Application of linear analysis in railway power system stability studies

S. Danielsen, T. Toftevaag & O. B. Fosso

Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway

Abstract

Dynamical phenomena, such as oscillations and instability in railway power systems, have become of growing concern in the experts’ community in recent years. On several occasions, modern advanced electric rail vehicles have been the source for low-frequency power oscillations leading to an unstable power system due to the lack of damping, and as a consequence of operating problems. A method to study these phenomena is needed. Well known linear techniques based on small-signal analysis provide valuable information about the inherent characteristics of even non-linear single-phase power systems. This paper describes how a railway power system and its dynamical railway-related components are modelled in a commercially available power system analysis software and studied by linear analysis such as eigenvalues, participation factors and parameter sensitivities. This is used to gain knowledge about the interaction between the rail vehicles and the electric infrastructure. Linear analysis is found to be a powerful tool in this respect, provided that adequate models of the relevant components can be established in the RMS mode. The results reflect the experienced poor interaction.

Keywords: AC railway power supply, traction power system, stability, advanced electric rail vehicle, rotary frequency converter, low-frequency oscillations, eigenvalue analysis.

1 Introduction

The recent development of electric rail vehicles with utilization of power electronics and complex control systems has introduced new phenomena of dynamical interaction between the vehicles and the railway power supply. One
such phenomenon is low-frequency power oscillations leading to system instability, typically in the frequency range of 0.1-0.3 times the fundamental frequency. The vehicles may oscillate together internally (Menth and Meyer [1]) or against the electric infrastructure (Danielsen and Toftevaag [2]). There is a need for an integrated method for studying these oscillations.

Low-frequency power oscillations are not new to power systems (Kundur [3]). One method to study these inherent qualities of the power system is by utilization of linear analysis. Several specialized power system analysis computer programs include such tools, i.e. Simpow (Fankhauser, et al. [4]).

This paper introduces linear analysis to a railway power system study where the system comprises both electric infrastructure and rolling stock as shown in Figure 1. An alternative method is time-domain simulations as used by Eitzmann, et al. [5].

2 Linear analysis theory

A dynamical system may be described by a number of characteristic differential equations, normally based on the physics of the system to be studied. Based on these equations and information about the initial conditions, the state of the system can be determined and the response of a disturbance can be calculated.

If the system is non-linear, commonly the system is linearized around an operating point (Δ-values). In that way the mathematical tools that are used for linear systems can be utilized for non-linear systems as well, such as railway power systems. This is formally only valid in vicinity of the linearization point.

A common way to describe a linear or linearized system is by a state space model as in eqn. (1) where \(\mathbf{x} \) is the state vector containing the state variables, i.e. the variables of which the time derivative is to be considered, and \(\mathbf{u} \) is the vector containing disturbance variables. \(\dot{\mathbf{x}} \) is a vector containing the time derivative of the state variables and \(\mathbf{y} \) is called the output vector.

\[
\Delta \dot{\mathbf{x}} = \mathbf{A}\Delta \mathbf{x} + \mathbf{B}\Delta \mathbf{u} \\
\Delta \mathbf{y} = \mathbf{C}\Delta \mathbf{x} + \mathbf{D}\Delta \mathbf{u}
\] (1)

Matrix \(\mathbf{A} \) is the state matrix and contains important information about the inherent qualities of the linear/linearized system. The roots of the characteristic eqn. (2), \(\lambda \), are called the eigenvalues of the system.

\[
\det(\mathbf{A} - \lambda \mathbf{I}) = 0
\] (2)
The number of eigenvalues for a system is equal to the dimension of A and the number of first-order differential equations describing the system. An eigenvalue can be a complex number $\lambda = \sigma + j\omega$ describing a mode of the system where the imaginary part describes the oscillation frequency and real part describes the damping or time decay of the oscillation. A negative real part identifies a stable mode. Complex eigenvalues appear as conjugate pairs, but only the eigenvalue having positive imaginary part is shown in the figures in this paper.

The concept of participation factors utilizes information from the state matrix to find a measure for the relative participation of a specific state variable in a specific mode. The factor itself is a phasor where its length reflects the relative degree of participation in the mode compared to the other state variables (Kundur [3]).

Linear analysis of large power systems requires a lot of computations, but it is a simple task for a computer with suitable software (Slootweg, et al. [6]).

