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ABSTRACT
Providing safe workplace conditions is one of the main purposes of a safety management system 
(SMS) in effective construction companies. Ensuring safe workplace conditions at construction sites 
depends on different factors, including safety rules, management commitment, safety training, and safe 
behaviour. The current research aims to establish a method for identifying and evaluating the factors 
that impact workplace safety conditions at construction sites in Saudi Arabia. The fuzzy analytical 
hierarchy process (AHP) technique was used to determine and measure the qualitative factor weights 
affecting workplace safety to assist in the evaluation of multiple concurrent criteria. Hence, the fuzzy 
AHP technique was used to determine criterion weight. Alternatively, a fuzzy technique for Order 
Performance by Similarity to Ideal Solution (TOPSIS) model was used to evaluate the performance of 
companies and rank them according to their safety performance. Based on the results and findings of the 
presented approaches, four companies were ranked for their overall safety performance. The findings 
are encouraging and can be used in the construction industry to benchmark the performance of con-
struction companies for their application of safety rules and regulations. The approach also determines 
the leading companies in terms of best practices and provides information for government inspectors to 
investigate the priorities identified for inspection.
Keywords: construction worksites, fuzzy AHP, fuzzy TOPSIS, safety behaviour, safety management, 
safety procedures, safety training.

1 INTRODUCTION
A safety management system (SMS) aims to decrease the number of accidents, injuries, and 
health problems among workers at a workplace. The effectiveness of the system depends on 
different factors, such as management commitment, effective use of resources, and worker 
participation, and communications. The scope and complexity of SMSs vary according to the 
size and type of workplace. Vinodkumar and Bhasi [1] stated that one of the most important 
functions of an SMS is to provide safe workplace conditions that significantly impact the 
health and productivity of workers and support the construction company’s financial status. 
For example, poor worksite safety increases the likelihood of serious accidents in construc-
tion as compared to other sectors, such as manufacturing [2]. Serious injuries and accidents, 
particularly fatal accidents, are more likely to occur on construction worksites than on sites 
in other industrial sectors [2, 3]. One of the most important responsibilities of an SMS is to 
perform risk assessment and hazard analyses to protect people and provide a safe workplace; 
these processes depend on several factors, such as management commitment, safety policies, 
safety rules and procedures, safety training, and safe behaviour [1, 4]. Teo and Ling [5] found 
that a lack of safety auditing leads to poor safety performance and a lack of improvement. 
The factors that affect workplace safety in the construction industry are often not physical, as 
they depend on different objective factors (e.g., the number of injuries and accidents) and 
subjective factors (e.g., safe behaviour, responsibility, and time pressure) [6]. Therefore, 
safety on construction sites is a complex issue. Workplace accidents can occur due to poor 
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safety attitudes, lack of knowledge, poor training programmes, and insufficient supervision 
– even when the company provides an adequate safety policy and clear safety rules and 
 procedures. For example, safe behaviour is one of the most significant subjective factors that 
may lead to accidents at construction worksites and can thus affect a company’s SMS perfor-
mance [1, 7, 8]. The factors that affect workplace safety at construction sites are not uniform; 
they can involve management commitment and safe behaviour, training, rules, and proce-
dures [1]. According to Ismail et al. [9], the commitment of management to safety and safety 
regulations are two other major factors that influence organizational safety performance. 
Therefore, the factors that significantly affect worksites’ safety-management performance 
must be identified to increase safety and avoid accidents.

However, these factors can affect workplace safety simultaneously. For example, safety 
culture and safe behaviour are two important organizational factors that significantly affect 
safety at construction sites [10]. According to Zou and Sunindijo [11], safety culture com-
prises beliefs and attitudes about safety and behaviour that are shared between workers within 
an organization. Ismail et al. [9] claimed that there is correlation between safe behaviour, 
safety rules, and legalization and management commitment. Consequently, measuring these 
factors would be more reasonable and reliable if conducted via multidimensional systematic 
techniques. In addition, the majority of previous research studies have focused on assessing 
the impact of ergonomic hazards at construction sites. Ergonomic factors in workplaces are 
typically physical structures; however, as noted above, workplace safety depends on subjec-
tive and multidimensional factors, each of which has a different level of importance [4].

Various factors have been considered in evaluating the management systems of construc-
tion organizations, including safety policy, safety culture, individual behaviour, job stress, 
safety training, management commitment, individual responsibility, safety communications, 
safety rules, and guidelines [10]. In addition, the methods used will vary due to the number 
of accidents and the cost complaints, interviews, and surveys. Several studies have evaluated 
workplace safety using a fuzzy analytical hierarchy process (AHP) model, especially in the 
construction industry [5]. However, Dagdeviren and Yuksel [12] did not consider important 
factors in construction site safety, such as safety rules and procedures, safety training, and 
management commitment. In contrast, other authors used only a weighted AHP method to 
evaluate the factors that influence safety management [5]. The fuzzy AHP technique is a 
useful method in this case, as it allows researchers to evaluate multiple worksite safety factors 
concurrently and helps them to evaluate the subjective factors that impact workplace safety 
using fuzzy numbers when these factors cannot be measured with crisp numbers [12]. There-
fore, the present study used a fuzzy AHP method to evaluate the various factors that influence 
workplace safety at the construction sites of major Saudi Arabian construction companies.

