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ABSTRACT
There are practical links between disaster risk management and sustainable development leading to the 
reduction of disaster risk and re-enforcing resilience as a new development paradigm. There has been 
a noticeable change in disaster management approaches, moving from disaster vulnerability to disaster 
resilience; the latter viewed as a more proactive and positive approach. As hazard is increasing, at the 
same time, it erodes resilience. In the past, standard disaster management considered arrangements for 
prevention, mitigation, preparedness and recovery, as well as response. However, over the last 10 years 
substantial progress has been made in establishing the role of resilience in sustainable development. 
Multiple case studies around the world reveal links between attributes of resilience and the capacity of 
complex systems to absorb disturbance while still being able to maintain a certain level of functioning. 
There is a need to focus more on action-based resilience planning. Disasters do not impact everyone 
in the same way. It is clear that the problems associated with sustainable human wellbeing call for a 
paradigm shift. Use of resilience as an appropriate matrix for investigation arises from the integral 
consideration of overlap between: (a) physical environment (built and natural); (b) social dynamics; 
(c) metabolic flows; and (d) governance networks. This paper provides an original systems framework 
for quantification of resilience. The framework is based on the definition of resilience as the ability of 
systems to absorb disturbance while still being able to continue functioning. The disturbance depends 
on spatial and temporal perspectives and direct interaction between impacts of disturbance and system 
adaptive capacity to absorb disturbance.
Keywords: adaptive capacity, natural disasters, resilience, system performance.

1 INTRODUCTION
From the 1980s to the last decade, the annual economic losses caused by natural disasters 
have increased from $50 billion to $180 billion and of these losses, 75% are linked to extreme 
weather events. The trend suggests that losses will continue to increase in future years due to 
economic development, population growth, rapid urbanization and climate change. In order 
to mitigate the significant damages associated with natural disasters and extreme hydro- 
meteorological events in particular, it is recommended to integrate disaster risk management 
schemes into various planning, design and operational policies [1, 2].

The terms ‘hazard’, ‘vulnerability’, ‘disaster’ and ‘risk’ cover a very broad range of 
 phenomena and are interpreted and understood by different people in different ways [3]. 
Many definitions of disasters are limited by notions of impact and damage. The term such as 
‘disaster risk’ and ‘disaster losses’ are essentially our interpretations of the negative eco-
nomic and social consequences of natural events. Human judgment is subject to value systems 
that different groups of people may have and therefore these terms may be subject to different 
definitions. The disaster risk, at various locations, may increase by human activity – like 
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inappropriate land use practices. Also, the disaster risk may be reduced by protection struc-
tures and/or effective emergency planning. The real disaster risk therefore, stems from the 
likelihood that a major hazardous event will occur unexpectedly, and it will impact negatively 
on people and their welfare. Many hazard impacts result from a combination of physical 
exposure and human vulnerability to hazard. Physical exposure reflects the type of hazardous 
event that can occur, and its statistical pattern, at a particular location. The human vulnerabil-
ity reflects key socio-economic factors such as the number of people at risk, the extent of 
defence works and the ability of the population to anticipate and cope with disaster.

Traditional disaster risk management is defined as the combination of three elements: (i) 
the hazard that is – in the context of this work – the probability of occurrence of a hazardous 
event; (ii) exposure that is the location of people, property, infrastructure and industry relative 
to the hazard; and (iii) vulnerability that is the susceptibility of people, property, infrastruc-
ture and industry to damage caused by the hazard [1]. In order to manage disaster risk, 
measures are taken to reduce the vulnerability of the system components exposed to the 
hazards. More recently, however, there has been a shift from the traditional, vulnerabili-
ty-driven approach to disaster resilience that is the foundation of the presented research [4].

Resilience – in the context of disaster management – is defined as: ‘the ability of a system 
and its component parts to anticipate, absorb, accommodate or recover from the effects of a 
hazardous event in a timely and efficient manner, including through ensuring the preserva-
tion, restoration or improvement of its essential basic structures and functions’, [2]. While 
disaster risk management focuses on the reduction of pre-hazard vulnerabilities, disaster 
resilience is achieved by introducing adaptation options that enable the community to adapt 
to the impacts of the hazard and enhance the ability of the physical, social, economic sectors 
to function in the event of a disaster. These adaptation options help the system components to 
cope with and recover from hazard impacts in order to return to a pre-disaster level of perfor-
mance as rapidly as possible. Adaptation options can be grouped into four categories: 
(i) robustness that is the strength or the ability of the system to resist hazard-induced stresses 
(e.g. flood protection measures); (ii) redundancy that is the ability of a system to provide 
uninterrupted services in the event of a disruption (eg. a twinned pipeline); (iii)  resourcefulness 
that is the utilization of materials (monetary, technological, informational, and human 
resources) to establish, prioritize and achieve goals (e.g. mobilization of disaster manage-
ment funds); and (iv) rapidity that is the capacity to return the system to a pre-hazard level of 
functioning as quickly as possible [5]. Evidently, resilience is a proactive means of disaster 
management making it more desirable for implementation [4].

