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Abstract

This chapter presents an overview of the higher-order scheme and introduces a new
higher-order bounded scheme, weighted-average coefficient ensuring boundedness
(WACEB), for approximating the convective fluxes in solving transport equations
with the finite-volume difference method. The weighted-average formulation is used
for interpolating the variables at cell faces, and the weighted-average coefficient is
determined from normalized variable formulation and total variation diminishing
(TVD) constraints to ensure the boundedness of solutions. The new scheme is tested
by solving three problems: (1) a pure convection of a box-shaped step profile in an
oblique velocity field, (2) a sudden expansion of an oblique velocity field in a cavity,
and (3) a laminar flow over a fence. The results obtained by the present WACEB
are compared with the upwind and QUICK schemes and show that this scheme
has at least the second-order accuracy while ensuring boundedness of solutions.
Moreover, it is demonstrated that this scheme produces results that better agree
with the experimental data in comparison with other schemes.
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1.1 Introduction

The approximation of the convection fluxes in the transport equations has a decisive
influence on the overall accuracy of any numerical solution for fluid flow and heat
transfer. Although convection is represented by a simple first-order derivative, its
numerical representation remains one of the central issues in CFD. The classic first-
order schemes such as upwind, hybrid, and power-law are unconditionally bounded,
but tend to misrepresent the diffusion transport process through the addition of
numerical or “false” diffusion arising from flow-to-grid skewness. Higher-order
schemes, such as the second-order upwind [ 1] and the third-order upwind (QUICK)
[2], offer a route to improve accuracy of the computations. However, they all
suffer from the boundedness problem; that is, the solutions may display unphysical

WIT Transactions on State of the Art in Science and Engineering, Vol 41, © 2010 WIT Press
www.witpress.com, ISSN 1755-8336 (on-line)
doi:10.2495/978-1-84564-144-3/01



4 ComPUTATIONAL FLUID DyYNaMICS AND HEAT TRANSFER

oscillations in regions of steep gradients, which can be sufficiently serious to cause
numerical instability.

During the past two decades, efforts have been made to derive higher res-
olution and bounded schemes. In 1988, Zhu and Leschziner proposed a local
oscillation-damping algorithm (LODA) [3]. Since the LODA scheme introduces
the contribution of the upwind scheme, the second-order diffusion is introduced
into those regions where QUICK displays unbounded behavior. In 1988, Leonard
[4] developed a normalized variable formulation and presented a high-resolution
bounded scheme named SHARP (simple high-accuracy resolution program).
Gaskell and Lau [5] developed a scheme called SMART (sharp and monotonic algo-
rithm for realistic transport), which employs a curvature-compensated convective
transport approximation and a piecewise linear normalized variable formulation.
However, numerical testing [6] shows that both SMART and SHARP need an under-
relaxation treatment at each of the control volume cell faces in order to suppress
the oscillatory convergence behavior. This drawback leads to an increase in the
computer storage requirement, especially for three-dimensional flow calculation.
In 1991, Zhu [7] proposed a hybrid linear/parabolic approximation (HLPA) scheme.
However, this method has only the second-order accuracy.

In the present study, a weighted-averaged formulation is employed to interpo-
late variables at cell faces and the weighted-average coefficient is determined based
on the normalized variable formulation and total variation diminishing (TVD) con-
straints. Three test cases are examined: a pure convection of a box-shaped step
profile in an oblique velocity field, a sudden expansion of an oblique velocity field
in a cavity, and laminar flow over a fence. Computations are performed on a gener-
alized curvilinear coordinate system. The schemes are implemented in a deferred
correction approach. The computed results are compared with those obtained using
QUICK and upwind schemes and available experimental data.

In CFD research, there are three major categories to be considered for flow
studies in turbines:

1. Mathematical models — the physical behaviors that are to be predicted totally
depend on mathematical models. The choice of mathematical models should
be carefully made, such as inviscid or viscous analysis, turbulence models,
inclusion of buoyancy, rotation, Coriolis effects, density variation, etc.

2. Numerical models— selection of anumerical technique is very important to judge
whether or not the models can be effectively and accurately solved. Factors that
need to be reviewed for computations include the order of accuracy, treatment
of artificial viscosity, consideration of boundedness of the scheme, etc.

3. Coordinate systems — the type and structure of the grid (structured or unstruc-
tured grids) directly affect the robustness of the solution and accuracy.

