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Abstract 

Air demand forecast at airports is an important problem for the airport 
management and also for the regulator that has to plan a homogeneous 
development of the overall transport system. The current tendency is towards 
airport privatization; then, the goal to increase the served demand is one of the 
most important together with the progress of non-aviation activities. The 
evolution of the air transport system both in terms of low-cost companies, that 
generally use regional airports, and new technologies (as regional jets) has given 
a further impulse to the development of planning methodologies able to support 
decisions for an efficient distribution of resources. Regional airports can play an 
important role in this new background if the most suitable developing strategies 
are identified. This chapter wants to give a general overview about the problem 
of the air demand modelling, both in terms of theoretical approaches and 
practical problems. Models are classified with respect to different criteria, and 
the most suitable models for each planning level are also identified. An 
application to a regional airport in Southern Italy is also presented in order to test 
some of the described approaches and to obtain practical indications about 
applied models and developing strategies to be used. 

Keywords: air demand; air demand model classification; airport catchment area; 
time series models; random utility models. 

1 Introduction 

The estimate of transport demand has always been one of the most important 
stages in the transport system planning process and one of the most stimulating 
challenges for the analysts, because the dependence of demand on the overall 
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socio-economic system (particularly, income and job activities on the territory) 
makes it difficult to obtain reliable values. On the other hand, the supply 
characteristics (as e.g. terminal capacity, parking size and runways in the case of 
an airport system) as well as their performances and profitability are strongly 
dependent on the predicted demand levels. 

Significant overestimates or underestimates of future demand levels lead to 
wrong developing policies that can generate respectively: (a) uneconomic use of 
infrastructures and/or services; (b) quick worsening of the transport system 
performances due to infrastructures and/or service deficiencies compared with 
the actual demand levels. 

Generally, the analysis and the simulation of an air transport system concern 
three macro-topics: 

● estimate of the air transport demand and its distribution among several 
competitive airports; 

● identification of the supply organization and its effects on the different actors 
(community, passengers, airports, airlines); 

● forecast of the air transport services and their induced effects on the air 
demand as well as on the other actors working in the system. 

The first two aspects are linked to the system simulation for a given scenario 
(current scenario or future hypotheses). The third aspect depends on the 
airline/airport decision policies, the profit analysis, the market conditions, and, 
last but not least, the political decisions aiming at the system development 
following social other than technical criteria. 

The increase in the air transport demand in the last few decades, also helped 
by the deregulation policy, has had a major effect of increasing transport services 
offered by different air carriers and has resulted in increasing congestion levels 
both in the airways and at airports (Graham and Guyer [1]). As an immediate 
effect of deregulation, the service offered to users, in terms of trip organization 
and costs, has changed rapidly and various alliances and mergers have occurred, 
together with the emergence of new air carriers in the market. For users, 
deregulation has produced greater benefits due to airfare decrease and the 
opportunity to choose among more flights supplied by more air carriers (Cohas  
et al. [2]). Thanks to deregulation, various air carriers have the opportunity to 
offer their services along high-demand routes, new connections have arisen and 
fare reductions have been applied (ATAG [3]). Hence, there has been an increase 
in the demand level, especially for non-systematic reasons (e.g. in Europe a 
reduction of 15% in airfares has produced an increase of about 10% in the 
carried passengers, Italian Ministry of Transport [4]). 

Demand variations depending on local aspects (such as the building of a new 
airport or the expansion of an existing one) represent another important factor in 
modelling air transport demand, as the use of hub-and-spoke systems means that 
each pole can be potentially connected to almost any other. 

Air transport demand directly affects the planning of airport terminals in 
terms of ground services design (check-in/check-out points, waiting areas, 
facilities as restaurants, shops and so on). In order to properly design such areas, 
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both the absolute demand and its temporal distribution are required. Furthermore, 
even the competitiveness among airlines plays an important role to define the 
demand distribution. 

The above considerations show how important the demand characteristic 
analysis and its evolution in time are in order to design more effectively the 
service supplied by both airport managers and air carriers. 

Reliability of the demand estimates depends on the kind of model and data 
availability. Models theoretically efficient in terms of forecast often require a lot 
of data referred to users and both socio-economic and supply systems for a long 
period of time in order to estimate not only the current demand characteristics 
but also the future levels. The knowledge of current and future levels helps 
planners to develop effective short-medium and long-term actions, respectively. 

Thus, data availability and model reliability are the two key elements to 
obtain high-quality demand level forecast, within the effectiveness limits defined 
by the stability of the boundary conditions. The latter can be identified in the 
socio-economic and political stability, which has a relevant influence on the 
user’s decisions to make trips and particularly to travel by aircraft. 

In the following, the relationship between demand and airport catchment area 
is discussed (Sections 2), and a classification of the air demand approaches with 
respect to different criteria is proposed together with a description of the two 
most important air demand approaches (Section 3). Finally, after an overview of 
the Italian airport system (Section 4) an application to a regional airport located 
in Southern Italy is presented and discussed (Section 5). 

2 Demand modelling and airport catchment area 

A key element for evaluating the developing potentiality of airport systems, 
particularly regional airport systems, is the demand forecast for each airport 
serving the considered region; such a forecast should be consistent with the 
airport choices made by the air users travelling from and towards the region 
itself. 

As it is well-known to transport analysts, demand forecast is a relevant input 
for the transport system planning; particularly, in the case of a regional airport, 
system forecasts of demand have a significant influence on the future functioning 
of each airport as well as on the development of the airport master plans. 

Generally speaking, a demand model is a mathematical relationship linking 
the expected demand level (dependent variable) to one or more explanatory 
variables (independent variables), whose nature depends on the kind of model 
and the availability of the corresponding data. 

The choice to start the air trip from a given airport can depend on many 
factors as accessibility, facilities, air services and connectivity levels (i.e. the 
destinations that can be reached from the airport itself). Accessibility depends on 
the land network available on the region, while the other factors depend on the 
airport characteristics and the airline supply. 
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For each airport, a catchment area is usually defined. In the literature, there 
are several definitions for airport catchment area, depending on the geographical 
or demand considerations. 

Basically, from a geographical point of view, the airport catchment area can 
be defined as the area containing all the potential users and the passengers of a 
given airport (Transport Canada [5]). From a demand point of view, the airport 
catchment area can be defined as the number of travellers using a given airport, 
where origins of travellers can be identified in a surrounding study area whose 
size depends on the characteristics of the airport itself, but that does not 
necessarily represent the geographical extension of the airport catchment area. 
Both points of view lead ultimately to the knowledge of demand and 
geographical area. 

The identification of the catchment area following either the first or the 
second point of view can be made by using different approaches and different 
models. Basically, the geographical point of view is better satisfied by using 
indicators (mainly, accessibility indexes) while the demand point of view is 
better satisfied by using behavioural models. 

