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aBstract
two of the greatest challenges for future individual mobility are urban air quality and climate protec-
tion. although a steady reduction of pollutant emissions from motor vehicles has been achieved in 
the past, local pollution levels within cities still reach levels that are considered hazardous to health. 
although the significant contribution of road traffic to total pollution is known, especially at traffic 
hotspots, modelling the exact interactions remains a challenge. in this paper, a novel approach for the 
determination of the emission–immission interaction on the basis of a neural network model for the 
no

2
 immission at a near-traffic hotspot scenario is presented. in addition to a detailed description of the 

modelling procedure, significance analysis of the influencing variables and the interactions considered, 
it is also described how the specific emissions for the entire vehicle fleet are implemented in accordance 
with different emission standards under real driving conditions. on the basis of the model presented, 
achievable immission levels for currently available and future technology are investigated within sce-
nario analysis. results show that concentrations of less than half of today’s yearly average limit values 
are technically feasible in hotspot situations.
Keywords: air pollution, emission-immission-interaction, recurrent neural networks, NO
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1 introduction
the release of substances hazardous to the environment and human health into the ambient 
air is a process that has accompanied anthropogenic activities for a long time. the impact of 
a certain concentration of pollutants over time on humans and nature is referred to as immis-
sion. from a medical perspective, it is widespread consensus that air pollution can harm 
human health across the entire lifespan [1], [2], [3], [4], [5]. Because of its ubiquity, indi-
viduals generally have little opportunity to avoid exposure. this distinguishes air pollution 
substantially from other causes of adverse health effects. in the past, increased knowledge 
about the effects on human health as well as the quantifiable, negative consequences for the 
environment led to the introduction of air pollution control measures, some of which are also 
subject to the precautionary principle. the focus of these measures lies primarily on urban 
air quality. here, significant improvements have been achieved through the introduction of 
air quality standards in recent decades [6], [7]. although the majority of measuring stations 
comply with the applicable limit values, local exceedances of nitrogen dioxide (no

2
) and 

particulate matter are still observed. this is mostly the case in specific, local situations with 
high traffic volumes, so-called hotspots [8], [9]. despite the high importance of the influence 
of vehicle emissions, the description of the exact interaction to the resulting immission is still 
not fully described and subject of ongoing research. as a result, vehicle emission standards 
are defined on the basis of technical feasibility rather than on the basis of their attributable 
immission contribution. similarly, air pollution control measures are seldom based on quanti-
fied action assessments but rather on general assumptions, which are attributed to reduction 
potentials [10]. Based on an empirical model, this paper presents an approach to quantify 
the relationship between fleet emission and the corresponding immission impact of a certain 
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vehicle fleet. this is done using the example of a hotspot measuring station in darmstadt, 
germany, which has repeatedly exceeded the legal limit values in the past for the species of 
no

2
. Based on this model, targeted changes of the vehicle fleet and the resulting impact on 

the prevailing immission will be investigated.

2 mEthodology
the following explanations are based on the fundamental assumption that the measured vari-
able of interest, the traffic influence, can be isolated as far as possible at an observation loca-
tion in order to be able to model it as accurately as possible. this assumption is most likely 
to apply in a situation close to traffic. here, it can be assumed that the pollution above the 
prevailing city background is primarily attributable to traffic, with a proportion of the city 
background immission also being attributable to traffic emissions. By means of the associ-
ated emission at a near traffic location, the interaction with the immission can be described 
according to fig. 1: 

the traffic emissions result from the total vehicle fleet and its associated, type-specific 
emissions. in order to represent the locally specific fleet, the data are aggregated, which can 
also include special measures such as vehicle ban or speed restriction scenarios. result-
ing fleeting emissions contribute to the prevailing immission value, which is further influ-
enced, in the case of the city background by other, non-traffic emissions. the evaluation of an 
immission assessment in the context of different scenarios according to the calculation based 
on fig. 1 comprises the following three main tasks.

