature extraction 
methodology is applied onto each frame. Feature extraction is a data reduction 
procedure, while its purpose is to summarize the audio segments using low-
dimensional vectors. These vectors should capture the most relevant information 
with respect to a specifi c classifi cation task. It should be noted that the inclusion 
of nonrelevant information may result in decreased performance. For example, 
in the audio surveillance case when one has to classify between explosions and 
screams, one should use features that are able to capture the differences between 
these two types of signals, for example, Mel frequency cepstral coeffi cients 
(MFCC) and features based on the Teager energy operator [15]. The following 
feature sets, which are typically used for sound recognition, can be employed for 
the special case of audio surveillance:

MFCC: They originate from the speech/speaker recognition fi eld. Their basic 
purpose is to mimic the human auditory system to some extent. More specifi -
cally, during their computation the nonlinearity of pitch perception as well as 
the nonlinear relationship between intensity and loudness are considered. In 
combination with their low computational cost, they have become the standard 
choice for many speech-related tasks, such as language identifi cation, emotion 
recognition, and so on.
The block diagram with respect to MFCC’s extraction is depicted in Figure 2. 
Initially the signal is cut into frames of small duration (20–40 ms) based on 
the Hamming window technique. At this stage, a hop-size of 10 ms is usually 
employed. Afterwards the short-time Discrete Fourier Transform (DFT) is cal-
culated for each frame using a predefi ned number of points (e.g., 256 or 512). 
A triangular fi lter bank elaborates on the outcome of the DFT. Subsequently, 
the data are logarithmically spaced and the Discrete Cosine Transform (DCT) is 
applied for exploiting its energy compaction properties.
MPEG-7 low-level descriptors (LLD) [16]: MPEG-7 provides a set of stand-
ardized tools for automatic multimedia content description and offers a degree 
of “explanation” of the information meaning. It eases navigation of audio data 
by providing a general framework for effi cient audio management. Further-
more, it includes a group of fundamental descriptors and description schemes 
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Figure 1:  A sound recognition system as regards to classifi cation of N sound 
categories.
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AUDIO SURVEILLANCE 195

for indexing and retrieval of audio data. Seventeen temporal and spectral 
descriptors that are useful for generalized sound recognition are used within 
the MPEG-7 audio standard. Several of them are quite simplistic (e.g., Audio 
Power) while others mainly target music processing (e.g., the ones that belong 
to the timbral group). The LLDs that may be proven effective as regards to the 
task of audio surveillance are as follows:

a)  Audio spectrum envelope: This series of features belong to the basic 
spectral descriptors and is derived for the generation of a reduced spectro-
gram of the original audio signal. It is a log-frequency power spectrum and 
calculated by summing the energy of the original power spectrum within 
a series of logarithmically distributed frequency bands using a predefi ned 
resolution.

b)  Audio spectrum centroid: The center of the log-frequency spectrum’s 
gravity is given by this descriptor. Omitting power coeffi cients bellow 
62.5 Hz (which are represented by a single coeffi cient) makes able the 
avoidance of the effect of a nonzero DC component.

c)  Audio spectrum spread: The specifi c LLD is a measure of signal’s spectral 
shape and corresponds to the second central moment of the log-frequency 
spectrum. It is computed by taking the root mean square deviation of the 
spectrum from its centroid.

d)  Audio spectrum fl atness: This descriptor is a measure of how fl at a partic-
ular portion of the spectrum of the signal is and represents the deviation 
of the signal’s power spectrum from a fl at shape. The power coeffi cients 
are taken from nonoverlapping frames, while the spectrum is typically 
divided into ¼-octave resolution logarithmically spaced overlapping fre-
quency bands. The ASF is derived as the ratio of the geometric mean and 
the arithmetic mean of the spectral power coeffi cients within a band.

The next stage of the sound recognition methodology, which is illustrated in 
Figure 1, is the post-processing of the extracted features. Techniques for normal-
izing the cepstral coeffi cients and/or the dynamic range are usually included. 
Both can be proven helpful for acoustic surveillance since they may reduce the 
dereverberation effects that usually appear when it comes to real-world condi-
tions. Moreover, they can help during the classifi cation stage, since they allow 
for a better comparison of the underlying characteristics that are exhibited by 
the novel data with the ones of the training data.