The geographical identification can be useful for airports not built yet, and 
then to estimate the airport’s potential attractiveness just in terms of accessibility 
for users living in the surrounding area, given that the airport characteristics as 
well as the airline supply are not defined. 

 

Figure 1:  Airport catchment area identification: Study area and traffic zone. 

The demand point of view can be useful when there are competitive airports and 
then it is crucial to establish which demand is considered while choosing a 
particular airport based on its characteristics. In this case, a study area containing 
an examined airport, and where more airports can be located, is identified and 
divided into traffic zones. The probability that users living in each zone and 
travelling by air choose that airport will depend on the characteristics of the 
airport itself and the competitive airports, as well as the distance (or, more 
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generally, the accessibility measures) between each traffic zone and the 
examined airport [6, 7, 8, 9]. Then, the demand obtained at each airport 
represents the catchment area from the demand point of view, while its 
geographical identification potentially corresponds to the study area (Figure 1). 
Furthermore, a distinction can be made between primary and secondary airport 
catchment areas (Transport Canada [5]). For a given airport, the first one refers 
to air travellers choosing that airport because they are ‘captive’. The second one 
refers to air travellers that may choose that airport but are not captive and then 
are more elastic with respect to the choice of another airport (Figure 2). 
Generally, the secondary catchment area is typical both for airports where there 
are low-cost airlines and for classes of users that are more price-sensitive. 

 

Figure 2:  Primary and secondary airport catchment area. 

Whatever be the approach, the knowledge of the airport catchment area is 
important because it represents the possible demand for the airport and then the 
potential for airport development. Demand levels and airport catchment area are 
then highly dependent on each other and land accessibility plays an important 
role. 

As it is well-known in the economic and social sciences, accessibility is the 
key to development and particularly for airports. In fact, the larger the catchment 
area the larger the potential demand at the airport. An important factor for a 
successful airport development, mainly for regional airports, is to increase the 
catchment area other than providing good services in terms of fares, destinations 
and frequencies. 

The simplest method to identify the geographical extension of the catchment 
area is to define a threshold value with reference to one or more accessibility 
indexes: the geographical area whose accessibility index is less than the 
threshold value is the airport potential catchment area; in other words, it contains 
the potential users and passengers of the airport. On a first approximation, the 
catchment area can be identified as the geographical area not larger than a 
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prefixed time value (as 2 hours by car, for some important European airports 
(van Reeven, de Vlieger and Karamychev [10]) or 60 minutes by any land 
vehicles in the USA (Milone et al. [11])). 

The knowledge of the geographical origin of passengers is a useful piece of 
information for the airport management in order to identify the best developing 
strategies; for example to decide if it is more suitable to invest on land 
accessibility rather than on airport facilities and services. Such knowledge can be 
achieved by running sample surveys on departing air travellers at the airport. 

The key elements that can play an important role for the development of an 
airport can be identified as: 

● capability to generate demand in the airport catchment area; 
● capability to generate adequate demand (from the point of view of economic 

convenience) for potential point-to-point links; 
● capability to adapt the airport services to the need and exigencies of the 

airlines; 
● involvement of airlines on airport investments to improve the offered 

services. 

In terms of factors affecting the size of the airport catchment area, and with 
reference to the primary catchment area only, the most relevant are: 

● living population; 
● yearly average income and average family income; 
● employment level; 
● sector of employment. 

Generally, if the first three factors increase, the number of air travellers increases 
(and then the catchment area); while the distribution of sectors of employments 
is a useful indication to identify the potential air travellers by trip purpose  
(e.g. business travellers). 

Furthermore, the airport catchment area also has an important impact on the 
financial situation of the airport itself. For example, airports surrounded by 
densely populated catchment areas and increasing population with employment 
levels and income in the average or over the average and employment sectors 
that generate business trips, generally, have got positive financial situations. An 
important role is also played by competition among airports; airports far away 
from the main national airports (250 kilometres following some studies on the 
Canadian regional airports [5]), where there are low-cost airlines, and that are 
also at a proper distance from the potential competing airport (e.g. 90 minutes by 
car) have still a good financial situation. On the other hand, airports offering 
similar services and sharing the same catchment area within a radius of about 
100 kilometres, probably will have both a critical and negative financial 
situation. 

The airport development also depends on the location of other, potentially 
competitive, airports. In the current situation, airports play a competitive role 
rather than a cooperative one and then the distance among airports as well as the 
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services offered are crucial in terms of user choices. Generally, users are willing 
to cover longer distances to obtain better trip fares, point-to-point flights, larger 
choice sets of available airlines and flights to choose the best options in terms of 
departure time, destination and airline reliability (Suzuki [12]). 

Furthermore, the presence of fast land modes (as fast trains) that can be 
competitive in terms of fares and times with respect to the destinations served at 
the airports can be an additional important factor in the airport users’ choice. 
Indeed, one of the EU topics of major interest is the analysis of the fast train 
network influence on the distribution of traffic volumes among airports; land fast 
links between city pairs are supposed to produce a decrease in the air transport 
demand among the same city pairs (Button [13]). However fast trains also 
represent an easy way to arrive quickly at major airports (e.g. the Inter City 
Express links between Frankfurt and Paris or the international high speed trains 
linking Paris and Brussels to Great Britain trough the Channel Tunnel) and then 
they also contribute to improve the airport catchment area in a whole, integrated 
and inter-modal transport system. The complexity of the fast train role 
(competition or integration?) with respect to airports is one of the most attractive 
research fields in the transport system analysis. 

3 Demand model classification 

Passengers demand models can be classified with reference to the transport 
system representation, the mathematical formulation, the nature of variables 
(Table 1). 

Table 1:  Demand model classification. 

Multi-mode 
models 

Stage models 
(discrete choice) 

 

 Competitive 
 Static models Non-competitive 
Uni-mode 
models 

Stage models 
(discrete choice) 

 

 Competitive 

Zone approach 

 Time series models Non-competitive 
 Competitive 
 Static models Non-competitive 
Uni-mode 
models 

  

 Competitive 

Airport pairs 
approach 

 Time series models Non-competitive 

First of all, a distinction can be made between air demand models providing 
forecasts for specific city-pairs, corresponding to airport-pairs serving those 
cities, and demand models providing forecasts for O–D pairs, corresponding to 
traffic zones pairs. Whatever be the used approach, in the first case the focal 
point is the analysis of the specific relationship between airports or among one 
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airport and all the others, while in the second case the demand model is usually 
part of a more general framework where demand is estimated for traffic zones 
and many transport modes; for the aircraft mode, demand is also allocated to one 
or more competitive airports by using suitable models (airport choice is 
described in Chapter 5). 

Traditionally, demand models are classified as aggregate and disaggregate 
depending on the nature of data referred to demand and explanatory variables. If 
the variable ‘demand’ is referred to a single user, and so the explanatory 
variables, the model is said to be disaggregate, while if the variable ‘demand’, 
and then the explanatory variables, are referred to a homogeneous group of users 
the model is said to be aggregate. 