1. fleet emission calculation
2. immission calculation
3. scenario analysis

in the context of this paper, the approach described is applied to an exemplary, representative 
scenario of a hot-spot measuring point for the pollutant no

2
 in close proximity to traffic. 

the main steps of the procedure and their implementation are described in the following 
sections.

figure 1: interaction of emission and immission in the presented model framework.
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3 implEmEntation
as already shown throughout various work such as [5], [7], [10] the problem of inner-city air 
quality is highly related to traffic-intense areas for the species no

2
 and particulates, for which 

vehicle emissions are primarily held responsible. the application of the outlined approach is 
particularly suitable due to the relevance of these species in corresponding scenarios. in the 
following, the characteristics of the chosen use case, as well as the details of the emissions 
and immission calculation, are presented. this serves as the basis for scenario analyses.

3.1 use case

the proposed modeling method is carried out for the Darmstadt Hügelstraße scenario. this 
is a near-traffic air quality surveillance station in the city of darmstadt, germany, which 
complies with the requirements of directive 2018/50/Ec and which has regularly exceeded 
the legal limit values for no

2
 in the past as shown in fig. 2. 

as at many other sites with recurring violations of legal limits, the scenario is characterized 
by dense building development (street canyon) on a main road in the city centre. local pecu-
liarities are the prevailing one-way street situation and a tunnel exit, which is located 200 m in 
front of the measuring station in the direction of travel. furthermore, special measures were 
implemented in the past: since 2017, the speed limit is reduced to 30 km/h and, as of 1 June 
2019, vehicles with emission standard Eu5/V for diesel and Eu2 for gasoline are restricted 
in this street [11] – measures that potentially influence the prevailing immission. thus, the 
scenario appears to be particularly suitable for empirical modelling, as the changing input 
variables can become part of the model training and thus an extended range of validity can be 
covered. a recent assessment of air quality surveillance station positions concludes that only 
a few measuring stations in inner-city areas close to traffic are representative of the location 
with the highest concentrations, which is why the highest values may not be recorded [10]. 
these are particularly present in the area of street canyons. Exactly such a highly polluted 
situation exists in the case of Darmstadt Hügelstraße, which is the reason why this scenario 
is highly suitable for investigating most critical conditions. furthermore, data on influencing 
parameters as well as on the prevailing background immission in the city and the surrounding 
area are available. the associated air quality surveillance station for the rural background is 
located approximately 30 km outside the city between crop fields. 

figure 2:  no
2
 immission trend (yearly averages) for the chosen near-traffic scenario  

Darmstadt Hügelstraße, separated into city background (blue) and near-traffic 
(red) share.
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given this situation, it is possible to carry out the proposed modelling of the additional traffic-
related pollution separately from the prevailing city background. in order to achieve a high 
model quality, it is indispensable to represent the essential influencing parameters of the 
model. for this purpose, the data of these parameters have to be available, both for training 
and later use. the scenario was also chosen on the basis of this prerequisite, since a good 
coverage of the influencing variables with a high temporal resolution is guaranteed. the 
available data of the respective measuring station are listed in table 1. 

3.2 fleet emission calculation

the quantification of fleet emissions assumes that the sum of all traffic emissions in the com-
parison period is decisive for the measured immission load. the emissions differ depending 
on the type of vehicle, the emission standard as well as the traffic and environmental situation 
in which it is currently located. for specific specifications of these parameters, an individual 
emission factor (Efa) can be specified for each vehicle class. the fleet emission is then 
calculated as

    EFA EFA ntotal

i

i i= ⋅∑                  (1)

in this context, i describes the vehicle category, EFA
i
 its emission factor and n

i
 the number 

of vehicles of the respective category. this relation emphasizes that a low number of vehi-
cles with a high emission factor has the same influence on the immission load as a high 
number of vehicles with correspondingly low emission factors. the Efas are obtained from 

table 1:  input parameters of the empirical model for near-traffic (nt) and city background 
(cB) no

2
-immission with data sources. 