Audio signal

Windowing DFT Mel filter bank LOG operator DCT
MFCCs

Figure 2: Extraction of MFCC.
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196 CRITICAL INFRASTRUCTURE SECURITY

Another type of post-processing that can be used concurrently targets at pro-
jecting the feature coeffi cients onto a low-dimensional space. These processes 
try to keep only a small amount of the feature coeffi cients, which include their 
most important information. Even though feature projection facilitates the clas-
sifi cation stage (since high-dimensional data tend to lead to a sparse representa-
tion), one should take extra care in order not to discard important information. 
The dimensionality reduction techniques that are proposed by the MPEG-7 
audio standard are singular value decomposition, principal component analysis, 
nonnegative factorization, and independent component analysis. These can be 
used for audio surveillance tasks while keeping in mind that their majority are 
data depended approaches, which means that a large deviation between the train 
and test data may lead to disappointing recognition accuracy.

As a general comment on signal parameterization with respect to the area of 
audio surveillance, we claim that the features that provide a description of the 
spectrum are the most useful ones since the Fourier transform can effi ciently 
characterize pressure waves. We believe that the MFCCs can provide a strong 
basis for the formulation of an effective feature set. MPEG-7 LLDs that char-
acterize the signal in a different way can be appended. Their selection depends 
on the needs of the specifi c application. In addition, descriptors derived from 
the wavelet domain can also be used since their combination with the spectral 
ones have been shown to lead to improved recognition accuracy as regards to 
generalized sound classifi cation [17]. The particular domain has not been fully 
explored as regards to atypical sound event detection, and we think that it could 
be very interesting for future research. Finally, our suggestion is to employ the 
DCT for the post-processing of the fi nal feature vector since it is almost as effi -
cient as the data-driven approaches at a much lower computational cost.

The fi nal step of Figure 1 is the classifi cation. The classifi ers that are cur-
rently employed by the audio recognition community can be divided into two 
categories: discriminative and nondiscriminative. The discriminative ones try 
to approximate a boundary between the categories of the training data. Some 
examples are the polynomial classifi er [18], multilayer perceptron [19], and 
Support Vector Machines (SVMs) [20]. On the opposite side, the generative 
approaches, which are the main class of the nondiscriminative classifi ers, try to 
estimate the underlying distribution of the training data. They include Gaussian 
mixture models (GMMs) [21], hidden Markov models (HMMs) [22], and prob-
abilistic neural networks (PNN) [23]. Other nondiscriminative approaches are 
the k-nearest neighbors (k-NN) [24] and the learning vector quantization (LVQ) 
[25]. In addition, several hybrid classifi cation schemes have been reported in 
the literature [26–28], which exploit the merits of the two types of classifi ca-
tion approaches. The majority of the audio surveillance frameworks that exist 
in the literature are based on generative approaches since these approaches tend 
to provide high recognition rates. However, there is still room for improvement 
and the most promising way to achieve higher performance is the development 
of hybrid methods. This kind of methods can be adjusted so as to satisfy the 
requirements of a specifi c application and potentially provide improved results.
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3 A representative picture of the related literature