The current research used systematic techniques to assess five main factors that affect 
safety performance at construction worksites, namely, site management level, safety training, 
safe behaviour, safety procedures and rules, and worker team level. Therefore, the present 
study used a fuzzy AHP method to determine the most important factors for workplace safety 
performance. One of the main advantages of the fuzzy AHP method is that it is able to 
 simultaneously evaluate the effects of different factors in realistic situations. The fuzzy Tech-
nique for Order Performance by Similarity to Ideal Solution (TOPSIS) method is used to 
objectively assess construction companies in terms of their safety performance.

The fuzzy AHP method helps decision makers determine the factors that are most likely to 
be the cause of unsafe work conditions. This method assigns weights to determine the factors’ 
importance. Determining the weights of various factors is one management function that a 



730 A. Basahel & O. Taylan, Int. J. of Safety and Security Eng., Vol. 6, No. 4 (2016) 

company should consider to improve the safety conditions at worksites. Unfortunately, the 
fuzzy AHP method is rarely used to evaluate the factors that affect workplace safety in con-
struction companies [10]. Taylan et al. [13] studied different methods, such as AHP, fuzzy 
AHP, TOPSIS, and fuzzy TOPSIS, and found that combining these methods, rather than 
using one method separately, has both advantages and disadvantages. The combination of the 
fuzzy AHP and TOPSIS methods is more beneficial than using either method individually. In 
the hybrid methodologies, qualitative and quantitative data related to SMS criteria must be 
collected and used to assess the companies’ overall performance. The fuzzy TOPSIS method 
is suitable for solving group decision-making problems in a fuzzy environment. It is an 
attractive method for selection problems in which the criteria are equally important and the 
information related to the input criteria is not precisely known. The alternatives are evaluated 
based on different criteria, and the evaluation process involves mainly quantitative data. 
However, some difficulties exist when quantitative data are not available; hence, a ranked 
value judgement on a fuzzy conversion scale is used in this case. If the value of criteria can 
be determined using fuzzy linguistic terms, then the outcomes are converted into correspond-
ing fuzzy numbers and then defuzzified as crisp assessment scores. Aguaron et al. [14] 
determined that Saaty’s [15] AHP model assured the consistent analysis of judgements and 
was more robust than the other decision-making methods.

According to Ismail et al. [9], the factors that influence construction worksites’ 
 safety-management performance are not identical in all countries or organizations. For exam-
ple, safety rules and procedures in SMSs depend on a country’s regulations and laws as well 
as on the nature of the organization’s activities. Consequently, it is helpful to establish a fuzzy 
AHP model to assess the factors that affect construction worksites in such a situation. This 
model can also support safety management in identifying the factors that have the largest 
impact on safety system performance. Dagdeviren and Yuksel [12] stated that many previous 
studies have focussed on objective measures, such as number of injuries, number of lost 
working days, and risk assessments, when evaluating an SMS performance, in particular at 
construction industry sectors. Using systematic approaches and subjective methods, such as 
AHP fuzzy technique, to assess impacts on different factors that can affect safety-manage-
ment effectiveness at construction companies is rare in terms of safety issues. In general, the 
evaluation of safety-management performance via subjective techniques, such as the fuzzy 
AHP method, have received little attention in all studies that have been conducted amongst 
the construction industries in Saudi Arabia. Therefore, the contribution of the current study is 
that it establishes a model that applies fuzzy AHP and TOPSIS methods, which assess factors 
that could influence SMS at large Saudi companies’ construction sites. Performance assess-
ment of companies is a highly complex multidisciplinary task, the decision criteria are 
non-linear, and several quantitative and qualitative attributes have to be taken into considera-
tion. It is very hard to find all criteria and sub-criteria together for decision making in the 
assessment performance assessment. The criteria and sub-criteria set is able to be used for the 
development of a decision support system and even for the expert system to assess the safety 
performance of companies. Moreover, four decision makers are involved in the decision- 
making process. Hence, the criteria determination, and hybridization of Fuzzy AHP and 
fuzzy TOPSIS is the base of the fuzzy model developed.

The literature on SMSs, fuzzy AHP, and TOPSIS approaches are presented in the introduc-
tion. Section 2 is devoted to the fuzzy decision methodologies for SMS. In this section, the 
factors at construction worksites as well as the uncertainties were given, and the safety 
 performance elements by fuzzy sets were presented. This section also covers the detail steps of 
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the fuzzy AHP method. Section 3 includes fuzzy TOPSIS methodology for assessing the SMS. 
Section 3.1 presents the results and findings of the applied methodologies step by step and the 
key elements to order the companies according to their safety performance. Finally, Section 4 
draws the conclusions and makes final remarks. The paper ends with a list of  references.

2 THE FUZZY DECISION-MAKING METHODOLOGY FOR  
A SAFETY MANAGEMENT SYSTEM

The fuzzy AHP and fuzzy TOPSIS approaches are used in this study to evaluate the factors 
that contribute significantly to SMS performance at construction worksites. Furthermore, the 
construction companies considered were ranked according to their SMS performance, as 
described in the following subsections.