Numerical studies demand, besides mathematical representations of the flow
motion, a general, flexible, efficient, accurate, and — perhaps most importantly —
stable and bounded (free from numerical instability) numerical algorithm for solv-
ing a complete set of average equations and turbulence equations. The formulation
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Table 1.1. Schemes used in CFD

Scheme Developers Order | False Boundedness
diffusion
Upwind - Ist High Unconditionally
bounded
Hybrid Gosman (1977) Ist High Unconditionally
bounded
Power-law Patankar (1980) Ist Medium | Unconditionally
bounded
Second-order | Price et al. (1966) 2nd Low Unbounded
upwind
QUICK Leonard (1979) 3rd Low Unbounded
LODA Zhu-Leschziner 2nd | Low Conditionally
(1988) bounded
SHARP Leonard (1988) 2nd | Low Conditionally
bounded
SMART Gaskell-Lau (1988) | 2nd Low Conditionally
bounded
WACEB Song et al. (1999) 2nd | Low Unconditionally
bounded

of the discretization scheme of convection fluxes may be one of the major tasks to
meet such demands.

As for the numerical method, the classic first-order schemes such as upwind,
hybrid, and power-law [8] are unconditionally bounded (solutions do not suffer
from over/undershoot), but tend to misrepresent the transport process through
addition of numerical diffusion arising from flow-to-grid skewness. These are the
schemes that most of the commercial codes employ. In some applications, small
overshoots and undershoots may be tolerable. However, under other circumstances,
the nonlinear processes of turbulence diffusion will feed back and amplify these
over/undershoots, and may lead to divergence of a solution. During the past decade,
efforts have been made to derive high-resolution and bounded schemes. LODA,
SHARP, and SMART all display unbounded behavior, which leads to an increase
in the computer storage requirement, especially for three-dimensional flow cal-
culations. Therefore, the traditional method for simulating turbulent flows is the
hybrid (upwind/central differencing) scheme, and the upwind is used for turbulence
equations such as kinetic energy equation, dissipation rate equation, and Reynolds
stress equations. Since it has a poor track record, one should always be suspicious
of the first-order upwind scheme.
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1.2 Numerical Formulation
1.2.1 Governing equations

The conservation equations governing incompressible steady flow problems are
expressed in the following general form:

div[pV ® — F'pgrad(®)] = So (1)

where @ is any transport variable, V the velocity vector, p the density of the fluid,
I'® the diffusive coefficient, and S is the source term of variable ®.

With &,n, and ¢ representing the general curvilinear coordinates in three-
dimensional framework, the transport equation (1) can be expressed as:

1] 0pUP ooV oW d 10Ty 1 0[Te
o i i =——|—(@u®) |+ -—| — (g2,
JL 0§ an o JoE|l J Jo| J

+ ;3% |:lj]—q>(¢133‘1>;)] + 8P + So(£,,0)
2
where U, V', and W are contravariant velocities defined as follows:
U=jnu+jiv+jmw (3a)
V = jiau+jav+j3w (3b)
W =jizu+j23v +j33w (30

J is the Jacobian coefficient, g;; and j;; (i=1—3 and j =1 — 3) are the transforma-
tion coefficients (refer to the appendix), and S¢P is the cross-diffusion term (refer
to the appendix).

1.2.2 Discretization

The computational domain is uniformly divided into hexahedral control volumes,
and the discretization of transport equation (2) is performed in the computational
domain following the finite-volume method.

Integrating equation (2) over a control volume as shown in Figure 1.1 and
applying the Gauss Divergence Theorem in conjunction with central difference for
diffusion, we have:

Fo—Fy+Fy— Fs+ F — Fy = SoAV + SPAV 4)
where Fr represents the total fluxes of & across the cell face f (f=e, w, b, s, b, t).
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Figure 1.1. A typical control volume.

Taking the east face as an example, the total fluxes across it can be written as:

FCD
Fe = (pU®) — <7J11> (g — Pp) Q)

In the above equation, the cell face values of ® can be approximated with different
schemes.
For the first-order upwind scheme, the cell face value is expressed as:

. = dp if Us>0 ©)
O, = if U <0
Substituting equations (5) and (6) into equation (4), we have:
ApPp= Y A4idi+Sc (M
i=E,W,N,S,T,B

where subscript i denotes neighboring grid points, Ap and 4; the coefficients relating
to the convection and diffusion, and S is the source term.