This section intents to provide a representative picture of what has been devel-
oped so far in the area of audio surveillance (see also Table 1). The emphasis 
of previous approaches is mainly placed on the classifi er, the feature extraction 
process, the training data, and the number of classes. The system of Ntalampiras 
et al. [29] exploits the advantages of maximum a posteriori adaptation as well as 
diverse feature sets that allow detection of scream, normal speech, background 
environment, gunshot, and explosion sound events. The authors report results 
after a continuous operation for three subsequent days while using three types of 
environmental noise (metro station, urban and military environment). Their data-
base was formed by using a combination of professional sound effect collections. 
Valenzise et al. [30] presented a surveillance system for gunshot and scream 
detection and localization in a public square. Forty-nine features were com-
puted in total and given as an input to a hybrid fi lter/wrapper selection method. 
Its output was used to build two parallel GMMs for identifying screams from 
noise and gunshots from noise. Data were drawn out from movie sound tracks, 
Internet repositories, and people shouting at a microphone while the noise sam-
ples were captured in a public square of Milan. An interesting application, crime 
detection inside elevators, was explained in [31]. Their approach relied on time-
series analysis and signal segmentation. Consistent patterns were discovered and 
the respective data were used for training one GMM for each one of the eight 
classes using low-level features. The data set contained recordings of suspicious 
activities in elevators and some event-free clips while they reported detection 
of all the suspicious activities without any misses. A gunshot detection method 
under noisy environments was explained in [32]. Their corpus consisted of data 
that were artifi cially created from a set of multiple public places and gunshot 
sound events extracted from the national French public radio. Widely used fea-
tures were employed, including MFCC for constructing two GMMs with respect 
to gunshot and normal class using data of various Signal-to-Noise Ratio (SNR) 
levels. In [33] the issue of detection of audio events in public transport vehi-
cles was addressed by using both a generative and a discriminative method. The 
audio data were recorded using four microphones during four different scenarios, 
which included fi ght scenes, a violent robbery scene, and scenes of bag or mobile 
snatching. They used GMM and SVM while their feature set was formed from 
the fi rst 12 MFCC, energy, derivatives, and accelerations. Vacher et al. [34] pre-
sented a framework for sound detection and classifi cation for medical telesurvey. 
Their corpus consisted of recordings made in the CLIPS laboratory, fi les of the 
“Sound Scene Database in Real Acoustical Environment” (Real World Comput-
ing Partnership* (RCWP) Japan). They used wavelet-based cepstral coeffi cients 
to train GMMs for eight sound classes while their system was evaluated under 
different SNR conditions. A hierarchical classifi cation scheme that identifi ed 

* http://tosa.mri.co.jp/sounddb/indexe.htm
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Table 1: Various approaches on the task of acoustic surveillance.

Reference Atypical 
sound 
classes

Model 
adaptation

Classifi er Features Database

Ntalampiras 
et al. [29]

Scream, 
gunshot, 
and 
explosion

MAP 
adaptation 
of GMMs

GMM MFCC, 
MPEG-7, 
CB-TEO, 
Intonation

Large audio 
corpora 
from 
professional 
sound effects 
collections

Valenzise 
et al. [30]

Scream 
and 
gunshot

– GMM Temporal, 
spectral, 
cepstral, 
correlation

Movie 
soundtracks, 
Internet, 
and people 
shouts

Radhakrishnan 
& Divakaran 
[31]

Banging 
and non-
neutral 
speech

– GMM MFCC Elevator 
recordings

Clavel 
et al. [32]

Gunshot – GMM MFCC, 
spectral 
moments

CDs for the 
national 
French 
public radio

Rouas 
et al. [33]

Shout Adaptive 
threshold 
for sound 
activity 
detection

GMM, 
SVM

Energy, 
MFCC

Recorded 
during four 
scenarios

Vacher 
et al. [34]

Scream 
and glass 
break

– GMM Wavelet-
based 
cepstral 
coeffi cients

Laboratory 
recordings 
and RCWP

Atrey et al. 
[35]

Shout – GMM ZCR, LPC, 
LPCC, 
LFCC

Recorded 
in offi ce 
corridor

Ito et al. [36] Glass 
clash, 
scream, 
fi re 
cracker

Adaptive 
threshold 
for 
abnormal 
sound 
event 
detection

GMM MFCC, 
Power

Recorded 
under 
laboratory 
conditions
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normal from excited sound events was described in [35]. The authors used four 
audio features for training GMMs, each one associated with one node of the 
classifi cation tree. The audio was recorded for around two hours in the real envi-
ronment (offi ce corridor) and included talk, shout, knock, and footsteps. In [36] 
the authors use a multistage schema based on GMMs that “learns” the normal 
sounds and subsequently detects events that exhibit large differences from the 
normal ones. A procedure for automatic determination of the threshold that dif-
ferentiates between normal and abnormal sounds is also reported. Their feature 
vector includes the 16 fi rst MFCCs and the power along with the corresponding 
derivatives while their experiments took place on recordings made under labora-
tory conditions.

It is argued that previous research in the specifi c domain is far from con-
cluding on a common framework as, for example, in the case of speech/speaker 
recognition where the classifi er and the feature extraction process is more or 
less established (i.e., GMMs and HMMs as classifi ers and variations of spectral 
features as input). The diffi culty basically lies on the next three facts:

1. An atypical situation is not a well-defi ned category (e.g., laughter vs cry vs 
scream).

2. There are many cases where there is a thin line between a typical and an atypi-
cal situation (e.g., gunshot vs explosion).