input parameters

modelled site

near traffic city background

ambient pressure1 X X

ambient temperature1 X X

ambient humidity1 X X

nox fleet emission (nt) X

nox fleet emission (cB) X

no
2
/no

x
 emission ratio (nt) X

no
2
/no

x
 emission ratio (cB) X

ozone concentration1 X X

residential energy consumtion2 X

solar radiation1 X X

wind speed1 X X

wind direction1 X X

1 hlnug [12], 2 smard [13].
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the handbook of Emission factors (hBEfa) version 4.1, as is the fleet composition. hBEfa 
is a database that makes it possible to determine corresponding average emissions of the 
vehicle fleet for adjustable traffic situations and definable boundary conditions. the stored 
emissions are based on the passenger car and heavy-duty model (phEm). this model is 
used to determine emissions for the representative traffic situations. the model reproduces 
the essential emission formation mechanisms as well as the exhaust gas after-treatment reac-
tions for vehicle classes. ageing effects are also considered herein. the calibration of the 
models is based not only on the measurements of the federal Environmental offices such as 
germany, austria or switzerland but also other test and analysis facilities, both in real driv-
ing Emission tests and in classical test bench measurements. [14], [15]

altogether, the authors assume that the used hBEfa data resemble real-life emissions over 
the entire vehicle life cycle with sufficient accuracy and representation for the real emission 
situation. in all following steps, the specific Efas and vehicle category shares are considered 
constant for every year.

3.3 immission calculation

with the available data on known influencing parameters to ambient air pollution, an empiri-
cal modelling approach is pursued instead of a physical dispersion model. while physical 
models also provide robust results and are frequently used for air control plans, their associ-
ated modelling effort is comparatively high. furthermore, deviations also remain here due to 
inaccurate or non-existent physical representation of certain transformation processes. the 
determination of the Efas on the basis of the models stored in hBEfa might itself be subject 
to inaccuracies. Empirical modelling offers the possibility that such errors in the input data 
are compensated for by the correlations stored in the model, which arise during training. this 
is impossible with physical modelling. [16], [17], [18]

regardless of the modelling type, it is necessary that the prevailing mechanisms can be 
replicated. in the case of an empirical modelling approach, the necessary influencing param-
eters driving these reactions must be specified. Vehicles with internal combustion engines 
emit primary, i.e. direct, no

2
. similarly, secondary no

2
 emissions arise from the atmospheric 

conversion of directly emitted no according to the reactions in formulae 1, 2 and 3. the sec-
ondary formation mechanism usually outweighs the primary pathway [19].

    2 22 2NO O NO+ →                   (2)

    NO O NO O+ → +3 2 2                  (3)

   NO peroxideradicals NO radicals+ → +2                 (4)

likewise, a reverse reaction is also effective, which leads to the conversion of no
2
 to ozone 

and no through solar radiation:

       NO O solar radiation NO O2 2 3+ + → +                 (5)
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the significance of oxygen and ozone for the reaction chemistry of no and no
2
 can be 

deduced from the preceding reaction equations, the conversion mechanism of which takes 
place according to formula 5.

         O O O+ →2 3
                                (6)

these are only the most significant equations; in fact, many more exist, especially for the 
reactants of no

2
 mentioned here. for calculations of the special case on the transformation of 

no
2
 in street canyons, the gas chemistry of the troposphere is reduced to reaction equations 

2, 3 and 5. this approach is based on the assumption that other reactions take place much 
more slowly and that the current concentration is dominated by the reactions mentioned [20].

Besides the complex, physical-chemical mechanisms, the emitted components are diluted 
within the ambient air. in the case of vehicles as emitters, the immission concentration attrib-
utable to traffic thus depends on the parameters that influence the chemical reactions in the 
ambient air described above. underlying are numerous environmental conditions such as 
ambient temperature, humidity, wind direction, wind speed, air pressure, solar radiation, 
the local building situation and the distance between the emission and immission measur-
ing point. according to the empirical modelling approaches, these influencing parameters 
are used to determine the immission load. a neural network is used here, which calculates 
non-linear relationships by means of adaptive, neuro-fuzzy interference systems. the overall 
interaction is described by separation into subproblems and approximating these using poly-
nomial functions. the model generation can be controlled e.g. by parameters for adapting 
the polynomial functions or weighting individual sub-models. to store the effective rela-
tionships, the model is calibrated with existing input and output data of the system during 
a training phase. in the specific application, this is done using measurement data from five 
consecutive years (2015–2019). the input and output parameters of the generated models of 
the near-traffic and city background immission are listed in table 1. for the training phase, 
the response quantity (no