2.1 Identification of factors’ impacts on SMS at construction worksites and uncertainty

As illustrated in Fig. 1, the five main factors in the current model that contribute to the assess-
ment of construction worksites’ SMS were carefully identified and structured from the 
literature review as well as from several experts from the construction-safety field. Four male 
expert safety managers and safety advisors from four different large Saudi construction com-
panies participated. The statistical characteristics (i.e. mean ± SD) of the participants are as 
follows: age: 43.3 ± 2.4; duration of employment in safety positions: 16.7 ± 4.1 years. Three 
participants held master’s degrees, and the fourth had a BSc degree. However, based on pre-
vious research studies and expert participants (i.e. specialists in safety management and risk 
assessment in Saudi construction companies), the main factors that can significantly impact 
SMS performance are classified into five factors: safety-management level, safety training, 
safety behaviour, safety procedures and rules, and worker team level. This is consistent with 
previous research studies that mentioned safety training programmes, safety behaviour, 
safety communication and feedback, safety rules, management commitment, and individual 
safety performance [1, 4]. The safety-management level includes safety priority, manage-
ment commitment, safety facilities’ conditions, safety meetings, and safety reports. A high 
level of management commitment in safety issues means that the company strives for good 
safety conditions, appropriate safety welfare, and highly prioritizes safety. These factors have 
a positive, significant impact on how employees and the lower management feel about safety 
at the worksites. Safety training involves safety training programmes, training priority, and 
participation. Training programmes contribute significantly to reducing accidents and the 
number of injuries at worksites. Suitable training programmes help workers identify common 
types of hazards and how they can deal with them. In addition, increasing workers’ participa-
tion in effective training programmes leads to increased levels of knowledge and skill amongst 
workers regarding types of hazards at worksites, which decreases the number of injuries and 
accidents and impacts the overall SMS performance. Safety behaviour is impacted signifi-
cantly by management commitment, which comprises three sub-factors: performance 
tendency, safety-rules compliance, and safety awareness. Safety behaviour is an important 
factor that can impact SMS performance negatively. Most likely, if the safety supervisor and 
workers do not have a high level of safety awareness regarding construction worksites’ haz-
ards and fail to comply with safety rules, injuries and accidents will occur, even if safety 
management applies high-standard safety rules and procedures. Good safety behaviour 
amongst workers plays a significant role in increasing their perception and attention towards 
safety-hazard records and the importance of using safety tools and equipment. Clear and 
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simple safety procedures and rules amongst all management levels in a company are impor-
tant factors that lead to increased effectiveness of the overall SMS performance.

According to the current study’s expert safety participant, some activities at construction 
worksites require clear and effective procedures and steps, such as using cranes and scaffolds. 
These types of safety rules and procedures contribute significantly to preventing accidents. 
Safety inspection is one of the most important procedures that prevents different types of 
accidents and increases workers’ safety knowledge and awareness. Finally, the worker team 
level factor includes responsibility level, worker commitment, safety communication, and 
safety feedback. This factor focuses on workers and safety at construction worksites. Respon-
sibility level refers to the level of worker concern towards safety (i.e. a worker performs his 
job under highly safe work conditions). In other words, the worker considers his safety and 
his co-workers’ safety, and implements safety rules and procedures while performing his 
task. The level of workers’ compliance with the safety rules and procedures is an important 
sub-factor that can impact SMS performance negatively. Figure 1 shows all criteria employed 
to model the uncertainties of construction worksite and evaluate the companies. Even if the 
top management provides middle management and safety advisors with effective safety rules, 

Figure 1: The main and sub-criteria list to model the uncertainties of construction worksite.
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good safety training, and personal protective equipment, a lack of worker commitment will 
waste these efforts. Feedback and communication amongst workers, safety managers, safety 
advisors, and safety management encourage effective safety reports, which lead to appropri-
ate identification of worksite hazards and control measures.

2.2 Determination of safety performance elements by fuzzy sets

This study aimed to use the fuzzy AHP approach to identify and evaluate the five most impor-
tant factors affecting SMS performance, which in turn affects the safety on construction 
worksites, as noted above. AHP methods have been widely used to determine the importance 
of different factors and actions in multi-criteria problems [12, 13, 16]. Unlike previous stud-
ies, the current study evaluated the five main factors and sub-factors that can affect SMSs in 
construction industries. These factors and sub-factors were formulated based on previous 
studies focused on the safety performance at construction sites [1]. Five main factors were 
considered when assessing the SMSs of construction companies: site management level, 
safety training, safe behaviour, safety procedures and rules, and worker team level. As shown 
in Fig. 1, the sub-factors were then classified under each main factor, as illustrated in the 
proposed AHP model. The proposed model comprises four levels. The first level presents the 
model’s main goal, which is to identify the weights of the sub-factors. The second level 
describes the main five factors that influence safety at construction worksites. The third level 
outlines the sub-factors of these main factors. Finally, the fourth level describes the effective-
ness of the SMS, which is the output of the model.

The fuzzy AHP method is an aggregated technique that was developed based on Saaty’s [15] 
fuzzy set theory and is one of the most common methods used in multi-criteria decision- 
making studies [17]. The importance of decision criteria relative to others is shown in a 
pair-wise comparison matrix using a numerical scale of linguistic terms based on the fuzzy 
AHP method. The importance of the weights and the performance ratings of the criteria are 
measured using this numerical scale. The current study used eight linguistic terms on a scale 
ranging from extremely strong (ES; [9, 9, 9]) to equally strong (EQ; [1, 1, 1]), as illustrated 
in Table 1. The linguistic scale in the fuzzy AHP method was used to categorize the criteria 
(C) based on their current status. The weights of factors were processed using multiple- 
criteria decision making (MCDM), which provided a fuzzy AHP model and has been used as 
a systematic technique to address the inaccuracy of decision makers. A qualitative evaluation 
of fuzzy TOPSIS techniques was conducted using these weights to determine which con-
struction company exhibited the best safety-management performance [18].

