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ABSTRACT
Isolating portions of the floor mass through rigid–plastic connectors may reduce the effects of strong 
earthquakes on framed buildings. This strategy was shown to be effective for single-storey frames, 
provided that a reasonably low plastic limit given to connectors and large enough portions of mass 
be disconnected. The stress reduction is however found to depend significantly on some interrelated 
parameters and on the given earthquake. By means of an analytical study and a nonlinear numerical 
investigation involving single-storey frames and four recorded earthquakes, the present paper gives a 
swift way to estimate the extent of stress reduction that can be achieved under a given earthquake, for 
preset values of the key parameters. Some empirical formulae are also provided to estimate the peak 
relative displacement that is reached by the disconnected mass.
Keywords: Floor mass isolation, inertia limiters, rigid–plastic connectors, seismic stress control.

1 INTRODUCTION
A successful strategy to control the seismic effects on civil structures is the base-isolation 
(BI) technique which introduces a flexible layer at the base of the building to drastically 
increase its fundamental period [1]. A different strategy may be that of isolating portions of 
the mass so as to lessen the inertial loads acting on the building [2–5]. Recently, partial mass 
isolation with nonconventional tuned mass dampers (TmDs) exploiting masses already 
 present in the system or a combination of TmD and BI have also been proposed [6–9]. 
 Reducing the mass, however, implies shortening of the fundamental period of vibration, 
which might even increase the earthquake-induced accelerations and undo the benefits of the 
mass reduction.

Nevertheless, the results of the numerical investigation presented in [10–12] showed that 
the plastic disconnection of floor mass (PDFm) approach proposed in [2] may be rather 
effective in controlling the seismic effects. It assumes that rigid–plastic connectors (RPCs) 
are inserted between structural and nonstructural floor masses. They act both as inertia 
 limiters (disconnecting part of the mass when a pre-set level of horizontal load is reached) 
and as energy dissipaters (dissipating large amounts of seismic energy when they enter the 
plastic range). The efficacy of this method, however, was shown to depend on some interre-
lated parameters the influence of which is further complicated by the nonlinearity of the 
problem. It may thus be of practical interest to know beforehand – at least for a preliminary 
assessment – the extent of stress reduction that can be achieved under a given earthquake, for 
values of the key parameters of practical interest.

By means of an analytical study and a nonlinear numerical investigation involving 
 single-storey frames and recorded earthquakes, this paper presents a feasible way to evaluate 
the stress reduction achievable for assumed values of the governing parameters directly from 
the earthquake response spectrum. By exploiting new results and literature data [10–12] and 
by investigating on the role of the key parameters, this paper also aims to provide a 
 comprehensive assessment of the effectiveness of the PDFm approach.
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Of course, the convenience of adopting the PDFm approach has also to be assessed whilst 
bearing in mind the higher cost entailed by the use of RPCs that may be actually made in differ-
ent ways (something like flat frictional sliders may be just one of the possible choices). Even a 
hysteretic or elastic–plastic behaviour might be considered for connectors. In any case, an appro-
priate design will be required to sustain the detached mass, tolerate its relative displacements and 
re-centre it. Rigid diaphragms or secondary beams may be needed to hold the disconnected 
masses (some ideas may be borrowed from [4, 13]). The possibility to substitute connectors as 
well as the design of installations to absorb relative displacements, at least for medium 
 earthquakes, should also be considered. These problems (most of which are habitually dealt with 
in earthquake engineering practice) are not examined in this paper, the main aim of which is to 
evaluate whether and when the PDFm approach might be effectively adopted in practice.

2 ANALYTICAL mODEL
A shear-type single-storey frame of mass m, lateral stiffness k and damping ratio x is consid-
ered in Fig. 1a (Frame A). Under a given ground acceleration, üg(t), the motion equation of 
this single-degree-of-freedom (SDOF) system is

 
  u

T
u

T
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Here u, u and u are displacement, velocity and acceleration of mass m, respectively, while 
T m= 2p / k is the natural period of the system. The maximum stress reached by pillars of 
Frame A during ground motion can be obtained by applying the following equivalent 
 horizontal static force to mass m:

 
F ku ma TeqA E max E max= ≅_ _( , ) ( , )T x x

 
(2)

In eqn (2), u TE _ max ,x( ) is the peak elastic displacement reached by mass m during the 
given earthquake, while aE max_  is the pseudo-acceleration given by [14]
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The 2DOF system referred to as Frame B in Fig. 1b is obtained from Frame A by sharing 
mass m  into two portions, say m1 and m2. The upper mass m2 is connected to lower mass m1 

Figure 1:  (a) Elastic SDOF frame; (b) inelastic 2DOF system; 
(c) rigid–perfectly-plastic behaviour of connectors.
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through rigid–perfectly-plastic devices which are supposed to behave symmetrically in both 
directions, see Fig. 1c. The motion equations of this inelastic system can be written as 
[2, 10, 11]