2
 immission) has to be available as input data as well. 

the result is a compiled model, which calculates the resulting immission on the basis of 
influencing ambient boundary conditions and traffic emissions for every 30 min sample. the 
temporal resolution of the model can be classified as high. in this way, the model is trained 
for a very wide range of prevailing conditions. for instance, there is comparatively low traffic 
at night with correspondingly low emissions - a situation that is of general importance for the 
representation of low fleet emissions. similarly, the back and forth reaction of no

2
 (formulas 

2–4 versus 5) changes during the course of the day, which can also be resembled within the 
neuronal structures of the model due to its high temporal resolution. and, of course, the qual-
ity of the representation of fast changes in influencing variables is also favoured by a high 
temporal resolution; for example, increasing and decreasing traffic volumes at rush hour or, 
depending on the season of the year, fast changes in temperature after sunrise or sunset. all 
in all, the authors assume that a high temporal resolution should have beneficial effects on 
accuracy, both in terms of correctness and precision.

the modelling approach is applied for the immission calculation at two measurement 
sites: the near-traffic scenario Darmstadt Hügelstraße and the corresponding city background 
measurement station. By means of the separate calculation of the city background, the influ-
ence of traffic on the prevailing immission level of the city besides near-traffic areas is con-
sidered. Both models are validated on the basis of the goodness of fit to existing measurement 
data. this includes both the training period and the non-training period. the latter aspect is 
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particularly important, as it is possible that the model will only deliver reliable results within 
the trained range due to overfitting.

4 rEsults
within this section, results of the proposed immission model are presented. to ensure the 
quality of the modelling procedure, statistical parameters and comparisons between modelled 
and measured immission are first discussed. subsequently, the models are used to investigate 
the effects of changes in the vehicle fleet on the prevailing load at the hotspot in scenario by 
varying the emissions of the vehicle fleet.

4.1 influence and quality analysis

the general influence of the transmission reaction by the parameters presented above (see 
table 2) is well known. however, the exact magnitude and relationship between the influ-
encing variables for the specific object of interest is unclear. for this reason, a correlation 
analysis is carried out in order to quantify the correlations between the influencing variables 
and the residual emission balancing. in addition to the significance of a parameter for the 
prevailing immission, the comparison of the influencing variables with each other is also of 
interest. Besides drawing conclusions for model training settings, this work also serves to 
deepen the understanding of the system. Both pearson and spearman correlation coefficients 
of input parameters are investigated. as they provided consistent results, only pearson cor-
relation coefficient are discussed in the following. according to expectations, the prevailing 
immission at the near-traffic hotspot is strongly influenced by the prevailing no

x
 fleet emis-

sion, with a clearly positive, linear correlation at r
No2,

 
Nox

= 0.62. for the city background, 
there is also a positive correlation (r

No2,
 
Nox

= 0.17) to traffic emissions, although it is signifi-
cantly lower than in close proximity to the street.

table 2:  correlation matrix of immission and environmental influencing parameters for the 
near-traffic scenario Darmstadt Hügelstraße.
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ambient pressure 0.13 0.19 1

ambient temperature 0.32 −0.38 −0.09 1

wind speed −0.07 −0.36 −0.17 0.01 1

ambient humidity −0.46 0.33 −0.03 −0.62 −0.35 1

solar radiation 0.41 −0.31 0.06 0.57 0.23 −0.65 1

ozone concentration 0.28 −0.60 0.18 0.71 0.35 −0.76 0.57 1
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among the influencing environmental parameters listed in table 2, highest sensitivities of 
the emission are observed for solar radiation and ozone concentration - strong indications 
of the already mentioned sensitivity of the transformation processes to intermediate products 
(ozone) and its driving mechanisms (energy input through solar radiation). the correlation 
to air humidity, which can also be understood as rain in a broader sense, is equally striking. 
measurement data show sharp decreases in the prevailing no