3. The microphone can be located far from the source of the acoustic incident; 
therefore, reverberation and acoustic events belonging to an almost unrestricted 
range of classes may become the input to the microphone.

As a general conclusion, we can point out the fact that statistical-based 
approaches are used by the majority of the authors, while for each article the 
feature set is chosen so as to fi t the needs of the specifi c application. An interest-
ing direction to follow would be the establishment of frameworks that include 
hybrid methods during the pattern recognition phase, such as the combination of 
generative and discriminative approaches. Furthermore, because of the unavail-
ability of real-world atypical audio data that include extreme emotional mani-
festations and abnormal sound events, the novelty detection methodology [37], 
which is only partially explored in [36], could be proven useful.

3.1 Evaluation of audio surveillance frameworks

The present section comments on a highly important issue of audio surveillance 
frameworks, that is, the evaluation methodology. The establishment of a com-
mon evaluation metric is critical toward making a reliable comparison between 
different surveillance approaches. This kind of frameworks essentially includes 
single or multiple detection problems. A typical representation technique of the 
performance of a detector is the receiver operating characteristic curve (ROC 
curve). An example of a ROC curve is illustrated in Figure 3. In this case, the 
true-positive rate (RTP � TP/(FN � TP), percentage of the correct classifi ed test 
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200 CRITICAL INFRASTRUCTURE SECURITY

cases from all of those that are “positive” in reality) is plotted in relation to the  
false-positive rate (RFP � FP/(FP � TN), percentage of test cases that are “nega-
tive” in reality and wrongly classifi ed as “positive” by the detector) in dependence 
of a parameter, typically a threshold. This is done if an adjustable threshold T in 
the detection system is responsible for the decision “detected” or “not detected”, 
and the optimal value for this threshold, a maximal quotient, should be found.

Although this type of error analysis provides useful information, it is believed 
that the Detection Error Tradeoff (DET) curves that comprise an adapted version 
of ROC curves should be used. A typical DET curve is depicted in Figure 4. The 
DET curves as introduced by the National Institute of Standards and Technology 
[38] can be viewed as presenting the trade-off between two error types: missed 
detections and false alarms. The point where the average of the missed detec-
tion and false alarm rates is minimized is the optimal point, that is, the one that 
should be used during the operation of the system. The specifi c average essen-
tially is the cost function of a DET curve. There are two important things to note 
about the DET curve. First, in the case that the resulting curves are straight lines, 
it can safely be assumed that the underlying likelihood distributions from the 
system are normal. Second, the diagonal y � –x on the normal deviate scale rep-
resents random performance. With a large number of targets and roughly equal 
occurrences of all nontargets, the overall performance is effectively represented. 
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Figure 3:  The ROC curve. The more the curve is in the upper left corner, the 
better is the detection system. The threshold T is increased from left to 
right. If the threshold is zero, every test case is classifi ed as TRUE, thus 
the Sensitivity is one but the Specifi city is zero (lower left corner); if 
the threshold is maximal, all test cases are classifi ed as FALSE, thus the 
curve ends in the upper right corner. The optimal value for a threshold T 
is the one for which the curve is next to the upper left corner. The dashed 
line indicates the performance of a system that just is guessing (50% 
detection rate in a two class-problem). Source: Image Characteristics 
and quality, Terry Sprawls, www.sprawls.org.

ch012.indd   200ch012.indd   200 11/4/2011   5:51:31 PM11/4/2011   5:51:31 PM

 
 www.witpress.com, ISSN 1755-8336 (on-line) 
WIT Transactions on State of the Art in Science and Engineering, Vol 54, © 201  WIT Press2



AUDIO SURVEILLANCE 201

Unlike the standard ROC curve, the DET curves are approximately linear curves 
that are easily observable and suitable for presenting performance results where 
trade-offs of two error types are involved. Furthermore, the production of a 
DET curve requires a common scale for the likelihood of each event, which is 
a desirable property in many applications. Finally, the DET curve may include 
a number of special points to facilitate performance analysis, such as a specifi c 
false alarm or a miss detection rate.