Elastic range:  if u y2
t a<  or if u y2

t a=  and sgn u2( ) ≠ sgn u2( )
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Plastic range:  if u at
y2 =  and sgn = sgnu u2 2( ) ( ).
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Here, ut
2 is the total acceleration (inertial) of mass m2; rm m m= 2 /  is the percentage of 

disconnected mass while ry y E maxa a= / _  quantifies the plastic involvement of the RPCs 
during the earthquake; a F my y= / 2  is the total acceleration of mass m2 at yield (yield 
 acceleration) which is also the maximum acceleration reachable by mass m2 due to yield load 
Fy. Equations (4a) and (4b) show that the response of Frame B to a given earthquake depends 
on four parameters: T, x , rm and ry. For a given earthquake, the peak elastic acceleration 
aE_max is in fact a known quantity once the response spectrum is given. The maximum stress 
reached by pillars of Frame B can be obtained by applying the following static force:

 
F ku TeqB m y= ( )1_ , , , .max x r r  (5)

3 STRESS REDUCTION AND PEAK RELATIVE DISPLACEmENTS
By referring to the frames in Fig. 1 and to eqns (2) and (5), the effectiveness of the PDFm 
approach can be assessed through the following ratio [2]:
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∆s can be referred to as the stress reduction factor, since the seismic stress on  columns of 
both Frame A and Frame B is proportional to the static force applied. Whenever 
u uE1_ _max max< , ∆s assumes a negative value (lower than one) which indicates a stress 
reduction. The lower the displacement ratio, u1_max / uE_max the higher the stress reduction 

and, accordingly, the more effective the PDFm strategy is. Fig. 2a provides the displacements 
u t( )  of Frame A and u t1( ) of Frame B, as obtained from a numerical analysis for a given 
ground motion and assigned values of, T, x, rm and ry (given in the figure). A reduction in the 

peak displacement (and, thus, in the stress) of about 46% may be achieved in this case. 
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It should be considered, however, that the price to pay for high stress reduction could be large 
peak relative displacements of the disconnected mass, that is,

 u T u t u tmax m y21 2 1_ , , , .x r r( ) = ( ) − ( ) max  (7)

The relative displacement u t21( ) relevant to the instance considered in Fig. 2a is plotted in 

Fig. 2b. A peak displacement of about 10 cm is reached in this case.

4 STRESS REDUCTION FROm THE ELASTIC RESPONSE SPECTRUm
To obtain ∆S from eqn (6), both u max1_  and uE max_  must be derived in advance. While uE max_  
can quickly be taken from the earthquake response spectrum, a time-consuming integration 
of nonlinear eqns (4a)–(4b), should be carried out to calculate u max1_ . A swift – but approxi-
mate – way to obtain u max1_  can be found by assuming that, during a given earthquake, the 
peak displacement u max1_  is reached while the system is in the plastic range, that is, when 
eqns (4b)1,2 apply. As the term sgn u u2 1−( ) appears in both of eqn (4b)1 and eqn (4b)2, 
eqns (4b)1,2 are known as coupled equations. Should the case that a positive (or a negative) 
sign be assumed in place of sgn ⋅( ), they would become uncoupled and, above all, linear. This 
statement may be exploited to predict u max1_  under a given earthquake, through the linear 
differential equation:
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Equation (8) is obtained from eqn (4b)1 by assuming a positive value for sgn .( ) and by 
shifting the constant term to the right-hand side. The choice of assuming a negative sign 
would lead to the same results, since the peak absolute displacements are to be considered for 
the effect combination. It can be now noted that eqn (8) is the motion equation of an elastic 
oscillator of period T1 and damping ratio x 1 given by
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Figure 2: (a) Comparison of displacements u(t) and u1(t) under the 
Kocaeli (Turkey, ATS000, 1999) earthquake; (b) relative 
displacement u t21 ( ).
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In view of eqns (9)1 and (9)2, eqn (8) can also be put in the form:
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Due to the linearity, the solution of eqn (10) may be found by superposing the solutions of 
the following two equations:
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Equation (11) is the motion equation of an oscillator of period T1 and damping ratio x 1 
under the ground acceleration üg(t). Its integration leads to the calculation of u E max1 _ , the 
value of which can also be taken directly from the earthquake response spectrum.  Equation (12) 
is the motion equation of the same oscillator subjected to a step load. Also in view of eqn (3), 
the peak response obtained from eqn (12) for at rest initial conditions is
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An estimate of the actual inelastic peak displacement u max1_ , say u max1_ , may be obtained 
by combining the two peak responses u E max1 _  and u STEP1  through the square root of sum of 

squares rule, i.e. u E1 1
2

1
2

_ _max max STEPu u= + . Thus, an estimate of ∆S as defined by eqn (6) 