2
 immission in the event of rain. 

furthermore, strong seasonal differences are observed for temperature, average wind speed, 
humidity, ozone concentration and solar radiation. the authors conclude that this is presum-
ably the reason for negative correlation among these parameters.

with regard to the additional emission input for the city background, an up-to-date data 
source that provides direct residual emissions within the city area could not be identified. 
however, it is expected that non-traffic emissions are linked to energy consumption. correla-
tion analysis results in a positive interaction coefficient of 0.48 between residential electrical 
energy consumption and immission concentration in the near-traffic scenario. for the urban 
background immission, the correlation is significantly weaker at 0.24, remaining positive. 
one reason can be found in the likewise persisting correlation between traffic volume and 
electricity consumption, which is a result of the corresponding periods of anthropogenic 
activity.

furthermore, it is analysed whether the considered variables are subject to a possible tem-
poral offset, as this applies to effective reactions. it is questionable to what extent this has to 
be considered in the usage of measurement data. for this reason, an additional cross-correla-
tion analysis is carried out. since it is assumed that a potential temporal offset is not subject 
to major fluctuations over long time periods, data from 21 february 2018 to 4 march 2018 is 
examined in this regard. the highest cross-correlation result is obtained for no time shift for 
the near-traffic immission calculation (lag = 0) and one measurement sample (lag = 1 resp. 30 
min) in the case of the city background, which is probably due to the greater distance of the 
probe position from the road. however, the difference between the cross-correlation for lag = 1  
and lag = 0 is not significant (p = 0.008). consideration of the shift in the models would, 
therefore, not be justified. overall, there are no indications that would support the assumption 
of delayed impact mechanisms over several hours based on the conducted analysis. 

4.2 immission modelling

Based on the previous observations, the neural network structure is trained with the input 
variables according to table 1. a variation is carried out to determine the optimal control 
parameters of the model. the highest model quality according to the statistical parameters 
listed in table 3 is obtained for the local approximation by means of fourth-order polynomial 
functions per layer. a small layer overlap was selected, which favours a higher model quality 
but can also tend to lead to more discontinuous behaviour.

furthermore, an increase in dispersion is observed for higher immission concentrations. 
this effect is stronger for the city background. compared to the statistical parameters of a 
linear regression analysis, the model quality could be increased considerably – the coefficient 
of determination R2 increases from 0.634 to 0.867 in the near-traffic and urban background 
from 0.547 to 0.817. higher model quality can be achieved in training with shorter time peri-
ods. however, the authors assume that this also increases the risk of unconsidered conditions. 
dependencies that are found for a short period of time do not necessarily have to be valid for 
a longer period of time. in particular, a wide range model validity and extrapolation ability of 



 Tim Steinhaus et al., Int. J. Transp. Dev. Integr., Vol. 5, No. 4 (2021) 361

models that have been trained with short data periods is often limited for this reason, despite a 
higher coefficient of determination. for reasons of robustness, a period of 5 years from 2015 
to 2019 is chosen for training. furthermore, statistical analysis shows that correlations of the 
near-traffic immission are represented more clearly as the city background. this is probably 
due to the direct emission influence in close proximity to traffic, while this interaction is 
less dominant in the city background. thus, influence of environmental parameters is higher 
here. it should be noted here that the resolution on very small scales is subject to significant 
fluctuations. therefore, assessments of the immission load are rather carried out on larger 
time scales on a monthly or annual basis, as the long-term trend is of interest regardless of 
temporary distortions. 

input data for the years 2015–2019 were again used in the final generated models for 
additional traffic-related pollution and background immission. for result validation, the year 
2020 was also included, which was not part of the training. due to the coVid-19 pandemic 
during this period, temporary lockdown measures were in force in the scenario under inves-
tigation, which significantly affected the vehicle number over a period of approximately 4 
weeks in the months of march and april (up to −62%). for the rest of the year, traffic volumes 
remained within the expected average of recent years. in order to isolate a potential coVid-
19 effect on the no