Furthermore, models can be called: (1) descriptive or behavioural according 
to whether there are or not explicit hypotheses about trip user behaviour; (2) 
multi-mode or uni-mode if they allow obtaining mode shares among several 
alternative modes or demand on only one transport mode, respectively. 
Particularly, multi-mode models refer to the simulation of the overall transport 
system, where many transport modes are generally available (e.g. train, bus, car, 
aircraft), and then the demand on many transport modes can be computed. On 
the contrary, uni-mode models provide forecasts of demand for only one 
transport mode and then they are suitable for the simulation of a part of the 
overall transport system (e.g. the air transport system). 

Multi-mode models are generally stage models, where more trip 
characteristics as destination, frequency, mode and so on can be simulated by 
using discrete choice models (a general overview is in [14, 15]). 

Uni-mode models can be classified as static if they simulate air demand at a 
given time, time series if they simulate the demand trend for a given time period, 
or stage models if they simulate more trip characteristics but for a mode-specific 
demand. 

Time series models can still be grouped as Simple Time Series (or univariate) 
and Causal Modelling (or multivariate). Simple Time Series approaches, among 
the most used to obtain air demand forecasts, consider the stochastic nature of an 
event does not vary in time and they simulate the demand trend without 
explaining the causes. In other words, explanatory variables are not considered. 
On the other hand, Causal Modelling models simulate demand in terms of cause-
effect relationships, i.e. they associate explanatory variables to the observed 
demand by means of mathematical relationships linking independent variables 
(causes) to dependent variables (effects). Explanatory variables are generally 
referred to the examined mode, but characteristics of alternative modes (and, 
particularly, competitive modes as fast train with respect to aircraft) can also be 
considered by using suitable variables (mainly, level-of-service variables). From 
this point of view, uni-mode models can be classified, respectively, as non-
competitive and competitive. 

Demand forecast can be achieved at two different levels of detail: for long-
term planning (strategic level) and for medium-short planning (tactical or 
operational level), where the difference is mainly due to the amount of required 
input data and the resulting level of output information. 
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At a strategic level (long term), the air demand forecast should support 

hypotheses about both airport development and investment plans for a medium-
long period. Then, models able to simulate the expected demand levels as a 
function of the past realizations – all the boundary conditions being the same – 
can be more attractive. In other words, the demand trend is analysed under the 
hypothesis that the underlying conditions (as the socio-economic system and/or 
the transport supply system) are evolving with the same characteristics. If 
different developing scenarios in terms of socio-economic and/or transport 
supply systems can be tested, then specific hypotheses about the trend of the 
variables representing such scenarios should be made, in order to obtain expected 
demand levels consistent with them. 

Models that better support the strategic planning are time series models that 
generally use aggregate information referred to the dependent and independent 
variables that occurred in a suitable time period (normally, at least 10 years). 

At a tactical or operational level (medium-short time), the air demand 
forecast should support operational hypotheses about modifications of the 
system, particularly in terms of supply re-organization, with limited monetary 
investments. In this case, models should use explicitly explanatory variables 
simulating the supply characteristics (as frequency and/or departure times, fares, 
land services, airport accessibility, available land mode to reach the airport and 
so on) as well as user characteristics (as user type, age, trip purpose, family 
income and so on). In other words, the level of details should be compatible with 
the nature of the required demand estimate. 

Models that better support the tactical and operational planning are discrete 
choice models; they require a greater level of detail, but can provide more 
information both about the expected characteristics of the air demand and the 
potential share between competitive, alternative modes (as aircraft and fast 
trains). 

 

Time series 
approach 

Discrete choice 
approach 

Strategic level 
(Long term forecast)

Tactical/operational level 
(medium/short term forecast) 

 

Figure 3:  Approaches for air demand modelling and planning levels. 
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However, time series models and discrete choice models can be used at both 
planning levels (Figure 3), depending on the nature of the analysis and the data 
availability as well as the required output detail levels. 

For example, discrete choice models can be used to test hypotheses about the 
development of the overall transport system, the air transport system being only 
a part of it, in relation to long-term planning projects as the building of fast speed 
railways or new road infrastructures. Similarly, time series models can be used to 
verify airport developing policies; for example the introduction of new links or 
variations in flight frequencies, for short term periods as 2–5 years. 

 

Model 
development 

Model 
identification 

Model 
application 

Model choice 

Function 
identification 

Relevant 
variables 

identification

Model calibration 

Function Relevant 
variables

Model parameters 

Model check 

Relevant 
variables data 

base 

Model 
application 

Planning level: 
• Strategic 
• Tactical

 

Figure 4:  Model development and application. 

  
 www.witpress.com, ISSN 1755-8336 (on-line) 
WIT Transactions on State of the Art in Science and Engineering, Vol 38, © 2010 WIT Press



 
AIR DEMAND MODELLING  87 

 
Forecast of the air transport demand can also be referred both to a single airport 
inside a geographical (or administrative) region and to a set of airports inside a 
common area where they can be considered ‘competitive’ to each other. The 
choice to simulate the air demand only for one airport or to verify its distribution 
among two or more of them depends on the effective competition among 
airports, strongly linked to the identification of the airport catchment area. 

Whatever be the planning level, the development and application of an air 
demand model requires three main steps (see also Figure 4): 

● identification of the most suitable mathematical model able to 
simulate/forecast air transport demand with respect to the expected results 
and/or the prefixed goals; 

● availability of data to calibrate the model parameters and to apply the model; 
● check of the obtained model. 

In the application stage, an available model can be used to simulate the air 
demand, the only care being the opportunity to use model parameters referred to 
similar socio-economic contexts. In this case, the check stage concerns the 
application of the model to a known situation in order to verify the congruence of 
the parameters, while in the case of model development the check stage refers to 
some statistical tests about the goodness of the estimated parameters and the 
statistical reliability of the overall model. 

One important aspect concerning both the development and application of an 
air demand model is the data collection. Data referred to (air) transport demand 
concerning both user socio-economic characteristics and travel behaviour are often 
difficult to obtain. Generally, available data refer to official, aggregate statistics on 
boarded/de-planed passengers, pro-capita income for geographical/administrative 
regions and so on, but depending on the kind of model and detail required they can 
be inadequate to develop a suitable demand model. 

Moreover, travel times and costs are the most relevant level-of-service 
variables introduced in a demand function. For air transport systems, travel times 
refer to flight duration, possible waiting time for connecting flights, boarding/ 
disembarkation, baggage claim, and access/egress times. Costs mainly refer to 
monetary costs and generally to airfare. 