3 Concept of power system modelling

In an AC power system, both voltage and current vary as a sine with the fundamental frequency f_1 (such as 16 ⅔ Hz or 50 Hz) plus additional harmonics. The voltage drop $\Delta u(t)$ given by a current $i(t)$ over an inductive impedance is described eqn. (3).

$$\Delta u(t) = R \cdot i(t) + L \frac{d i(t)}{dt} \quad (3)$$

A common simplification for power system analysis is to represent voltages and currents by phasors, i.e. $\Delta U = \Delta U_{Re} + j \Delta U_{Im}$. The calculated voltage drop over the impedance will then depend on the resistance R and the fundamental angular frequency $\omega_1 = 2\pi f_1$ times the inductance L. This common simplification implies that the current is no longer a state variable where its time derivative is considered. In traditional power systems analysis, the impact of this simplification may be neglected in the view of stability (Kundur [3]). For analysis of power systems with power electronic converters such as an advanced electric rail vehicle, this simplification may not be valid any more (Danielsen, et al. [7]). In the present studies the current is therefore kept as a state variable giving the expression for the voltage drop of any series inductive impedance in both single-phase and three-phase networks as in eqn. (4). This includes the synchronous machines’ stator inductances as well.

$$\begin{bmatrix} \Delta U_{Re} \\ \Delta U_{Im} \end{bmatrix} = \begin{bmatrix} R + L \frac{d}{dt} & -\omega_1 L \\ \omega_1 L & R + L \frac{d}{dt} \end{bmatrix} \begin{bmatrix} I_{Re} \\ I_{Im} \end{bmatrix} \quad (4)$$

Keeping the current as a state variable is often used in studies of power electronic components in instantaneous value mode analysis of three-phase systems modelled in the rotating dq reference frame (Harnefors [8]), but is here
applied to an entire single-phase power system. The phasors are RMS values of the respective voltages and currents, i.e. root mean squared values over one fundamental frequency period, hence harmonic effects are neglected.

4 Rotary converter

4.1 Introduction

The rotary converter is the dominant solution of electric power conversion from the three-phase 50 Hz utility grid to the single-phase 16 ⅔ Hz decentralized fed railway power system in Norway and Sweden (Banverket/Jernbaneverket [9]). Such a converter consists of a three-phase synchronous motor (M) mounted on the same shaft as a single-phase synchronous generator (G), see Figure 1. Both motor and generator are equipped with automatic voltage regulators and exciters.

4.2 Electromechanical eigenfrequency

A pronounced characteristic of these rotary converters is the poorly damped electromechanical eigenfrequency around 1.6 Hz due to the lack of explicit motor damper windings (Toftevaag and Pålsson [10]). These low frequency oscillations are shown to be related to the basic swing equation (Biesenack [11]). This equation is linearized in eqn. (5) and describes the electromechanical behaviour (which is characteristic for all synchronous machines (Kundur [3])):

$$2H \frac{d^2 \Delta \delta}{dt^2} + D \frac{d \Delta \delta}{dt} + K_{E'} \cdot \omega_1 \cdot \Delta \delta = 0.$$ (5)

H Inertia constant in MWs/MVA
$\Delta \delta$ Change in power angle radians
D Damping constant in pu torque/pu speed
$K_{E'}$ Transient synchronizing torque coefficient in pu torque/rad

From the swing equation, an expression (eqn. (6)) for the eigenvalues $\lambda_{1,2}$ describing the electromechanical swing mode for a single machine connected to stiff network can be derived (in this case the synchronous motor connected to the 50 Hz network):

$$\lambda_{1,2} = -\frac{D}{4H} \pm \sqrt{\left(\frac{D}{4H}\right)^2 - \frac{K_{E'} \cdot \omega_1}{2H}}.$$ (6)

Eqns. (5) and (6) are valid for the converter in islanded operation, and need some modifications to be valid in interconnected operation when taking the damping and synchronizing torque of the generator into account as well.

4.3 Linear analysis

In this paper, a rotary converter in islanded operation is studied. There is no connection to other converters in the railway power system. The converter is
connected to a typical 66 kV three-phase utility grid having a short-circuit ratio of 250 MVA. The converter is feeding a 3.67 MW resistive load over 60 km overhead contact line with the impedance of \((0.19+j0.21)\ \Omega/km\). Including the line’s transmission losses this results in a loading close to the converter’s rated load. Both machines are represented by 5th order standard synchronous-machine models which are increased to 7th order models due to eqn. (4).

The low-frequency modes found by linearization of the converter at this operation point are shown in Table 1. Classification of the different modes is done by use of participation factors that indicate which state variables that participates mostly in each mode. The most participating state variables in the electromechanical mode are the converter speed and motor power angle. Damping ratio for the electromechanical mode is low but acceptable.