Table 1: Fuzzy linguistic terms determined for the criterion weights comparison.

Extremely strong (ES) (9,9,9)
Very strong (VS) (7,8,9)
Strong (ST) (6,7,8)
Moderately strong (MS) (5,6,7)
Intermediate strong (IS) (4,5,6)
Lower intermediate strong (LIS) (3,4,5)
Slightly more strong (SS) (1,2,3)
Equally strong (EQ) (1,1,1)
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The following steps were used to implement the fuzzy AHP technique:

1. In the first step, the hierarchical decision-making problem is structured. This step is 
similar to that in the conventional AHP approach.

2. In the second step, a pair-wise fuzzy comparison matrix is developed. The pair-wise 
comparison judgements are represented by fuzzy triangular numbers denoted by 
ãij = (lij,mij, uij). As in the conventional AHP, n(n-1)/2 judgements are required for each 
comparison group for a level to construct a positive fuzzy reciprocal comparison matrix 
Ă = {ãij}. The matrix is expressed as follows.

Ă = {ãij} = 
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3. The third step consists of performing the consistency check and deriving priorities from 
the pair-wise comparison matrices. In the existing fuzzy AHP method, the consistency of 
pair-wise comparison matrices is checked. Buckley [19] stated that a fuzzy comparison 
matrix Ă = {ãij} is consistent if ãik ⊗ ãkj≈ ãij, where i,j,k = 1,2,…,n and ⊗ is the fuzzy 
multiplication of elements. If the pair-wise comparison matrix (Ă) passes the consis-
tency check, then the fuzzy priorities Wi can be calculated with the conventional fuzzy 
AHP method.

4. At different levels of the decision hierarchy, the aggregate local priorities compound 
global priorities for the alternatives based on the weighted sum method. The final global 
priority of alternative i can be expressed as follows.
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where wj is the weight of criterion j and aij is the evaluation of alternative Ai against 
criterion j. A higher value of Ai indicates a more preferable alternative. Specific 
 ranking procedures must be applied to defuzzify the order of alternatives. These 
 procedures should be conducted if the priorities are fuzzy, similar to the conventional 
fuzzy AHP.

The improved fuzzy extent analysis of Chang’s [20] method was employed to determine 
the weights of criteria using fuzzy triangular numbers. Hence, let X = {x1, x2, x3, . . . , xn} 
be a decision set and G = {g1, g2, g3,…, gn} be the goal set for each criterion to simultane-

ously perform the extension analysis of each criterion. Let M j m
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triangular numbers to present the pair-wise weights of criteria. The set of fuzzy pair-wise 
comparison terms presented in Table 1 was developed by Saaty [15] and they were employed 
for decision making in this study. The inverse of the vector indicating the synthetic extent was 
calculated, and the Si values were obtained for each criterion as follows in eqn (2):
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is obtained from fuzzy triangular numbers; the fuzzy triangular numbers used in the 
extent analysis can be established with a particular matrix.

The criterion weights of safety conditions were determined at the end of this process as 
fuzzy triangular numbers. Membership functions (MFs) can be used to express the triangular 
numbers as a mathematical function. Triangular MFs are specified by three parameters, 
where (lij<mij<uij) indicates the parameters of the underlying triangular MFs. A fuzzy number 
is a convex fuzzy set characterized by a given interval of real numbers, each with a grade of 
membership degree between 0 and 1. mij represents the MFs’ centre. Table 2 presents the 
fuzzy numerical scale for the pair-wise comparison of criteria. The DM uses these weights to 
determine the mutual comparative importance of the safety criteria.

To build the pair-wise comparison matrix, each criterion in the set was mutually evaluated 
and an extension analysis was performed. The outcomes of the fuzzy synthetic extent with 
respect to the criteria were calculated. The pair-wise comparison was performed for each 
criterion in the set, the results were evaluated, and the extension analysis was performed. 
Therefore, eqn (2) was employed for m extent analyses of criteria; the results are presented 
in Table 3. Moreover, m extent analyses were conducted for each criterion; the results are 
presented in Table 4. The calculations of the weights for safety conditions and reliability are 
presented below. Other decision criteria were calculated using the same approach. Fuzzy 
triangular numbers were used to identify the safety-management level or safety training level 
of companies. The fuzzy triangular obtained for the criteria of the SMS of a construction 
company is presented in Table 3.

The results of the fuzzy synthetic extents (SC1) for each criterion are presented in Table 4. 
The information used for the assessment was provided by the decision makers (i.e. four 

Table 3: Fuzzy triangular numbers used to define the weights of decision criteria.

Fuzzy pair-wise decision matrix Weights

C1: Safety-Management Level (14.12, 16.64, 21.17)
C2: Safety Training (1.58, 1.68, 1.85)
C3: Safe Behaviour (17.17, 20.20, 23.25)
C4: Safety Procedures & Rules (10.46, 12.34, 14.42)
C5: Work Team Level (9.34, 11.57, 13.70)

Table 2: Fuzzy pair-wise comparison of construction project criteria.