Some data concerning airline supply can be difficult to obtain without 
specific surveys; particularly, airfare is the most difficult variable to quantify for 
at least two main reasons: (1) useful data are not always available and (2) there is 
a very large set of fares proposed by different air carriers and also inside the 
same air carrier. Actually, airfares can change significantly depending on many 
factors as the day on which the ticket is bought, the time period (week-end, 
particular days or months of the year and so on), the number of booked people, 
the age, the participation to flight programs (as frequent flier programs) and so 
on. When international trips are considered, the problem is still more complex 
because origins and/or destinations are in different countries with different 
currencies, while the fare has to be expressed in one reference monetary value, 
e.g. by using the exchange rate that, in turn, is variable during the year. 
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− j

To overcome the problem by considering the quality of the offered service 
(and then, implicitly, the willingness to pay to use it), the hedonic pricing theory 
can be used (Rosen [16]). Its basic foundations are that users evaluate the 
characteristics of a good or the services it offers rather than the good itself. 
Following this approach, the observed fare can be considered as a function of the 
offered service and/or user characteristics; then, users are willing to pay 
according to the satisfaction they receive. 

The following sections provide a brief overview of the main characteristics 
for both time series and discrete choice models. 

3.1 Time series approach 

Time series models to simulate air transport demand can have different levels of 
complexity depending on the general aims and the data availability for both 
model calibration and application. They have been largely used to predict air 
demand levels, see among others [17, 18, 19, 20, 21, 22, 23]. 

To briefly summarize, a time series is a stochastic process where the time index 
takes on a finite or countable infinite set of values. A stochastic process is an 
ordered and infinite sequence of random variables: if the time index t assumes only 
integer values, then it is a discrete stochastic process. To describe it, its mean and 
its variance are used as well as two functions: the AutoCorrelation Function (ACF) 
ρk, k being the lag, and the Partial AutoCorrelation Function (PACF) πk, k being 
the lag. The ACF is a measure of the correlation between two variables composing 
the stochastic process, which are k temporal lags far away; the PACF measures the 
net correlation between two variables which are k temporal lags far away [24, 25]. 

AutoRegressive Moving Average (ARMA) models are a class of stochastic 
processes expressed as follows: 

 
1 1

,−
= =

− = −∑ ∑
p q

t i t i t j t
i j

X X a aφ θ  (1) 

where at is a White Noise process, φ and θ the model parameters, p and q the order 
of the AutoRegressive (AR) and Moving Average (MA) processes, respectively 
[24]. If the B operator such as Xt–1 = BXt is introduced, the general form of an 
ARMA model can be written as follows: 

( ) ( ) .⋅ = ⋅t tB X B aφ θ  

To estimate these models, some conditions should be verified: the series must be 
stationary and ACF and PACF must be time-independent. The non-stationarity in 
variance can be removed if the series is transformed with the logarithmic 
function. The non-stationarity in mean can be removed by using the operator ∇ = 
(1–B) applied d times in order to make the series stationary. In this way, the 
ARMA model becomes an ARIMA (AR Integrated MA) model: 

 ( ) ( ) .∇ ⋅ = ⋅d
tB X B aφ θ t  (2) 
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This family of univariate models is largely used to obtain air demand prediction 
at a first level of knowledge and when no more data other than the demand time 
series is available. In this case, Xt represents the air demand at an airport i (or for 
an origin/destination pair i, or a traffic zone i) at time t, dit: 

( ) ( ) .∇ ⋅ = ⋅d
it tB d B aφ θ  

For a given set of data, the Box-Jenkins approach [24] is the most known method 
to find an ARIMA model that effectively can reproduce the data generating the 
process. The method requires three stages: identification, estimation and 
diagnostic checking. 

Preliminarily, data analyses should be carried out in order to verify the 
presence of outliers. The identification stage provides an initial ARIMA model 
specified on the basis of the estimated ACF and PACF, starting from the original 
data: 

● If the autocorrelations decrease slowly or do not vanish, there is non-
stationarity and the series should be differenced until stationarity is obtained. 
Then, an ARIMA model can be identified for the differenced series. 

● If the process underlying the collected series is a MA(q), then the ACF ρk is 
zero for k > q and the PACF is decreasing. 

● If the process underlying the collected series is an AR(p), then the PACF πk 
is zero for k > p and the ACF is decreasing. 

● If there is no evidence for a MA or an AR then a mixture ARMA model may 
be adequate. 

Several statistical tests have been developed in the literature to verify if a series is 
stationary, among these, the most widely used is the Dickey-Fuller test 
(Makridakis et al. [26]). After an initial model has been identified, the AR and MA 
parameters have to be estimated, generally by using least squares (LS) or 
maximum likelihood (ML) methods. The choice of the AR component order 
derives from the analysis of the PACF correlogram; for large sample size, if the 
order of the AR component is p, the estimate of the partial autocorrelations πk are 
approximately normally distributed with mean zero and variance 1/N for k > p, 
where N is the sample size. The significance of the residual autocorrelations is 
often checked by verifying if the obtained values are within two standard error 
bounds, ±2/√N, where N is the sample size (Judge et al. [25]). If the residual 
autocorrelations at the first N/4 lags are close to the critical bounds, the reliability 
of the model should be verified. Another test that can be used is the Ljung and Box 
one [27]: 

1 2
ˆ

1

( 2) ( ) [ ( )]−

=

= ⋅ + ⋅ − ⋅∑
m

a
k

Q N N k kN ρ ,  

where ˆ ( )a kρ are the autocorrelations of the estimate residuals and k is a prefixed 
number of lags. For an ARMA (p, q) process this statistic is approximately χ2 
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distributed with (k–p–q) degrees of freedom if the orders p and q are specified 
correctly. 

To check the residuals normality, the Jarque-Bera (JB) test [28] can be used: 

( )2
2 3

JB ,
6 4

⎛ ⎞− −
⎜ ⎟= ⋅ +
⎜ ⎟
⎝ ⎠

pN n K
S  

where S is a measure of skewness, K is a measure of Kurtosis, np is the number 
of parameters and N is the sample size. This test verifies if skewness and kurtosis 
of the time series are different from those expected for a normal distribution. 
Under the null hypothesis of normal distribution, the JB test is approximately χ2 
distributed with two degrees of freedom. 

Models (1) or (2) use the past values of the examined variable to predict its 
future values. If some explanatory (or independent) variables are inserted in 
order to verify cause-and-effect relationships, the dependent variable Xt generally 
depends on lagged values of the independent variables and the model can be said 
multivariate. The length of the lag may sometimes be known a priori, but usually 
it is unknown and in some cases it is assumed to be infinite. 

The simplest multivariate time series demand models are of the kind as 
follows: 

0 ,= + +T
it it itd β y uβ  

, 1 ,−= +it i t itu uρ ε  

where demand for an airport i (or for an origin/destination pair i, or a traffic zone 
i) at time t, dit, is specified as function of n explanatory (and relevant) variables 
yit. βT are the unknown model parameters, β0 the model constant, uit a random 
term, εit a White Noise random residual and ρ the autocorrelation parameter 
taking into account the time dependence among the variables. The basic 
hypothesis is that the variable at year t is a function of the same variable at year 
t–1, as specified by the random term. 