<table>
<thead>
<tr>
<th>No.</th>
<th>Eigenvalues</th>
<th>Mode</th>
<th>Damping ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 9</td>
<td>(-5.00 [1/\text{s}] \pm j2.90 [\text{Hz}])</td>
<td>Generator exciter</td>
<td>26%</td>
</tr>
<tr>
<td>10, 11</td>
<td>(-4.83 [1/\text{s}] \pm j3.19 [\text{Hz}])</td>
<td>Motor exciter</td>
<td>23%</td>
</tr>
<tr>
<td>13, 14</td>
<td>(-0.46 [1/\text{s}] \pm j1.59 [\text{Hz}])</td>
<td>Electromechanical</td>
<td>5%</td>
</tr>
</tbody>
</table>

5 Advanced electric rail vehicle

5.1 Introduction

Almost all new electric rail vehicles today utilize the advantages of the induction machine as the traction motor (Östlund [12]). The motor speed and torque are controlled by use of a three-phase power electronic pulse-width modulated inverter. The motor inverter takes the required power from the vehicle internal DC-link capacitor as shown in Figure 2. It is the task for the line inverter to modulate the DC-link voltage into an AC voltage at main transformer low-voltage side in amplitude and phase such that the resulting voltage drop over the transformer leads to the needed current to keep the DC link voltage at reference.

![Figure 2: Sketch of an electric advanced rail vehicle.](image)
All these components are controlled by an advanced computer based control system. As both line and DC link capacitor exchange energy and because the power control cannot be faster than the fundamental frequency, this result in a dynamical continuous feedback system (Menth and Meyer [1]).

5.2 The model

A model of such an advanced rail vehicle is made based on literature (Östlund [12] and Steimel [13]) and is given a thorough description by Danielsen, et al. [7] for use in RMS simulations. Such RMS models of rail vehicles are not standard as most simulation studies in the rail vehicle industry are performed in instantaneous-value time-domain simulations. The model comprises two major simplifications; the motor side is replaced by a resistor and the control system is analogous and continuous. Also, the reactive power consumption at current collector is controlled to be zero.

The line inverter control consists of the following controllers: Synchronizing controller (phase locked loop, PLL) to track the phase of the line voltage, DC link voltage controller (VC) for active power control and AC current controller (CC). The controllers are implemented in a vehicle-internal rotating reference frame, also known as vector control.

5.3 Linear analysis

The rail vehicle is operated at approximately half its rated power (3.67 MW) fed from an ideal voltage source through 60 km of overhead contact line. This means that in this sub-case, there is no rotary converter in the system.

The linear analysis identifies two low-frequency modes. Their figures are shown in Table 2. The vehicle seems to be well damped. Eigenvalues no. 12 and 13 will be subject to further studies as it describes the power oscillations.

In order to check the sensitivity of the interesting low frequency mode (eigenvalue 12 and 13), Figure 3 shows how the eigenvalue (positive imaginary part only as the pair is a complex conjugate) moves when different parameters for the locomotive are changed. The range of the change is from 0.5 to 2.0 times the original value which is given in brackets in the legend. Arrows show the movement direction of the eigenvalue when the most influencing parameters are increased. The different parameters are explained in appendix.

It can be noticed that reducing either the voltage controller integration time (TIVC) or the current controller gain (KPCC) will within the range alone move

<table>
<thead>
<tr>
<th>No.</th>
<th>Eigenvalues</th>
<th>Mode</th>
<th>Damping ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, 7</td>
<td>$-12.9 [1/s] \pm j7.04 [Hz]$</td>
<td>AC current measurement, AC voltage measurement</td>
<td>28%</td>
</tr>
<tr>
<td>12, 13</td>
<td>$-5.67 [1/s] \pm j3.31 [Hz]$</td>
<td>VC, AC current meas., DC-link voltage, PLL</td>
<td>26%</td>
</tr>
</tbody>
</table>
the eigenvalue into the right half plane and make the vehicle unstable. The voltage controller gain ($KPVC$) has also influence on the mode. Changed DC link capacitance (C) will move the eigenvalue in the same way as the inertia constant H for synchronous machines in eqn. (6) as both express energy storages.

6 System interaction

6.1 Unstable system

The rotary converter and the rail vehicle are now combined into one system as shown in Figure 1. For the vehicle this leads to two changes even though the operating point is kept (as in section 4.3 and 5.3): First, the voltage source (both amplitude and phase) is no longer constant but will change as the converter oscillates. And second, the total inductance L that the vehicle current controller has to change the line current in has increased due to the converter transformer and the generator stator windings. The latter change may have an impact on the vehicle low-frequency mode.