Fuzzy pair-wise 
decision matrix C1 C2 C3 C4 C5

C1: Safety-
Management Level

(1,1,1) (5,6,7) (1/8, 1/7, 1/6) (6,7,8) (2,2.5,5)

C2: Safety Training (1/7, 1/6, 1/5) (1,1,1) (1/7, 1/6, 1/5) (1/8, 1/7, 1/6) (1/6, 1/5, 1/4)
C3: Safe behaviour (6,7,8) (5,6,7) (1,1,1) (1/6, 1/5, 1/4) (5,6,7)
C4: Safety 
Procedures & Rules

(1/8, 1/7, 1/6) (6,7,8) (4,5,6) (1,1,1) (1/6,1/5,1/4)

C5: Work Team Level (1/5, 1/2.5, 1/2) (4,5,6) (1/7,1/6,1/5) (4,5,6) (1,1,1)
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expert decision makers in safety) and the aggregated fuzzy numbers were obtained by fuzzy 
synthetic extent analysis. The calculations are presented below.
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3 FUZZY TOPSIS METHODOLOGY FOR ASSESSING SAFETY  
CONDITIONS IN THE CONSTRUCTION INDUSTRY

After the fuzzy criterion weights were determined by the fuzzy AHP method, the safety 
 conditions of each construction company were assessed based on the selected criteria. Table 5 
shows the fuzzy linguistic variables and their term sets for the construction companies’ health 
and safety-management parameters.

In this study, the safety conditions of construction companies were assessed using a hybrid 
fuzzy decision-making approach. Antonsen [21] stated that a weak link exists between the 
safety assessment and ‘actual’ safety conditions in an organization. He also stated that fail-
ures of foresight are inevitable if safety culture assessments are based on questionnaires 
alone. Self-assessment questionnaires are subject to inaccurate or incomplete information; 
previous studies have found that many companies or managers are concerned that the data of 
safety and health conditions might be used against them [22]. The judgements of decision 
makers are crucial. To order or harmonize their judgements, videos or some other means can 
be used in the office meetings to reach the common assessment scores.

In a classical assessment approach, the assessment is performed in accordance with 
national compliance requirements using a 5-point Likert scale. In this scale comparison, 
1 refers to no effort being made regarding the sub-criterion under consideration, 2 refers to a 
small amount of effort being made but compliance still not being met, 3 refers to a small 
amount of effort required to achieve the minimum requirements of compliance, 4 refers to 
endeavours that are in compliance to standards, and 5 refers to standards that are higher than 
the national standards. However, this assessment approach has limitations, as an expert’s 
judgement is often qualitative and based on linguistic assessments. Linguistic terms are used 
by experts and other individuals to define parameters. Table 6 illustrates the fuzzy linguistic 
terms employed to determine the importance of attributes and the rating of alternative 
 companies according to the parameters.

Table 4: Fuzzy weights of the decision criteria.

Fuzzy pair-wise decision matrix Weights

C1: Safety-Management Level (0.22, 0.27, 0.34) 
C2: Safety Training (0.02, 0.03, 0.04)
C3: Safe Behaviour (0.26, 0.32, 0.37) 
C4: Safety Procedures & Rules (0.16, 0.20, 0.23) 
C5: Work Team Level (0.21, 0.23, 0.40)
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Table 5: Fuzzy linguistic variables and their term sets for the construction industry.

Fuzzy Linguistic Terms
1.  Safety-Management 

Level

Very highHighModerateLowVery low  Safety Priority
Very highHighModerateLowVery low  Management’s 

Commitment
ExcellentVery goodGoodFairPoor  Safety Facilities 

Conditions
AlwaysOftenSometimesRareVery rare  Safety Meetings 
Extremely 
important

Highly 
important

Moderately 
important

Slightly 
important

Low 
importance

  Safety Reports

Fuzzy Linguistic Terms2. Safety Training

ExcellentVery goodGoodFairPoor  Safety Training 
Programmes

Very highHighModerateLowVery low  Training Priority
HighSlightly highModerateSlightly lowLow  Participation

Fuzzy Linguistic Terms3. Safe Behaviour

SafeSlightly SafeNormalSlightly 
Risky

Risky  Performance 
Tendency

AcceptableSlightly 
acceptable

NormalunacceptableExtremely 
unacceptable

  Safety Rules 
Compliance

Extremely 
aware

Moderately 
aware

Somewhat 
average

Slightly 
aware

Unaware  Safety Awareness

Fuzzy Linguistic Terms
4.  Safety Procedures 

& Rules

AlwaysOftenSometimesRarelyNever  Application 
of Rules & 
Procedures

AlwaysOftenSometimesRarelyNever  Safety Inspection 
Frequency

HighSlightly highModerateSlightly lowLow  Effectiveness of 
Procedures & 
Rules

Fuzzy Linguistic Terms5.  Worker Team Level

Very highHighModerateLowVery low  Responsibility 
Level

Very highHighModerateLowVery low  Workers’ 
Commitment

ExcellentVery goodGoodFairPoor  Safety 
Communications

ExcellentVery goodGoodFairPoor  Safety Feedback
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Although four companies were assessed, this study only presents the complete details of 
the calculations for the assessment of safety and health conditions at only one construction 
company. Taylan et al. [13] stated that TOPSIS is an attractive method and requires limited 
subjective inputs from decision makers, where the criteria are not equally important and the 
input criterion-related information is not precisely known. An integrated fuzzy AHP and 
fuzzy TOPSIS method can improve the quality of decisions made regarding the ranking of 
alternative scenarios. In this study, an integrated fuzzy FAHP and fuzzy TOPSIS approach 
was employed for compressor selection using different scenarios. Zhang and Wei [23] used 
an extension of VIKOR and TOPSIS methods for decision-making problems based on a hes-
itant fuzzy set to represent the ‘closeness to the ideal,’ which originated in the compromise 
programming method. Torfi et al. [24] used the fuzzy MCDM approach for the weights of the 
objects phrase in the location routing problem to determine the relative weights of criteria 
using trapezium fuzzy numbers in decision-making problems.