1.2.3 Higher-order schemes

The approximation of convection has a decisive influence on the overall accuracy of
the numerical simulations for a fluid flow. The first-order schemes such as upwind,
hybrid, and power-law all introduce the second-order derivatives that then lead
to falsely diffusive simulated results. Therefore, the higher-order schemes have

WIT Transactions on State of the Art in Science and Engineering, Vol 41, © 2010 WIT Press
www.witpress.com, ISSN 1755-8336 (on-line)



8 CompuTATIONAL FLUID DYNAMICS AND HEAT TRANSFER

to be used to increase the accuracy of the solution. Generally, with uniform grid
spacing, the higher-order interpolation schemes can be written in the following
weighted-average form:

1 .
Do = Pp + Z[(l — KA +(1+1)A] ifU.>0

1
d>e:E—Z[(1—K)Aj+(1+K)Ae] if Us <0 (8)
where A; = ®p — Py, A =P — Pp, Al = Ppp — Pg and « is the weighted-
average coefficient. In equation (8), the underlined terms represent the fragments
of the first-order upwind scheme. Therefore, the higher-order schemes can be
implemented in a deferred correction approach proposed by Khosla and Rubin
[9]; that is,

®?+1 — QEP,n+1 + (q>I;IO,n _ @EP”') (9)

where n indicates the iteration level, and UP and HO refer to the upwind and
higher-order schemes, respectively. The convective fluxes calculated by the upwind
schemes are combined with the diffusion term to form the main coefficients of the
difference equation, while those resulting from the deferred correction terms are
collected into the source term, say, SPC. Such a treatment leads to a diagonally
dominant coefficient matrix and enables a higher-order accuracy to be achieved at
a converged stage.

With this method, the deferred correction source term, taking east—west
direction as an example, is calculated by:

§PC — 1 {UFUel(1 4+ 6)Ac + (1 = )A7] = U7 Ue[(1 4+ 6)Ac + (1 — 6)AF]

4
— U Us[(1 + 0)Ay + (1 = 0)AL]+ Uy Uy[(1 + ) Ay + (1 — )AL T}
(10)
where UZ is defined as:
Ufi _ 1+ Sin(Uf)

If « is fixed at a suitable constant value everywhere, several well-known schemes
can be formed.

However, the schemes listed in Table 1 all suffer from boundedness problem; that
is, the solutions may display unphysical oscillations in regions of steep gradients,
which can be sufficiently serious to lead to numerical instability.

1.2.4 Weighted-average coefficient ensuring boundedness

Based on the variable normalization proposed by Leonard [4], with a three-node
stencil as shown in Figure 1.2, we introduce a normalized variable defined as:
P — Py

db=— " 11
py— (11)
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Table 1.2. Typical interpolation schemes

Expression for ®, when u > 0 | Leading truncation error term
1/2(3®Pp — dw) 3/8Ax3 D"

1/2(®g + dp) 1/8Ax%®"

1/8(3PE + 6®p — D) 1/16Ax>®"

1/6QQPE + 5Pp — Dw) —1/24Ax*®"

Figure 1.2. Three-node stencil.

where the subscripts U and D represent the upstream and downstream loca-
tions, respectively. In the normalized form, the higher-order schemes can be
rewritten as:

b = de+ 11+ 01— de)+ (1 -] (12)

See Figure 1.2 for notations of the terms. Solving for «,

40r — 4Pc — 1
K= —MM

= 13
1—-2®¢ (13)
In order to ensure boundedness, the TVD constraints can be used; that is,
&fol,&)ffzq)c,(i)fz&)c for O<&>c<l
or = dc for ®c <0 or Pc>1 (14)

which correspond to the triangle region shown in Figure 1.3.
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Figure 1.3. Diagrammatic representation of the TVD constraint and WACEB
scheme.

The Taylor series expansion shows that the first two leading trunca-
tion error terms of the interpolation scheme (7) are 1/4(k — 1/2)Ax*®” and
1/8(1 — k) Ax3®"". Therefore, the scheme has at least the second-order accuracy.
The maximum accuracy (third order) can be achieved if « is set equal to 1/2. Thus,
the scheme can be formed in such a way that « lies as close as possible to 1/2, while
satisfying the TVD constraints. Based on this idea, the normalized cell face value
can be computed by the following expressions:

dc dc ¢ [0,1]

&)f _ 2®¢ ) ?C [S [0, 0.3) (15)
3/8 20c +1) d¢ €[0.3,5/6]
1 dc € (5/6,1]

As shown in Figure 1.3, TVD constraints are overly restrictive according to
convection boundedness criterion (CBC). However, the use of a larger multiplying
constant will not noticeably increase the accuracy. The reasons are that, first, the
constant affects the accuracy only in the range from A4 to B (see Figure 1.3), and
this range varies at most from 0 to 0.3 (if we use constant 3, 4 =0.1666 and
B=0.3). Secondly, even with the smaller constant, the accuracy of the scheme is
still second order. Therefore, the present WACEB (weighted-average coefficient
ensuring boundedness) scheme employs normalized variable formulation (15) to
calculate the weighted-average coefficient to preserve boundedness.
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Figure 1.4. The variation in weighted-average coefficient with normalized variable.