Table 3: Low-frequency modes from linear analysis of the railway power system.

<table>
<thead>
<tr>
<th>No.</th>
<th>Eigenvalues</th>
<th>Mode</th>
<th>Damping ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>16, 17</td>
<td>$-4.83 \text{ [1/s]} \pm j3.18 \text{ [Hz]}$</td>
<td>Motor exciter</td>
<td>24%</td>
</tr>
<tr>
<td>18, 19</td>
<td>$-5.14 \text{ [1/s]} \pm j2.94 \text{ [Hz]}$</td>
<td>Generator exciter</td>
<td>27%</td>
</tr>
<tr>
<td>23, 24</td>
<td>$-2.19 \text{ [1/s]} \pm j2.18 \text{ [Hz]}$</td>
<td>Vehicle DC-link</td>
<td>16%</td>
</tr>
<tr>
<td>25, 26</td>
<td>$+0.23 \text{ [1/s]} \pm j1.59 \text{ [Hz]}$</td>
<td>Rotary conv. electromech.</td>
<td>-2%</td>
</tr>
</tbody>
</table>
The low-frequency modes are shown in Table 3. Both damping and frequency of the vehicle DC-link mode is decreased. The real part of the eigenvalue describing the converter’s mode is positive and indicates an unstable system.

6.2 Stability improvement

By use of the linear analysis tool, again the influence of the vehicle control parameters on the different modes can be studied. Figure 4 shows the converter’s electromechanical root loci when the parameters for the voltage and current controllers are changed. The arrows show the direction of movement when the parameter value is increased.

![Root loci for the rotary converter mode when vehicle control parameters are changed (0.5 to 2.0 times original value).](image)

Figure 4: Root loci for the rotary converter mode when vehicle control parameters are changed (0.5 to 2.0 times original value).

It can be observed that all the control variables influence on the damping of the converter’s eigenfrequency. None of them, however, are alone able to stabilize the system within the variation range studied.

The sensitivity to the control parameters for the converter’s mode may be compared to the respective sensitivities of the vehicle DC-link mode shown in Figure 3. Increase of \(TIVC, KPVC \) and \(KPCC \) will increase damping of both modes. These parameters should therefore be focused when improving the stability in this case. Further studies are however needed to see if change of vehicle control parameters only is sufficient to stabilize the system or not.

6.3 Interaction with a poorly damped rotary converter

To show how the rotary converter and the vehicle interact in this unstable system, the absolute value of the participation factors for the unstable electromechanical mode \(+0.23 \ 1/s \pm j1.59 \ Hz\) are shown in Figure 5. State variables given by in eqn. (4) and the synchronous machines’ exciters are
omitted. Participation of the converter speed and motor power angle is easily observable. In the vehicle control system, the AC voltage measurements and the DC-link voltage controller integral part point out as the largest participants.

7 Concluding remarks

In this paper linear analysis tools for studying low-frequency power system oscillations have been applied to a railway power system to gain knowledge about the interaction between power supply infrastructure and rolling stock. The linear analysis clearly states the instability and provides information about which parts of the advanced components that participate in the oscillation and which parameters to change for improvement. The vehicle DC-link voltage controller points out to have an important role.

It is obvious that good results require adequate models that may be difficult to obtain, at least for the very complex advanced electric rail vehicles. The concept of keeping current as a state variable needs more investigation.

Acknowledgement

The work presented in this paper is a part of a PhD study funded by the Norwegian National Rail Administration (Jernbaneverket).

References

[2] Danielsen, S. & Toftevaag, T., Experiences with respect to low frequency instability from operation of advanced electrical rail vehicles in a traction

[9] Banverket/Jernbaneverket, Requirements on rolling stock in Norway and Sweden regarding EMC with the electrical infrastructure and coordination with the power supply and other vehicles (BVS 543.19300/JD 590), 2007

Appendix

MP is voltage dependency of motor load where value 2 is constant impedance characteristic. *KUSOGI* and *KISOGI* describe the filtering of line voltage and
current, respectively. \(TIPLL \) and \(KPPLL \) are the integration time and gain of the \(PLL \), resp. \(TIVC \) and \(KPVC \) are the integration time and gain for the DC-link voltage controller, resp. \(TICC \) and \(KPCC \) are the integration time and gain for the current controller, resp. \(TUDC \) and \(TIDC \) are the filter time constants for the DC voltage and current measurements, resp. \(C \) is the DC-link capacitor in Farad.