It is apparent that the need for the integration of disaster resilience management into 
 planning, design and operational policies is strong. Sufficient literature is available on the 
conceptualization of disaster resilience [5,6]. More recently, however, researchers have 
found merit in defining resilience quantitatively [5,7]. Most of the proposed approaches are 
estimating the resilience as a time-independent measure and do not provide much insight 
about the recovery capability of the system over time. The time-independent static resilience 
is merely an abstract attribute of the system and do not completely describe the state of the 
system under disturbance. Thus, the time-independent static resilience measures are practi-
cally ineffective for planning and developing appropriate system recovery strategies from a 
disaster.

The first significant attempt to quantify resilience as a function of time and space is made 
by Simonovic and Peck [4] and since then has emerged as a critical characteristic of complex 
dynamic systems in a range of disciplines – ecology, engineering, health sciences, social 
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sciences and economics. Implementation of dynamic measure through simulation in time and 
space enhances the understanding of the system capability to recover from a disastrous event. 
Simulation is a natural systems modelling approach that can be used in the analysis of 
dynamic systems. A resilience metric of Simonovic and Peck [4] allows for prioritization of 
regions and systems (and their components) that requires adaptation upgrades. It also allows 
for the comparison of adaptation options that improve community resilience and the 
 functioning of critical facilities in the event of a disaster.

The following section of the paper presents a new resilience measure and its adaptation for 
addressing spatial and temporal changes of complex systems subject to disasters. In the third 
section, the use of the proposed measure is illustrated through a presentation of three 
 examples. The paper ends with a short discussion and set of conclusions.

2 SPACE-TIME DYNAMIC RESILIENCE MEASURE
The quantitative resilience measure, first introduced by Simonovic and Peck [4] following 
Cutter et al. [6], has two qualities: inherent (functions well during non-disaster periods); and 
adaptive (flexibility in response during disastrous events) and can be applied to physical envi-
ronment (built and natural), social systems, governance network (institutions and 
organizations), and economic systems (metabolic flows). An original space-time dynamic 
resilience measure (STDRM) of Simonovic and Peck [4] is designed to capture the relation-
ships between the main components of resilience; one that is theoretically grounded in 
systems approach, open to empirical testing, and one that can be applied to address real-
world problems in various communities.

2.1 Mathematical definition of STDRM

STDRM is based on two basic concepts: level of system performance and system adaptive 
capacity. They together define resilience. The level of system performance integrates 
 various impacts (i) of system disturbance (disastrous event). The following impacts (units 
of  resilience (ri)) can be considered: physical, health, economic, social and organizational, 
but the general measure is not limited to them. Measure of system performance P i(t, s) for 
each impact (i) is expressed in the impact units (physical impact may include for example 
length [km] of road being inundated; health impact may be measured using an integral 
index like disability adjusted life year or something simpler like number of hospital beds; 
and so on). This approach is based on the notion that an impact, P i(t, s), which varies with 
time and location in space, defines a particular resilience component of a system under 
consideration, see Fig. 1 adapted from Simonovic and Peck [4]. The area between the ini-
tial performance line P0 

i   (t, s) and performance line P i(t, s) represents the loss of system 
performance, and the area under the performance line P i(t, s) represent the system  resilience 
(r i(t, s)). In Fig. 1, t0 denotes the beginning of the disturbance, t1 the end, and tr the end of 
the recovery period.