From equations (7) and (8), the weighted-average coefficient can be given by:

/(1 = 20¢) i c'I}c ¢ [0,1]
(4dc —1)/1 =2&c  Pc €[0,0.3)
(3 —4dc)/(1 —28c) Pc €[0.3,5/6]
1/2 dc € (5/6,1]

(16)

The variation in «x with ®c is shown in Figure 1.4. It is easy to see that the present
WACEB scheme satisfies convective stability condition [2]. It is necessary to men-
tion that the above algorithm is formulated on the assumption of the constant grid
spacing. For nonuniform grids, the weighted-average coefficient will also be the
function of the grid spacing aspect ratio.

1.3 Test Problem and Results

The governing transport equations are solved by using the nonstaggered finite-
volume method. A special interpolation procedure developed by Rhie and Chow
[10] is used to prevent pressure oscillations due to nonstaggered grid arrangement.
Pressure and velocity coupling is achieved through the SIMPLE algorithm [8].

It is necessary to mention that QUICK and WACEB schemes all need to employ
two upstream nodes for each cell face, which mandates one to involve a value
outside the solution domain for a near-boundary control volume. Therefore, the
upwind scheme is used for all the control volume adjacent to boundaries.

1.3.1 Pure convection of a box-shaped step profile

The flow configuration shown in Figure 1.5 constitutes a test problem for examining
the performance of numerical approximation to convection because of the extremely
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Figure 1.5. Pure convection of a box-shaped step by a uniform velocity field.

sharp gradient in a scalar. This is a linear problem in which the velocity field is
prescribed. The calculations are performed with two different uniform meshes,
29 x 29 and 59 x 59.

Comparisons of the numerical solutions obtained with the upwind, QUICK,
and WACEB schemes are presented in Figure 1.6(a) and (b). It can be seen that
the upwind scheme results in a quite falsely diffusive profile for the scalar even
with the finer mesh. Although the QUICK scheme reduces such a false diffusion,
it produces significant overshoots and undershoots. Unlikely, the WACEB predicts
a fairly good steep gradient without introducing any overshoots or undershoots.
Therefore, we conclude that the WACEB scheme resolves the boundedness problem
while reserving a higher-order accuracy.

1.3.2 Sudden expansion of an oblique velocity field in a cavity

The geometry under consideration is depicted in Figure 1.7. The flow is assumed to
be steady and laminar. At the inlet, U-velocity and V-velocity are given a constant
value of Uys. The boundary conditions at the outlet are dU /ox =0 and 9V /dx = 0.
The calculations are performed on the uniform meshes (59 x 59). Figure 1.8 shows
the comparison of U-velocity along the vertical central lines of the cavity for the
Reynolds number 400. It is noticed that the upwind scheme cannot predict the
secondary recirculation region well, which should appear near the upper side of
the cavity and smears out the steep gradients of the velocity profile near the main-
stream. We observe that both the WACEB and QUICK schemes distinctively predict
this secondary recirculating region. Furthermore, it is noteworthy to observe that
both produce very similar results. The streamline patterns predicted with the three
schemes are all shown in Figure 1.9. It is clearly seen, again, that the upwind
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Figure 1.6. Scalar profiles along the center line.

|
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Figure 1.7. Geometry of a cavity.

scheme predicts a much smaller vortex on the upper left side of the cavity and
much wider mainstream region than the QUICK and WACEB schemes. The com-
putations were further extended to a higher Reynolds number up to 1,000. At this
Reynolds number, the QUICK scheme produces a “wiggle solution.” Figure 1.10
shows streamline patterns predicted with the WACEB and upwind schemes. These
two schemes give very different flow patterns; with the increase in the Reynolds
number, the convection is enhanced and diffusion is suppressed and then the “dead
water regions” should have less effect on the mainstream region. The results with
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Figure 1.8. U-velocity profile along the vertical center line of the domain
(Re =400).
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Figure 1.9. Streamlines for sudden expansion of an oblique velocity field
(Re =400): (a) QUICK; (b) WACEB; (c) upwind.

the WACEB scheme clearly show this trend. It is also noted that the WACEB
scheme produces two additional vortices at the two corners of the cavity. However,
the upwind scheme predicts only a very small additional vortex at the lower right
corner and fails to capture the additional vortex at the upper left corner.
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Figure 1.10. Streamlines for sudden expansion of an oblique velocity field
(Re =1,000): (a) WACEB; (b) upwind.
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Figure 1.11. Geometry of flow over a fence.