3.1 Results and findings of the applied methodologies

The decision-making model presented in this study is described by fuzzy membership func-
tions µg(x), where x is an element of the crisp set. The following fuzzy linguistic terms were 
used to assess the safety and health conditions at workplaces: very low importance (VLI), low 
importance (LI), moderately important (MI), highly important (HI), and extremely important 
(EI). The steps for implementing the fuzzy TOPSIS methodology and its results are described 
below.

Step 1: The importance of all main criteria and sub-criteria was considered to assess the 
safety conditions at workplaces in a holistic manner. Therefore, the fuzzy linguistic terms 
determined in Table 5 were used to calculate the outcomes. Equation (3) was used to average 
the fuzzy numerical values assigned for each main criterion and sub-criteria. Hence, let 
N = {n1, n2,…,n6} be the set of construction companies to be assessed. First, fuzzy numerical 
values were used to evaluate each company with regard to the criteria, and then, a rating order 
was determined for the companies by multiplying the matrix of outcomes with the vector of 
criterion weights to determine the safety conditions at workplaces.

 � � � �X
N

z z z
ij ij ij ij

N
= + + +

1 1 2{ ... }( ) ( ) ( )  (3)

where ẑij are fuzzy numerical values assigned by the kth decision maker from the assessed 
company with respect to a criterion and (+) indicates the fuzzy arithmetic summation func-
tion. X = (ẑij)nxm is a fuzzy decision matrix characterized by fuzzy numerical values. A fuzzy 

Table 6: Linguistic terms and their numerical intervals for fuzzy TOPSIS.

Fuzzy Linguistic Terms for Decision Making Numerical Values

Very Low Important (VLI) (1, 2, 3)
Low Important (LI) (2, 3, 4)
Moderately Important (MI) (3, 4, 5)
Highly Important (HI) (4, 5, 6)
Extremely Important (EI) (5, 7, 9)
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term set was used to determine the rate of companies for safety conditions to evaluate the 
reliability of a workplace. The term set T(ẑij) is the set of linguistic terms within {1,…,9}. 
Similarly, µ(ẑij) is an MF used to associate each value of the criteria with its fuzzy equiva-
lences. For example, the ‘management commitment’ of the company covers the sub-criteria 
‘safety priority, responsibilities of supervisors, and adequacy of safety tools and equipment’ 
and can be presented by the linguistic term set as T(ẑij) = {very low, low, moderate, high, and 
very high}.

Step 2: It is possible to avoid complex calculations; a linear normalization is used to convert 
the various measurement scales into comparable scales. Hatami–Marbini and Tavana [25] 
stated that the decision matrices are homogenous and that the range of each component of the 
normalized triangular fuzzy numbers lies within [0, 1]. �R

ij
 is the normalized fuzzy decision 

matrix. Equation (4) presents this fuzzy decision matrix for safety conditions at workplaces 
with regard to the criteria. B and C are the set of benefit criteria and cost criteria [26], respec-
tively. Equation (5) shows the maximum and minimum values of the fuzzy numerical values (ẑij).

 � �R r
ij ij m n
=

×
[ ] , i=1,2,…,m; j=1,2,…,n. (4)

where

 �r r r r
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z
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ij
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ij
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 c z j n
j t ij
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= =min[ ] , , ,...., .

,
1 2 3  (5)

The weighted normalized fuzzy decision matrix ( )�V  can be defined as follows.  Equation (6) 
illustrates the weighted normalized fuzzy decision matrix. This matrix is used to transform 
the crisp outcomes of safety conditions at workplaces to evaluate the reliability of a work-
place by the triangular fuzzy numbers within the interval [0, 1].

 � �V v i m j n
ij

= = … = …[ ] , , , , ; , , ,
mxn

     1 2 1 2  (6)

where

 � �v v v v w r w r w r w r
ij ij

l
ij
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ij
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l

ij
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j
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ij
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The fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) are 
denoted by A* and A-, respectively, which can be presented as follows: A* = ( , , , )* * *v v v

n1 2
… , 

A v v v
n

− − − −
= …( , , , )

1 2
.

This study discusses the detailed calculations for the Company 1 criterion ‘safety manage-
ment level’. Table 7 shows the fuzzy linguistic terms allocated for this criterion. Four key 
qualified staff (DMs) participated in the decision making regarding the parameters using the 
linguistic terms presented in Table 7. Equation (3) was used to calculate the average decision 
for each main criterion and sub-criteria. The fuzzy triangular numbers assigned by DMs to 
each sub-criteria for the safety-management level were determined and aggregated. The 
results are presented in Table 8.