can be finally obtained as
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To check the reliability of eqn (14), the values of ∆S (estimated) were compared to the 
actual values ∆S (calculated) obtained from rigorous numerical analyses for different sets of 
parameters under four recorded earthquakes. The results collected in Fig. 3 show that eqn (14) 
provides on the whole a very good estimate of the actual value of ∆S (mean errors of about 
11–15%). Accelerograms, elastic response spectra and rigid–plastic pseudo-spectra [15] of 
the considered earthquakes are displayed in Fig. 4. Figures 5a–5b show that practical and 
suitable ranges of ry and rm are typically 0 05 0 25. .≤ ≤ry  and 0 2 0 5. .≤ ≤rm . A sort of 
‘knee’ exhibited by the curves in Fig. 5a highlights that disconnecting more than a half of the 
total mass is not convenient. On the other hand, Fig. 5b shows that a stress reduction even up 
to 50% can be obtained for .ry ≤ 0 25, provided that at least one-third of the mass is discon-
nected. Whatever the earthquake, however, there is no convenience in setting the value of ry  
lower than 0.05 since it would actually imply an increase in relative displacements (due to the 
drop in plastic energy dissipation) against a slight increase in stress reduction (see Figs 5a 
and 5c). The stress reduction also depends on the earthquake and the natural period T (see 
Fig. 3), while x has generally a quite small effect on the effectiveness of the method [10].
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Figure 3: Calculated and estimated values of the stress reduction 
factor (x=5%).

Figure 4: Accelerograms and spectra of the earthquakes considered in 
the analysis.



 M. C. Porcu, Int. J. of Safety and Security Eng., Vol. 9, No. 2 (2019)  163

Equation (14) can even be exploited to estimate the stress reduction from the design 
response spectrum. To this purpose, the ratio between the design peak pseudo-accelerations, 
namely, R S T S T mu m ua a a E max E max= ( ) ( ) =1 1 1 1 1, / , /_ _x x  may be considered. As a  function 
of this ratio, eqn (14) becomes
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With reference to Eurocode 8 (EC8), the value of Ra was obtained in [10] for the different 
ranges of the spectral characteristic periods. An instance of the stress reduction achievable 
from the EC8 response spectrum is given in Fig. 6.

5 RELATIVE DISPLACEmENT FROm THE RIGID–PLASTIC PSEUDO-SPECTRUm
The following semi-empirical formulas were derived in [12] to estimate the peak relative 
displacement u max21_
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Figure 5:  Role of key parameters on stress control (in grey ranges of 
practical interest).

Figure 6:  Stress reduction obtained from the EC8 elastic 
response spectrum.
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Here u amax
RP

y( )  is the peak displacement of a rigid–perfectly-plastic oscillator of mass m2 

and yield load Fy, cf. [15–17]. The value of u amax
RP

y( )  may be taken from the rigid–plastic 

 pseudo-spectrum (see Fig. 3), which provides the peak plastic displacement of a rigid– 
perfectly-plastic oscillator under a given earthquake as a function of the yield acceleration 
a F my y= / 2 [15]. The comparison between the calculated values obtained from a complete 
numerical analysis and the estimated values derived from eqns (16)a,b shows that the rigid–
plastic estimate is very good. Figure 7 shows, in particular, that rather similar calculated 
values are obtained under a given earthquake for the same ry

 
but different rm, as also shown 

in Fig. 5d. Comparatively, low values of u max21_  are typically found in the instances presented 
in Figs 5c, 5d and 7, not exceeding 10 cm in the ranges of practical interest.

6 CONCLUSIONS
The results presented here show that the PDFm strategy may reduce significantly the effects 
of strong ground motions on framed buildings (up to 40%–60%), although involving compar-
atively small relative displacements of the disconnected mass (about 10 cm in the considered 
instances). By referring for simplicity to single storey frames, this paper presented an approx-
imate – but quick and reliable – procedure that leads to estimate beforehand the stress 
reduction for any set of governing parameters and under any earthquake, provided that the 
earthquake response spectrum is available. An analytical study and a wide numerical investi-
gation involving linear and nonlinear systems under different recorded earthquakes have been 
carried out to derive and assess this procedure. Empirical formulae are also provided to esti-
mate the relative displacements of the disconnected mass through the rigid–plastic 
pseudo-spectrum. The role of the key parameters and the ranges of practical interest have also 
been discussed in the paper, while new results and literature data have been gathered together 
to provide a more comprehensive assessment of the method. Although further investigations 
are certainly required to definitely assess the effectiveness of the PDFm approach, the results 
presented in this paper highlight the potential of this partial mass isolation technique (which 
is expected to be effective also for multi-storey buildings) thereby encouraging more in-depth 
investigations with a view to its practical application.

Figure 7:  Calculated and estimated values of the peak relative 
displacement (x=5%).
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