More general models can be obtained by starting from univariate ARIMA 
models and introducing more explanatory variables. Normally, if one dependent 
variable and one explanatory variable are considered, then the model has the 
form as follows: 

 0 1 , 1 , ,− −= + + + + +…it it i t P i t P itd y y y eα β β β  (3) 

under the hypothesis that βk = 0 for k greater than a finite number P, called lag 
length. Models (3) are called finite distributed lag models, because the lagged 
effect of a change in the independent variable is distributed into a finite number 
of time periods. 

If e ~ (0, σ2I) and yt are fixed, then, based on the sample information, the LS 
estimator is the best linear unbiased estimator for (α, β0, …, βP). If the true lag 
length P is unknown but an upper bound M is known, then the LS estimator of  
β’ = (α, β0, β1, …, βM)T is inefficient since it ignores the restrictions βP+1 = … = 
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i

βM = 0. In order to compute P, these sequential hypotheses can be set up as 
follows:  

1 2( , ,..., ) ( ),o n o id k k k n p k= Π  

versus 
1 2

1 0 0 0: 1, 0 , ,....,m m
M ma P M m 1H H H Hβ −
− += − + ⇒ ≠ . 

The null hypotheses are tested sequentially beginning from the first one. The 
testing sequence ends when one of the null hypotheses of the sequence is 
rejected for the first time. The likelihood ratio statistic to test the m-th null 
hypothesis can be written as follows: 

1
2

1

SSE SSE
,

ˆ
− −

− +

−
= M m M m

m
M m

λ
σ

+  

where SSEP is the sum of the squared errors for a model with lag length P. This 
statistic has an F-distribution with 1 and (T – M + m – 3) degrees of freedom if 

1
0H , 2

0H , 0
mH  are true. 

When the lag has been computed, the explanatory variable can be inserted in 
the univariate model, in order to derive a so-called multivariate ARIMAX model. 
In the general case of more than one explanatory variables, the model has the 
form as follows: 

  (4) 
1 2

(1) (1) (2) (2)
, ,

0 0
( ) ( ) ........− − − −

= =

∇ Φ ⋅ = ⋅ + + +∑ ∑
P P

d
it t t t l i t l t l i t l

l l
B d B a y yθ β β

where: ( )
−
j

t ly  is the j-th independent variable at time (t–l) and ( )
−
j

t lβ  is the 
corresponding parameter. 

Figure 5 shows the different kinds of applications of air demand time series 
models, preferably for strategic planning levels. 

Univariate models do not require explanatory variables but only the demand 
past ‘history’; furthermore, they do not require the explicit identification of the 
airport catchment area but, for example, only boarded/de-planed passengers at 
the airport, time series data being available. 

On the other hand, multivariate models present one or more explanatory 
variables as frequencies, income, number of employment and so on; some of 
them, as socio-economic variables, refer to the airport catchment area that has to 
be explicitly identified. 

As Figure 5 shows, univariate and multivariate models can be used at 
aggregate and disaggregate levels; in the last case, the variables are defined for 
each traffic zone, demand generated by each traffic zone at year t can be 
estimated and then characterized as function of destination, departure time, 
transport mode and so on, by using discrete choice models (Section 3.2). 
Furthermore, mode-specific travel demand (as air demand) can be directly 
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generated for each traffic zone, and again the other characteristics as destination 
and departure time as well as airport, airlines, access mode are simulated. 

 

Disaggregated level
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multivariate time series 
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Discrete choice models

Predicted demand level  
for each traffic zone  
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Figure 5:  Application of time series models to estimate air travel demand. 

3.2 Discrete choice models 

Discrete choice models are a well-known class of models largely used in the 
transportation field to obtain trip demand specified with some characteristics as 
trip purpose, trip origin and destination, departure time, transport mode and so on 
[14, 15]. The most general form of a discrete choice multistage demand model is: 

  (5) 1 2( , ,..., ) ( ),o n o id k k k n p k= Π i

where do(k1, k2,…, kn) is the travel demand with trip origin o and characteristics 
k1, k2, …, kn that can be specified from time to time depending on the exigencies; 
no is the number of potential users in the origin o and p(ki) is the choice 
percentage referred to the characteristic (or choice dimension) ki. They can be 
estimated by using simple statistical approaches or Random Utility Models 
(RUM). 
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To estimate the air demand by starting from model (5), suitable choice 

dimensions ki and the corresponding p(ki)s should be identified, as in the 
following simple sequential specification: 

 [ ] [ ] [ ]( , ) ( ) SE,TS ( / ) SE,TS ( / ) SE,TS= ⋅ ⋅odh od s m d sh p d osh p m odsh  (6) 

where SE and TS represent the vector of the socio-economic and territorial 
system characteristics, because the choice percentages depend on both user 
(socio-economic) and level-of-service/activity (territorial system) characteristics. 
Indexes o, d, h, s, m represent the trip dimensions, respectively, trip origin, trip 
destination, time period, trip purpose, trip travel mode, while p(./..)s represent the 
choice probability (or choice percentage) for each choice dimension. 

As models (6) shows, the order in the sequence also defines the dependence 
of each choice dimension on the previous one by means of suitable variables; the 
identification of the more suitable sequence is not a trivial task; particularly, for 
mode-related choices it is not easy to identify the best and more reasonable 
sequence to model the complex user behaviour concerning travel planning. For 
example, the choice to travel by aircraft implies also the choices of departure and 
arriving airports, the airport access/egress mode, the airline (e.g. traditional vs. 
low-cost); the latter can be simulated by means of suitable variables inside the 
mode choice dimension or within a decision process where the choice 
dimensions, their hierarchical order, if any, and their reciprocal effects should be 
simulated (more on airport choice is in Chapter 5). 

In any case, the sequence (6) might be completely changed if the user choice 
process happens in a different way, e.g. users travelling for leisure, first of all, 
can decide to use an aircraft to start their trip and then make all the other mode-
related choices, included the trip destination. On the other hand, if destination is 
compulsory (e.g. business travel), sequence (6) matches the decision process. In 
any case, the identification of the best sequence and then the best model is the 
result of a trial-and-error procedure. 

Sequential discrete choice models as in eq. (5) have been used at national 
level to simulate the trip demand on many available transport modes, included 
aircraft, so as to define the best developing policies for the overall transport 
system by taking into account also its impact. This approach could be 
particularly useful to verify how much the overall transport system and each of 
its components are responsible for the greenhouse effects and which actions 
could be undertaken in order to satisfy the Kyoto protocol. 