From the above discussions, it is concluded that the solution with the WACEB
scheme is comparable to that with the QUICK scheme. Even under highly con-
vective conditions in which the unbounded QUICK scheme may produce “wiggle
solutions,” the bounded WACEB scheme still produces a reasonable solution.

1.3.3 Two-dimensional laminar flow over a fence

A two-dimensional laminar flow over a fence (see Figure 1.11) with the Reynolds
number based on the height of the fence, the mean axial velocity of 82.5, and the
blockage ratio (s/H) of 0.75 is a benchmark case study. The boundary conditions
at the inlet are prescribed as a parabolic profile for the axial velocity U and zero
for the cross-flow velocity V. At the outlet, the boundary conditions are given as
oU/ox =0 and 9V /ox =0. The present study shows that the grid-independence
results can be achieved with 150 x 78 uniform meshes for all the schemes.
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(a) 1.5

yIH

(b)

yIH

X/s

Figure 1.12. Comparison between prediction and measurement for flow over the
fence (Re=82.5) (square symbol, experimental data; solid line,
WACEB; dashed line, QUICK; dash—dot line, upwind)

Figure 1.12 presents the axial velocity profiles at different locations (x/s) mea-
sured [11] and calculated with the QUICK, WACEB, and upwind schemes. We can
observe that when x/s is less than 2, the results with the three schemes are nearly
identical and are in good agreement with experimental data. However, when x /s is
larger than 2, where the second separated flow on the top wall appears, the upwind
scheme predicts very poor results and the QUICK and WACEB schemes give very
satisfactory results in comparison with the experimental data [11]. These results
verify the conclusion drawn from previous section.

1.4 Conclusions

By using normalized variable formulation and TVD constraints, the WACEB of
the solution is determined and then a bounded scheme is presented in this chapter.
This new scheme is tested for four different flow applications including a linear
convection transport of a scalar, a sudden expansion of an oblique flow field, and a
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laminar flow over a fence. The numerical tests show that the new WACEB scheme
retains the ability of the QUICK to reduce the numerical diffusion without intro-
ducing any overshoots or undershoots. The scheme is very easy to implement,
stable, and free of convergence oscillation and does not need to incorporate any
under-relaxation treatment for weighted-average coefficient calculation.

Appendix

The cross-diffusion source term in equation (2) is defined as follows:
10 10 (T
SP=——(Z(gu® @ —— [ —(q12® @
Ja§< (q21Py + g31 ;)>+Ja (J(cm £+ qn ;))
19

+ T ( (q13%¢ + q23d>,,)>

The transformation coefficients are defined as follows:

. dy oz dy 0z j dyoz dyadz dy 0z  dy oz
M= s a7 T ace wa T s anoe
. ox dz  0x dz . 0x 0z dx 0z 0x 0z  0Ox 0z
= e T 2 T e wa T am man
. ox dy oxdy . axady oxay . ox dy  Ox dy
= G e T e wac TP T wan o
and
3
gy =) Jujy (=13, j=13)
k=1
Nomenclature
A coefficients in equation (7)
F total fluxes across the cell faces
H height of channel
J determinant of Jacobian
Jij»qij (i=1,3and j=1,3) transformation factor
L length of cavity
Re Reynolds number
Se,Sc, SCP, §bC source term
s hight of fence
u,v,w contravariant velocity components
Un mean velocity in the channel
u,v,w Cartesian velocity components
X, 9,z Cartesian coordinates
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Greek Symbols

r diffusion coefficient

K weighted-average coefficient

P dependent variable

&,n,¢ generalized curvilinear coordinates
Superscript

HO term associated with higher-order scheme
UP term associated with upwind scheme

n iteration level

~ normalized value

Subscripts

f(=e,w,n,s,t,b) value at the cell faces
F (=E,W,N,S,T,B) value at the nodes
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