For example, DM 2 concluded that the ‘safety priority’ for company 1 is ‘HI-highly 
 important’ linguistically, with a numerical value of (4, 5, 6). However, the other DMs had 
different opinions, finding that the ‘safety priority’ of this company was (LI), (LI) and (HI) 
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linguistically; the numerical equivalences of each of these linguistic terms are presented in 
Table 7. Hence, the averages of each sub-criteria and criterion were calculated because all 
criteria are important for decision making. The assessment of all companies with regard to the 
criteria is presented in Table 9. The sample calculations for the rating of decisions made by 
decision makers (experts) for ‘safety priority’ was calculated and is presented below. As all 
weights of the decision criteria were determined, a maximum–minimum compositional rule 
of inference could be employed to transform the crisp decisions into fuzzy equivalences. In 
Step 2 of the fuzzy TOPSIS application, the fuzzy decision matrix was normalized to deter-
mine the performance of compressors in terms of fuzzy numerical values with regard to the 
main criteria. Equation (5) was used to determine the maximum value of each cj

* for the 
construction companies. For example, c1

* is equal to 6.0 for Construction Company 1, and the 
other ‘cj

*’ values are presented in Table 9. The details of the calculations are given below.

 ( )
( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( . , . , .R
11

2 3 4 5 7 9 3 4 5 3 4 5 4 5 6

5
3 4 4 6 5=

+ + + +
= 77) 

 
c11

1
3 4 4 6 5 7 3 9 5 2 6 6 3 4 4 8 6 0 6* max[( . , . , . ),..., ( . , . , . ), ( . , . , . ) .= = 66

 

Table 7: Decision matrix for safety-management level by fuzzy linguistic terms.

C1: Safety-Management Level DM1 DM2 DM3 DM4

C11:Safety Priority LI 
(2,3,4)

HI
(4,5,6)

LI
(2,3,4)

HI
(4,5,6)

C12:Management Commitment EI
(5,7,9)

HI
(4,5,6)

LI
(2,3,4)

MI
(3,4,5)

C13:Safety Facilities Conditions MI
(3,4,5)

HI
(4,5,6)

HI
(4,5,6)

EI
(5,7,9)

C14:Safety Meetings MI
(3,4,5)

HI
(4,5,6)

LI
(2,3,4)

LI
(2,3,4)

C15:Safety Reports HI
(4,5,6)

EI
(5,7,9)

MI
(3,4,5)

MI
(3,4,5)

Table 8:  Final aggregation of company grades with respect to all criteria using fuzzy 
triangular numbers.

Companies �V
ij

C1 C2 C3 C4 C5

Construction 
Company 1

(0.11,0.19, 
0.29)

(0.01,0.01, 
0.03)

(0.12,0.24, 
0.31)

(0.09,0.16, 
0.23)

(0.12,0.17, 
0.36)

Construction 
Company 2

(0.11,0.18, 
0.29)

(0.01,0.02, 
0.03)

(0.10,0.16, 
0.24)

(0.10,0.14, 
0.23)

(0.12,0.17, 
0.36)

Construction 
Company 3

(0.11,0.18, 
0.28)

(0.02,0.02, 
0.04)

(0.12,0.20, 
0.26)

(0.10,0.14, 
0.20)

(0.11,0.15, 
0.30)

Construction 
Company 4

(0.10,0.17, 
0.28)

(0.01,0.02, 
0.03)

(0.14,0.23, 
0.33)

(0.09,0.16, 23) (0.09,0.16, 
0.33)
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Fuzzification refers to the representation of the performance of construction companies in 
terms of fuzzy terms and implications. As shown in Table 9, the decisions presented are in 
crisp numerical values and must be transformed into fuzzy equivalences within the interval 
[0, 1]. As a result of these calculations, a set of fuzzified values ( �r

ij
) will be obtained for each 

criterion. Equation (4) was used for these calculations. The fuzzified values ( �r
ij
) were pre-

sented as the matrix �R
ij
and are given in Equation (7); these values are fuzzified membership 

degrees presenting the performance rates of the construction companies.

 �r
25

4 0
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5 3

7 3
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7 3
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The fuzzified values presented in Table 9 were weighted, and the outcomes indicate the 
performance of each construction company. This is the step at which the fuzzy AHP approach 
is integrated with the fuzzy TOPSIS methodology. Equation (6) was used to determine the 
weighted fuzzified values. For example, V25 = (0.12, 0.17, 0.36) is a fuzzy triangular rate 
indicating the ‘safety training level’ of Construction Company 2. The detailed calculation is 
presented below:

� � �V r w
25 25 5
= ⊗  = (0.55, 0.73, 0.89)⊗ (0.21, 0.23, 0.40) = (0.12, 0.17, 0.36)

Table 8 presents the performance rating of all construction companies with regard to the 
main criteria. The table shows the performance grades determined by decision makers, which 
are triangular fuzzy numbers. These numbers are not particularly meaningful for performing 
an analysis of the companies to enable the final decision. Therefore, the weighted fuzzy deci-
sions must be normalized. Normalization is a defuzzification process of the decision matrix 

Table 9: Decision matrix for construction companies with regard to the criteria.