The hypotheses underlying a RUM approach to estimate the p(./..)s suppose 
users are rational decision makers and they choose the best option among a set of 
available alternatives; such a choice is based on the random utility value 
associated to each alternative belonging to the choice set and depending on the 
characteristics (attributes) of the alternative itself and the other available 
alternatives. Then, users choose the option with the highest value of utility, and 
since utility is a random variable only the probability that users choose a specific 
alternative can be computed. 

Starting from these hypotheses, many multistage RU discrete choice demand 
models can be identified by specifying choice dimensions, choice sequences and 
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discrete choice models (Figure 6); whatever be the discrete choice model, its use 
requires: (1) the identification of the choice set; (2) the identification of the 
relevant attributes characterizing each alternative; (3) the identification of the 
mathematical form for the random utility variable [8, 29, 30, 31].  

 

Figure 6:  Steps in the discrete choice approach. 

RUMs are a family of behavioural models trying to simulate user behaviour 
starting from some mathematical hypotheses. Recently, other paradigms have 
been proposed to understand user preferences, by using Neural Networks (NN) 
and fuzzy-NN approaches [32, 33, 34]. However, NN do not allow the explicit 
values of the parameters to be computed, so the interpretation of the model in 
terms of elasticity values, parameter ratios and so on cannot be obtained. 

Estimation of the air demand requires more than the mode dimension because 
subsequent, relevant choices are also important, as the airport choice that allows 
obtaining the number of (potential) passengers at the airport, or the airport access 
mode in order to identify the needs of users and then identify solutions to offer 
suitable landside facilities. 

4 An overview of the Italian airport system 

Currently, the number of airports opened to civil and military aviation on the 
Italian territory is 115; among these, about 15 are military airports and the 
remaining can be classified half as commercial and half as general aviation. 
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Commercial airports refer to scheduled and charter flights, general and 

military aviation. General aviation airports usually have short runways and 
services are provided for medical and Civil Protection. 

Following the EU classification, as shown in Table 2, in Italy there are 2 
community airports (yearly passengers greater than 10 million), 5 national 
airports (yearly passengers from 5 to 10 million), 14 large regional airports 
(yearly passengers from 1 to 5 million) and 16 small regional airports (yearly 
passengers less than 1 million). 

In recent years, the air demand in the Italian market has increased, following 
the general world tendency. According to forecasts provided by IATA and the 
European agency for the air transport safety (Eurocontrol), passenger volumes 
are expected to increase further in the future years; particularly, IATA [35, 36] 
predicts an average increase at a rate of about 3–4% starting from 2005, while 
Eurocontrol [37] predicts a yearly average increase in the European market at a 
rate of about 3% during the period 2005–2025. Anyway, short-medium trends 
are continuously revised due to contingent situations (as political stability, oil 
price and so on). 

As for the Italian market, Eurocontrol forecasts a yearly average increase of 
about 2–3% for the domestic market, while international markets are expected to 
increase at a rate of about 4% for the next 8 years. 

In the period 1997–2006, the annual passenger growth rate in the Italian 
market was about 6%; the Rome/Fiumicino-Milan/Linate pair has been the 
second busiest route within the EU market, with more than two million 
passengers carried (source: Eurostat, http://www.ec.europa.eu/eurostat). 
The analysis of the current situation in the Italian air market shows a rather 
scattered demand, probably due to the relatively high number of commercial 
airports per square mile; at the same time, the absence of an effective and 
widespread land network that can guarantee a suitable accessibility to/from the 
airport (mainly regional airports but also many national airports) reduces the 
potential air demand. Furthermore, in many cases the average distances among 
airports are about 130–160 kilometres, supplied air services are often similar and 
small airports are in competition to capture demand from overlapping catchment 
areas. 

In this context, an important role is also played by airlines and their 
relationships with airports. Starting from the liberalization of the air transport 
system in Europe, more than 30 new commercial airlines have risen in Italy, but 
today less than half is still in the market and most of them have a marginal 
market share. Routes between many Southern Italy regional airports and the 
main airports (Rome, Milan above all) are operated by a few airlines without a 
significant competitiveness among them, while for some others airports, 
specially located in Northern Italy, supply exceeds demand. 

Many regional airports offer point-to-point international links, often operated 
by low-cost companies; many of them serve tourist destinations in Northern Italy 
(as Venice, Florence) but seasonal flights at lower costs are also starting for more 
decentralized regions (as Sardinia, Calabria), thus improving the tourist flows 
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towards them. Low-cost airlines in Italy have a share of about 13% on the 
domestic market and about 30% on the international market. 

The Italian international traffic is greater than domestic traffic: in 2007, the 
percentage of international passengers takes about 59% of the overall Italian 
market, while in the period 2004–2007 the number of passengers carried on 
international routes had an increase of more than 10%. 

Table 2: Airport classification based on passengers traffic. 

 
Source: ENAC – National Agency for Civil Aviation, Italy. 

Critical aspects of the Italian air transport system are mainly the poor 
accessibility, the under-utilization of the potential capacity for many airports and 
a flight supply that sometimes does not match the transport demand needs. 

To summarize, the Italian airport system situation is very heterogeneous, both 
from an operational and an economic point of view. The two larger airports 
(Rome Fiumicino and Milan Malpensa) gather the most part of the international 
traffic (Table 2), but some others have succeeded in creating a good international 
network that has increased the overall traffic volumes (as, e.g. the airports of 
Pisa, Rome Ciampino, Bergamo, Bologna). Finally, airports where low-cost 
carriers operate are also the most efficient, as it is expected, given the operational 
characteristics of low-cost carriers. 

5 Application to a test case 

Demand simulation at an airport by using time series models requires the 
knowledge of passengers and, possibly, explanatory variable time series data 
referred to the airport catchment area. RUM approaches can be preferred if an in-
depth analysis has to be realized, particularly to understand the user behaviour 
with respect to airlines, airfares, airport characteristics and so on. However, some 
data are often difficult to obtain, particularly airfares. It is almost impossible to 
have authorized airfare data, they can be obtained indirectly by using IATA data, 
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but information on discounted airfare is very limited. Finally, the application of 
RUMs often requires passenger data collected by means of suitable surveys, 
while time series models can use general data easier to obtain (as population, 
GDP and so on). 

In any case, to have information on the air demand at an airport, as a starting 
point to understand the airport general trend and without specific analyses on the 
user choice behaviour, time series models can represent a useful tool. 

The application refers to the airport of Reggio Calabria, in the South of Italy 
(Figure 7), located very near the city centre (about 5 kilometres), well connected 
to the main road network but weakly served by public systems (both buses and 
trains). Thanks to its position in front of the island of Sicily and near the Aeolian 
isles, it might become an important node of the Mediterranean transport system, 
particularly with reference to leisure traffic flows. 

 

Figure 7: Location of Reggio Calabria airport (Southern Italy) and its main competitive 
airport within the same administrative region. 