2
 immission, traffic data for the year 2020 is corrected by normalization 

of this period on the basis of the averages from 2015 to 2019.
in the medium-term trend of the no

2
-immission load between the years 2015 and 2020, 

shown in fig. 3, the simulation results for near traffic deviate on average by −0.3 % from the 
measured values. during these 6 years, a tendency for the annual mean values to be under-
estimated in the period from 2015 to 2017 is followed by slight overestimations in the years 
2018 to 2020. the smallest deviation occurs in 2018 with 0.7 μg/m³, the largest in 2020 with 
2.6 μg/m³. as mentioned, this is the year that, in contrast to the previous years, was not part of 
the training data set. for the urban background, a higher overall accordance of the modelled 
annual mean values with the measured data can be observed. this is noteworthy insofar as the 
associated statistical analysis parameters of the model quality were slightly lower. the mean 
deviation over the period shown is 0.6 μg/m³ no

2
 (2.5 %) and the qualitative replication is 

also given. a supposed anomaly in the measurement data of the year 2019 is also represented 
correctly: a predominant immission increase in 2019 despite strongly declining immission at 
near-traffic area. apparently, conditions prevailed in 2019 that had a favourable effect on the 
pollution situation of the measuring point close to the traffic but not on the urban background 
pollution. overall, the model quality achieved is in the upper range compared to other empiri-
cal, traffic-related immission models and can be classified as high [18], [17].

table 3: statistical parameters of the model training.

R2 rmsE nrmsE

yi =measured value

y .=mean meas value

ŷ= predicted value

1

2

2
−

−( )

−( )
∑
∑

y y

y y

i

i

ˆ
i

n

i iy y

n
=∑ −( )

1

2ˆ RMSE

y ymax min−( )
⋅100%

near-traffic model 0.867 13.026 3,933 %

city background model 0.817 6,411 5,212 %
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4.3 scenario analysis

with the previously developed model, projections of the future development of no
2
 pollu-

tion are derived for the near-traffic scenario. the development of the immission load for the 
predicted, “natural” change in the vehicle fleet composition within the next 10 years is taken 
as baseline case. it is then compared to different boundary condition scenarios by varying the 
vehicle fleet emissions calculating resulting immission loads. for this purpose, the ambient 
conditions from the reference year 2020 are kept constant. the vehicle fleet category com-
position in the near-traffic scenario consists of 92.3% of the passenger car vehicles (pcV), 
3.7% of type light duty vehicle (ldV), 2.4% of type heavy duty vehicle (hdV), 1.4% of 
type motorcycle and 0.2% of the type bus. changes within the vehicle fleet are represented 
by specific emission vectors calculated for the respective fleet composition and its associ-
ated emission factors. the immission model thus receives scenario-specific parameters as 
input variables for which a corresponding immission is calculated. on this basis, the future 
compliance to immission limits is assessed. furthermore, isolated immission contributions 
for different vehicle emission standards can be quantified by the boundary consideration of a 
complete fleet penetration.

according to the change of the vehicle fleet composition by hBEfa for the years up to 
2030, the development of total fleet emission for the near-traffic scenario Darmstadt Hügel-
straße, as depicted in fig. 4, is overall reduced by −51.3 %. the largest share remains for 
pcVs, although they account for the majority of the decline. with 92% of the total vehicle 
number, they emit 51% of total traffic no

x
 by 2030. conversely, the 2.4% of trucks emit 44% 

of all no
x
. compared to the development of fleet emissions over the past 6 years (see fig. 3), 

the dynamic of the annual relative emission reduction decreases, with the no
x
-fleet emission 

in 2030 being 15% of that in 2015.
the impact of this fleet development on the immission situation, shown in fig. 5, is two-

fold: a significant decrease of 19.9% up to 2030 is observed in the near-traffic area, while the 

figure 3:  Validation of the derived no
2
-emission–immission model – comparison of meas-

urement to simulation for near-traffic (black/red line) and city background (blue/
green line) immission and corresponding near-traffic total fleet no

x
-emission (grey 

bars).
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city background hardly reacts to the emission reduction (−1.1%). however, the decrease of 
the immission’s near-traffic share (total near-traffic – total city background) with 7.1 µg/m³ 
from 13.0 µg/m³ corresponds in its magnitude to that of the no

x
 fleet emissions (−45.4%).