Rij C1 C2 C3 C4 C5 cj*

Construction 
Company 1

(3.4,4.6,5.7) (3.2,4.3,5.4) (3.6,4.9,5.9) (3.9,5.2,6.6) (3.4,4.8,6.0) 6.6

Construction 
Company 2

(3.6,5.0,6.3) (3.6,4.8,6.0) (2.8,3.7,4.7) (4.5,5.2,7.3) (4.0,5.3,6.5) 7.3

Construction 
Company 3

(3.5,4.8,6.0) (4.3,5.2,6.4) (3.3,4.5,5.8) (4.3,5.5,7.2) (3.8,4.6,5.4) 7.2

Construction 
Company 4

(3.2,4.4,5.8) (3.5,4.7,5.2) (3.8,5.1,6.3) (4.0,5.5,7.0) (3.1,4.9,5.8) 7.0

Weights (0.22, 0.27, 
0.34)

(0.02, 0.03, 
0.04)

(0.26, 0.32, 
0.37)

(0.16, 0.20, 
0.23)

(0.21, 0.23, 
0.40)
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to determine the distance of these performance values to the ideal performance value. The 
distances can be used to find the similarity co-efficient and ranking order of the construction 
companies. The distances can be on both sides; hence, one side can be defined as the FPIS, 
and the other side can be defined as the FNIS.

d(d
i
*,d

i
−) is the distance measurement between two fuzzy numerical values. The closeness 

coefficient is used to determine the performance rate of the companies. The values of d
i
* and

d
i
− of each alternative company are calculated, and the decision is made by ordering the per-

formance of the companies.
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Table 10 presents the closeness coefficients (CCi) of all companies to the ideal distance. 
The closeness coefficient of each alternative company was calculated by eqn (8). The FPIS 
and FNIS of the scenarios were used to determine the total distances from the ideal value. The 
result becomes notably closer to the FPIS and further from the FNIS as CCi approaches 1. 
Therefore, according to the closeness coefficient, the ranking order of all companies was 
determined and the best alternative was selected among four alternative companies. The 
ranking order of the companies based on the closeness coefficient is given in Table 8.

 CC
d

d di
i

i i

=

+

=

+

=

−

−*

.

. .
.

0 187

3 56 0 187
0 05 (8)

The closeness coefficient measures the performance efficiency of construction companies. 
Hence, the results show that the similarity coefficient of Construction Company 1 is 0.05, 
i.e. this company has applications closer to the ideal values, followed by Company 4 (0.047). 
The ranking order of the companies based on closeness coefficients is presented in Table 10.

The similarity coefficients of Companies 2 and 3 are 0.042 and 0.039, respectively, i.e. 
these construction companies are far from the ideal value. According to the results in Table 10, 

Table 10: Efficiency rates and closeness coefficients of the companies.

Construction Companies FPIS (d
i
*) FNIS (d

i
−)

Similarity 
co-efficient 

(CCi)

Ranking of the 
Construction 
Companies

Construction Company 1 3.56 0.187 0.050 1
Construction Company 2 3.65 0.159 0.042 3
Construction Company 3 3.66 0.148 0.039 4
Construction Company 4 3.60 0.176 0.047 2
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the ranking of construction companies with regard to SMS performance is as follows: 
 Company 1 > Company 4 > and Company 2 > Company 3.

According to the results of the current study, Company 1 had the best performance out of 
the four companies considered. These results reflect the impact of the comprehensive safe-
ty-management practices strategy implemented by Company 1; this company distinguished 
itself from the other companies by applying different safety-management practices, such as 
offering high-quality safety training for existing and new workers and providing an intensive 
safety awareness programme throughout the year via posters, workshops, and digital display 
screens. In addition, the safety-management team at Company 1 conducted regular meetings 
concerning the safety issues of its construction sites, such as the effectiveness of safety 
inspections, accident percentages and types, and compliance with rules and procedures. The 
senior safety managers regularly attended the meetings to make decisions related to safe-
ty-management practices. Finally, Company 1 applied different specific training sessions, 
such as sessions regarding construction hazards (e.g. crane hazards and scaffold hazards), 
and encouraged workers to attend these training sessions. These good management practices 
led Company 1 to have the highest ranking.

4 CONCLUSIONS
Numerous factors (i.e. safety-management level, safety training, safe behaviour, safety rules, 
and level of teamwork) affect the performance effectiveness of SMSs, particularly at con-
struction companies. Neglecting these factors leads to system failure and serious accidents, 
resulting in a company’s loss of people, materials, and equipment. Recognizing these factors 
is critical to the ability of a construction company to increase its level of SMS productivity. 
A construction company can increase the productivity of its system by identifying which 
factors contribute significantly to system performance. The current study developed a model 
that can be used to identify the most important factors impacting a construction SMS. The 
importance of these factors and their sub-factors was determined using the fuzzy AHP tech-
nique, and the effectiveness of the four construction companies’ SMSs was determined via 
fuzzy TOPSIS. The results of the current study confirm that the fuzzy AHP technique is a 
useful method for evaluating MCDM regarding safety management and simple methods that 
construction companies can apply.

Performance assessment of companies is a highly complex multidisciplinary task, the 
decision criteria are non-linear, and several quantitative and qualitative attributes have to be 
taken into consideration. It is very hard to find all criteria and sub-criteria together for deci-
sion making in the assessment performance assessment. The criteria and sub-criteria set is 
able to be used for the development of a decision support system and even for the expert 
system to assess the safety performance of companies. Moreover, four decision makers are 
involved in the decision-making process. Hence, the criteria determination, and hybridization 
of Fuzzy AHP and fuzzy TOPSIS is the base of the fuzzy model developed.
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