The main competitive airport located in the same administrative region (Lamezia 
Terme) is about 140 kilometres far away. The second one, Catania Fontanarossa, 
is located in Sicily and the overall land distance is about 135 kilometres, but the 
access/egress time, included time spent to cross the Strait of Messina (between 
Sicily and Calabria), makes it less attractive to potential users. 

As reported in Table 2, Lamezia Terme airport can be classified as a large 
regional airport and Catania as a national one, while Reggio Calabria is a small 
regional airport. 

Starting from 2005, Reggio Calabria airport management has begun some 
developing policies by increasing the flight frequencies and the number of 
reached destinations. The new flights have been operated by some low-cost-like 
companies thus allowing lower fares for passengers. Before starting these 
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developing policies, only hub-and-spoke flights were operated towards Rome 
and Milan by only two companies, one of them under a significant monopoly 
system. The new situation (more companies, more destinations both national and 
international, competition on some links) has had as consequence: 

● the end of the monopoly system and then the opportunity to have more 
advantageous airfares; 

● the opportunity to reach some destinations without transfer at hub(s); 
● the increase of frequencies and the opportunity to choose among more 

destinations and for the same destination among more departure times and 
airfares. 

The current situation is still in a developing but uncertain stage. In fact, the 
presence of the competitive Lamezia Terme airport, that is continuously 
expanding its supply and the served demand, makes the growth of the airport 
difficult, given also that its role in terms of both kind of services and reached 
destinations (and then market share) is not well defined if compared with the 
competing airport. 

Furthermore, the airport catchment area, obtained by means of some RP 
surveys at the airport, is rather limited from a geographical point of view  
(Figure 8), the most part being concentrated around the city of Reggio Calabria 
(about 52% of demand is resident in the municipality area) and its province 
(about 30%), while a little part comes from the city of Messina (Sicily). Finally, 
a negligible percentage comes from the nearest provinces of the Calabria 
administrative region. 

During the years 2005 and 2006, three surveys were conducted at Reggio 
Calabria airport, within the research project ‘Methods and models to forecast the 
air passenger transport demand’, part of a more general national project entitled 
‘Guidelines to plan the development of the Italian regional airports’. The goal of 
the surveys was to understand the main characteristics of users at the airports, to 
identify the catchment area and to have information on the airfare paid by users. 

The first survey was realized immediately after the introduction of new links 
by new air companies, and the second one after some months during which more 
frequencies and more destinations were added. As Table 3 shows, the percentage 
of users in the price class 50–100 increases notably from the first to the second 
survey, while the percentage in the price class 0–50 is drastically reduced (really, 
this price class is linked to the initial launch bargain of new destinations with 
new companies). The increase of the percentage of users in the price class 50–
100 is probably due to the presence of low-cost-like companies, that has had as 
an expected consequence the increase of competition on some routes and then a 
reduction of the average airfare. 

The available, aggregate data refer to passengers and the main supply 
characteristics at the airports (as number of movements, frequencies, number of 
operating airlines and so on) for a given period (sources: Italian Official Statistic 
Institute ISTAT; Ministry of Infrastructure and Transport; Association of Italian 
Airports: www.assaeroporti.it). 
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Figure 8:  Catchment area of Reggio Calabria airport. 

Table 3:  Comparison between the 1st and 2nd survey: Price class. 

Price class (Euro) Users [%] 1st survey Users [%] 2nd survey
0–50 14.9 1.5 
50–100 34.1 57.5 
100–150 18.3 20.9 
150–200 12.6 11.5 
200–250 10.3 4.2 
250–300 4.3 0.8 
300–350 0.2 1.5 
350–400 3.7 0.7 
400–450 0.5 0.8 
>450 1.1 0.5 

Table 4 (and Figure 9) reports passengers data at the airport; note the outlier 
referred to 2004 when the airport was closed during the months of March, April 
and May for some adjustment work on the runway. 
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Table 4:  Boarded/de-planed passengers at the airport of Reggio Calabria (period 

1989–2007)*. 

Year Pax Year Pax Year Pax Year Pax 
1989 157,225 1994 260,539 1999 543,041 2004 272,470 
1990 245,711 1995 252,294 2000 538,048 2005 398,089 
1991 222,571 1996 364,036 2001 481,857 2006 578,250 
1992 246,306 1997 464,161 2002 463,662 2007 547,814 
1993 266,782 1998 461,091 2003 441,795   

* Data have been collected by using more sources, as a unique data base does not exist. 

 

Figure 9:  Passenger demand trend at the airport of Reggio Calabria (period 1989–2007). 

After a positive trend from 1989 to 1999, the passenger demand has started to 
decrease systematically in successive years till 2004. The main reasons for this 
decrease are the progressive reduction of the supply and also the more and more 
expensive airfares. After 2004, the demand trend seems essentially positive, but 
the potential demand is probably higher even if a poor accessibility and the still 
uncertain developing policy at the airport stop its expansion. 
Starting from the same boarded/de-planned passenger data base, both univariate 
and multivariate time series models have been calibrated. 

Following the Box-Jenkins approach, some preliminary analyses have been 
carried out; estimated ACF and PACF for the boarded/de-planned passenger time 
series (Figure 10) show that ACF decreases linearly and the value of PACF at lag 
1 is close to 1, i.e. there is mean non-stationarity that has been removed by 
differencing the series once. After that transformation, the Dickey-Fuller test 
applied to the differenced series confirms its stationarity. To remove the variance 
non-stationarity, the series has been transformed by using the logarithmic 
function. The estimate of the partial autocorrelation coefficients shows that only 
π1 does not fall within the two standard error bounds ±2/√N (Figure 10), so the 
order 1 can be established for the AR component. The same procedure is applied 
to choose the MA component order by using the correlogram of ACF, that 
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θ

suggests a MA(2) component. Then, from data analysis the identified general 
model is ARIMA(1,1,2): 

2
1 2(1 ) ln (1 ) ,− ∇ = + − −it tB d c B B aφ θ  

where c is the model constant. 

 

Figure 10:  ACF and PACF correlograms. 

Demand at year 2004 can be considered an outlier because the airport was closed 
during three months; then, to calibrate the model, the outlier has been suitably 
estimated in order to better follow the natural trend of the series. The model 
calibration has been carried out by using data till year 2005 while the remaining 
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2 years have been used as hold-out-sample to verify the model prediction 
capability (Figure 11). 
A multivariate ARIMAX model has been calibrated too, by introducing some 
explanatory variables. As it is well known, the most powerful explanatory level-
of-service variables to estimate transport demand are times and monetary costs, 
mainly airfares in this case. As said in Section 3, it is very difficult to obtain 
airfares, and especially for long time periods, but airfares are also one of the 
most interesting variables that can explain the air demand trend and its variations 
when the market conditions change (e.g. low-cost companies, competition on 
routes, within mode and between mode competitions and so on). 