4 Privacy

Acoustic sensors are sometimes perceived as invasive, especially when the sub-
ject of attendance is human. Therefore, privacy issues need to be fully taken 
into account while constructing an audio surveillance system. The research 
conducted in the specifi c scientifi c area is based and motivated by the next 
presuppositions:

Threatening situations such as crime and terrorist acts in large urban areas are 
not fi ctitious scenarios but real facts that require special attention and measures. 
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Moreover, the knowledge that public spaces are being secured by intelligent 
monitoring is expected to discourage the manifestation of such acts.
Surveillance, in general, is not in confl ict with the law, and it is common 
practice in stores, agencies, airports, and so on, where the need for increased 
security justifi es the installation of video cameras.
Unattended autonomous surveillance is much less “invasive” as it precludes 
human interference from the interpretation of the sensor’s information as well 
as data broadcasting at any stage of the inference process. Therefore, it restricts 
human processing as well as unscrupulous circulation of personal data. As the 
right to privacy is claimed by more and more people, unattended surveillance 
ensures that the interpretation of the sensors information does not involve unau-
thorized human interference at any stage of the inference process.
The main task of unattended surveillance is to identify in time the sensed 
situation and deliver the necessary warning messages to an authorized offi cer. It 
does not involve any other kind of uncontrolled action or initiative in part of the 
machine. In addition, the microphones are not used to identify individuals or to 
interpret spoken words or sentences.

It is believed that compliance with the above four points ensure that the privacy 
of all individuals is not to be compromised at any stage of the processing chain 
of an audio surveillance framework. Therefore, such frameworks can play a sig-
nifi cant role with respect to civil safety [39].

5 Conclusion

Unattended space monitoring based on the acoustic modality comprises an 
effective tool toward scene analysis for detection of catastrophic situations. 
This chapter provided an overview of the technology that lies behind the spe-
cifi c scientifi c area, a descriptive review of the literature along with several 
privacy issues that need special attention. Although it is not possible to iden-
tify a general purpose feature set as well as the recognition technique that per-
forms best for all surveillance applications, the usage of MFCCs as the starting 
point is suggested. MPEG-7 LLDs as well as other application-specifi c param-
eters can be appended at a second stage for improving classifi cation accuracy. 
With respect to the pattern recognition part, the HMM approach is a reasonable 
choice since they offer satisfying detection results in many audio classifi cation 
applications. Furthermore, a synthetic scheme that employs the complementary 
properties of the generative (e.g., GMM) and discriminative (e.g., SVM) classi-
fi ers can be employed.

Throughout this chapter, some directions for future research were suggested, 
which concentrate on acoustic signal processing. Another interesting direction to 
be explored is the combination of the acoustic sensors with other heterogeneous 
ones. The acoustic modality can play either a stand-alone role or be used in par-
allel with other modalities toward obtaining an enhanced analysis of the scene 
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of interest. The information from heterogeneous sensors, which is both comple-
mentary and redundant, aims at surpassing the weaknesses of each modality in 
dealing with coverage of the sensed area and its response to occlusion, noise, and 
differing environmental conditions. These sensors can be complementary in two 
different ways:

1. The combination of different sensors’ reports can be merged into a single but 
more complete piece of information.

2. Information gained from one sensing modality can be used to validate observa-
tions and/or aid the processing chain of the others.

For example, a network of proximity indicators can effi ciently detect and count 
the number of people. However, this type of sensor gives no information about 
the height of the people involved or their appearance. Estimates of height, color 
of clothes, and appearance can be generated using observations from a monoc-
ular camera. However, if there are shadows or low/time varying lighting con-
ditions or occlusion due to another person, the camera (which also generates 
ambiguity due to depth) will sense refl ected light so that the image will be a 
product of both intrinsic skin refl ectivity and external incident illumination and 
will, therefore, return poor results. Moreover, variations in ambient illumination 
will enlarge the within-class variability of any statistical classifi er, thus severely 
degrading classifi cation performance of subjects, behavior, and interaction. The 
detection of human presence and the complementary data of height but not of 
color can be provided by the infrared camera that detects the thermal emission 
of bodies (which is an intrinsic measurement that can be isolated from exter-
nal illumination) and, therefore, works under low-light conditions. Acoustic data 
picked up by a microphone array and their associated time-frequency signatures 
can return bearing and location measurements as well as provide information for 
scene interpretation. To summarize, a dispersed network of multimodal sensors 
allows complementary views about the state of the environment to be deduced 
that would be unavailable to either sensor working alone.
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