as seen in previous years, emission reductions have a significantly weaker effect on the 
city background than on near traffic. in combination with the decreasing reduction dynamics 
of the emissions, the slight decrease can be explained. deviations result, among other factors, 
from the ozone concentration assumed to be constant for years after 2020. an analysis in 
this respect shows that an increase in the o

3
 concentration equivalent to that of the long-term 

average (−69% no
x
 → +10% o

3
) leads to a slight decrease in the calculated no

2
 immission 

(nt: −0.1%, cB: −3.1%). thus, the present overestimation of the model lies within the error 
tolerance (compared to table 3) and is thus to be classified as non-significant.

figure 4: near-traffic emission trend allocated to vehicle categories up to the year 2030.

figure 5:  no
2
 immission trend for near traffic (red) and city background (blue) based on 

expected replacement of vehicle fleet.
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at 17.4 µg/m³, the city background immission is only 3.6 µg/m³ (25.7 %) above the rural 
background of 13.8 µg/m³ in the reference year 2020. accordingly, a reduced emission results 
in only a limited reduction potential for the city background immission. Extrapolated to zero 
traffic emissions, the remaining city background immission is 14.9 µg/m³ no

2
. overall, in 

this scenario of a hotspot, the total immission load approaches the value of 20 µg/m³, which 
was named as a potential future limit value [3]. with new emission standards currently being 
discussed, it is of interest how these affect the near-traffic immission concentrations. here, 
too, the model offers the possibility of quantifying the influence of present and new emission 
standards on air quality as depicted in fig. 6.

same as for the Eu6d emissions, the emission factors for a potential successive emission 
standard (Eu7) are also derived from hBEfa 4.1. compared to the previously discussed 
immission load in the case of natural fleet renewal by 2030, a further reduction potential of 
3.9 µg/m³ remains in the case of complete fleet penetration by Eu6d emission standard for 
pcV. in contrast, Eu7 would hardly result in further reduction of the prevailing no

2
 concen-

tration in the near-traffic scenario, although the emissions in the passenger car category would 
approximately be cut to half according to hBEfa. the underlying reason is the now strong 
influence of hdV: although they have only a very small share in urban traffic, high emitter 
influence becomes very significant. it should be noted, however, that reductions of hdV and 
other categories emissions, apart from pcV, were not considered due to data availability. 

5 conclusion
in order to ensure the lowest possible immission, it is of interest to be able to model the 
effects of main emitters such as vehicles with internal combustion engines particularly well. 
in this way, it is possible to precisely quantify their influence on the immission situation 
and to estimate future developments in a substantiated manner. the presented approach for 
empirical immission simulation by means of neural networks and the application to a traffic-
related hotspot scenario for the species no

2
 delivers high-quality results and is, therefore, 

used for an immission assessment.
it is shown that in recent years there has been a strong decrease in traffic emissions, which is 

also noticeable in the immission. as a result, limit value exceedances are only to be expected 
in exceptional cases. as a result of further fleet penetration of newer vehicles with no

x
 emis-

sions that are lower under real operating conditions, the downward trend will continue. the 

figure 6:  no
2
-immission potential for emission standards with total fleet substitution for 

passenger cars in the hotspot scenario Darmstadt Hügelstraße.
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technical limit potential of the current Eu6d passenger car fleet reduces the current prevailing 
emission of the year 2020 (coVid-19 effects excluded) by 42% to 20.6 µg/m³ and thus half 
of the currently valid limit value. such a continued reduction through future emission stand-
ards is not to be expected, as the absolute level of emissions has already fallen very sharply 
and the remaining reduction potential is therefore very small.
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