 

Figure 11: True and predicted air demand at the airport of Reggio Calabria – ARIMA 
and ARIMAX models. 

As briefly described in Section 3, airfare can be estimated indirectly by using the 
hedonic pricing theory. Trip fare can then be expressed as follows: 

( , , , ),= …F f a b d  

where: 

● F is the trip fare to move between two airports; 
● f is a function to be specified; 
● a, b, …, d are user and/or trip characteristics as comfort, timetables, 

accessibility, delays, frequency and so on, which can be obtained by suitable 
surveys at airports. 

In this case, function f has been specified in linear form, and the relevant 
variables are user average income, flight duration time, kind of air carrier and 
transfer waiting time (Table 5). All the data have been collected during the RP 
interview introduced before. The variable ‘kind of air carrier’ assumes value 1 if 
users choose the flag (or traditional) carrier and 0 otherwise. Time variables 
depend on the scheduled flights for the various legs and are expressed in  
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hours. Finally, fares, transformed by using the logarithmic function, refer to one-
way trips. 

Table 5:  Results of the fare model. 

Variable Coefficients t-student (1%) 
Income 0.88 23.93 
Flight duration 1.45 26.88 
Kind of airline 0.47 6.43 
Waiting time –0.82 –13.39 
Statistical tests 
R2 Adjusted R2  
0.958 0.9579  

As Table 5 shows, all the parameters have correct signs and are statistically 
significant as well as the overall model (see R2 and adjusted R2). Users are 
willing to pay more for longer trips, but prefer direct flights or good connections, 
as the negative value of the waiting time variable suggests. Furthermore, despite 
a greater monetary cost they prefer flag carriers, probably due to the image of 
reliability and safety they inspire. 

Generally, after the calibration of a fare model, its results can be used into a 
demand model as ARIMAX. In any case, even if this fare model specification 
has given good results in terms of descriptive power, for this application not all 
the time series data of the explanatory variables are available and then the fare 
model results cannot be used into an ARIMAX model. Then the explanatory 
variables considered here are the number of movements at the airport at year t, 
mt, and the average per capita income at year t, It, that can be considered a proxy 
of the willingness to pay, and in some ways linked to the airfares at the airport. 
The number of movements is a level-of-service variable, representing the 
capability of the airport to offer flights, while income is a socio-economic 
variable depending on the activity system in the catchment area. 

The sequential testing procedure described in Section 3.1 allows the P values 
for both variables to be identified; particularly, demand at year t depends on 
movements in the same year t and income from year t to year t–6. The resulting 
multivariate ARIMAX model is: 

2
1 2 1 2 1

3 2 4 3 5 4 6 5 7 6

(1 ) ln (1 ) ln ln ln
ln ln ln ln ln .

−

− − − − −

−Φ ∇ = − − ⋅ + ⋅ + + +
+ + + + + +

t t t t

t t t t t

B d B B a m I I
I I I I I

θ θ δ α α
α α α α α κ

t  

The model has been calibrated by using data from 1989 to 2005, while the 
remaining data (2006–2007) were used as hold-out sample (Figure 11). 
As Figure 11 shows, both ARIMA and ARIMAX models can well predict the air 
demand at the airport; years from 2005 to 2007, considered as hold-out sample, 
are better simulated by the ARIMAX model. Anyway, it is interesting to note 
that both models show good performances, although the theoretically most 
appealing multivariate model needs more explanatory variables to capture the 
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demand trend. In some cases, the ARIMA model explains the demand trend 
better than the ARIMAX model. However, apart from the similar simulation 
capabilities, multivariate models can help to test possible developing policies by 
means of suitable hypotheses about the values of the explanatory variables. In 
this case, the level-of-service explanatory variable (movements) depends on the 
airport management and airline policies, while income depends on socio-
economic developing policies, more complex and more difficult to estimate and 
control. Without specific developing policies on the territory and then all things 
being equal, income follows its trend, while hypotheses can be made on the 
number of movements in order to verify if and how demand can further increase. 
 

number of movements

0

2000

4000

6000

8000

10000

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

 
Figure 12:  Number of movements trend at the airport of Reggio Calabria (period  

1989–2007). 

It is interesting to compare the trend of the number of movements (Figure 12) 
and passenger demand percentage variations at the airport (Figure 13) as well as 
the percentage variations with respect to 1999 (corresponding to the greatest 
demand value before 2005, when new companies began to operate at the airport). 
From Figure 13, it can be seen that the percentage variations of movements and 
passengers are rather similar, apart from the transition year 2005, when many 
developing policies started at the airport. More interestingly, Figure 14 shows the 
percentage variations with respect to the reference year 1999. In this case, till 
2004 demand is decreasing quicker than the number of movements with respect 
to the reference year, but at a rather similar rate. After 2005, while the number of 
movements increases strongly, demand increases weakly and simply reaches the 
values already achieved at 1999. 

The analyses of data thus suggest that the policies started at the airport do not 
capture the actual needs of passengers, as demand at years 2006–2007, 
practically equal to demand at year 1999, is satisfied by a supply really larger 
than that at the reference year. Then, even if the number of movements increases 
– suggesting more possible destinations, greater frequencies for the same 
destination, more flights at different times of the day – demand does not increase 
significantly with respect to the reference year 1999, when the number of 
movements was largely lower, but probably more suitable for the passengers 
needs. 
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Figure 13:  Number of movements and passenger demand percentage variations at the 
airport of Reggio Calabria. 

 

Figure 14: Number of movements and passenger demand percentage variations at the 
airport of Reggio Calabria with respect to year 1999. 

To simulate the relationship between demand needs and air supply, probably 
the time series model should use more level-of-service explanatory variables 
taking into account not only the amount of supply but its distribution and its 
specific characteristics. However, when the required level-of-detail increases, 
data are more difficult to obtain, as official agencies at national and international 
level (as Eurostat) generally provide considerably aggregate data. Then, specific 
surveys have to be carried out that also allow combined time series and RUM to 
be used. 

As the application at the regional airport of Reggio Calabria has showed, the 
regular collection of data at a given airport can be of great importance for the 
airport management, helping them to identify the best developing strategies, 
particularly when competition between airports exists. In this case, the decrease 
in demand despite the increase in the flight number can be due to the superior 
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supply at the nearest competing airport, that in fact has strongly increased its 
demand, probably becoming attractive for people initially being in the Reggio 
Calabria airport catchment area. 

From a modelling point of view, the results obtained with both univariate and 
multivariate time series models do not allow asserting that univariate models are 
better than multivariate models and vice versa. As obtained in this study, the 
better forecasting power of the univariate model is offset by its limits of validity, 
which depends on the stability of the boundary conditions. Multivariate models 
solve this problem by using explanatory variables, whose time series, however, 
are often difficult to find. Thus, the potential explanatory power of multivariate 
time series models is limited by the lack of suitable data. 
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