In mathematical form the loss of resilience for impacts (i) represents the area under the 
performance graph between the beginning of the system disruption event at time (t0) and 
the end of the disruption recovery process at time tr . Changes in system performance can be 
represented mathematically as:
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When performance does not deteriorate due to disruption P i0 (t, s) = P i(t, s), the loss of 
resilience is 0 (i.e. the system is in the same state as at the beginning of disruption). When all 
of system performance is lost, P i(t, s) = 0, the loss of resilience is at the maximum value. The 
system resilience, r i(t, s) is calculated as follows:
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As illustrated in Fig. 1, performance of a system which is subjected to a disaster event 
drops below the initial value and time is required to recover the loss of system performance. 
Disturbance to a system causes a drop in system resilience from value of 1 at t0 to some value 
r i(t1, s) at time t1, see Fig. 2. Recovery usually requires longer time than the duration of dis-
turbance. Ideally, resilience value should return to a value of 1 at the end of the recovery 
period, tr (dashed line in Fig. 2); and the faster the recovery, the better. The system resilience 
(over all impacts (i)) is calculated using:

Figure 1: System performance.

Figure 2: System resilience.
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where M is total number of impacts.
The calculation of STDRM for each impact (i) is done at each location (s) by solving the 

following differential equation:

 

∂ ( )
∂

= ( ) − ( )ri
i it

t
AC t P t  (4)

where ACi represents adaptive capacity with respect to impact i. The STDRM integrates 
resilience types, dimensions and properties by solving for each point in space (s):
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2.2 Computational implementation of STDRM

The implementation of the presented framework is proceeding by using system dynamics 
(SD) simulation approach together with spatial analysis software.

SD is a logical problem-solving technique, which combines traditional management of 
complex systems and feedback theory with computer simulation for the purpose of gaining a 
better understanding of real-world system behaviour. SD simulation is an appropriate 
approach for capturing the temporal dynamics of disaster resilience, but is not originally 
intended for spatial modelling.

The following approach is developed for addressing a set of technical challenges involved 
in linking together spatial and temporal simulation. The main link is established through an 
independent ‘coupling program’ (CP). The implementation includes the functionality of: 
Vensim [8] for SD temporal simulation; ArcGIS [9] for spatial GIS analyses; and CP designed 
to provide the bridge between the first two using Python [10]. In this way, the STDRM is able 
to simulate the entire set of disaster impacts under consideration (physical, economic, social, 
health and organizational).

3 ILLUSTRATIVE EXAMPLES
Three examples are selected to briefly present the utility of STDRM in disaster management.

3.1 Example 1: space-time dynamic resilience of a community to flooding

There are two hospitals (herein referred to as HA and HB) which service a city (see Fig. 3). 
This city area covers 124 × 148 raster cells (18,352 cells). The population within each raster 
cell is known and varies between [0, 6] people. Each of the hospitals, HA and HB, provides 
health services to a portion of the city population: Service Area of Hospital A (SA-HA); 
 Service Area of Hospital B (SA–HB). Population of both service areas uses a road network 
to access each hospital location. A ‘flood’ is introduced as a ‘shock’ to the health system 
(shaded area in Fig. 3). This disturbance affects the performance of health system in the city 
by impacting access of people affected by the disaster to hospital services. As the road 
 network becomes inundated, the SAs for each hospital are adjusted to reflect the shortest 
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travel distance to service. Thus, a location initially serviced by HA may at some point during 
the simulation become serviced by HB and the population serviced by each hospital at any 
given time will change depending on the availability of the road network. These SAs are used 
to determine a ‘service population’ for each hospital. This value, in turn, is transferred to the 
SD simulation model and used in final calculation of resilience. The result is a series of maps 
that show changes in areas and population served by each hospital and the corresponding 
resilience value (Fig. 4 bottom window) and set of temporal graphs that show changes in 
serviceable population, patients affected by the disaster, and resilience over time (Fig. 4 
upper window).

3.2 Example 2: space-time dynamic resilience of a single-purpose reservoir to water 
scarcity

In this example, the space-time dynamic resilience of a single-purpose reservoir (designed 
for irrigation) has been quantified using the approach presented in the paper. The reservoir is 
subject to changing inflow and irrigation demand that will affect the resilience of its water 
supply. Climate change and other factors like growing needs for food production are sources 
of water scarcity in many places around the world. Insight in the reservoir resilience can 
provide support for making informed decisions in these circumstances.

The simple single-purpose reservoir simulation model consists of the continuity equation 
and a set of operational constraints. The continuity equation is expressed as:

 S S I IR O SPt t t t t t= + − − −−1  (6)

Figure 3: Location of hospitals. Figure 4: Resilience of hospital A.
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where St is the storage during the time period t; St-1 is the storage in the reservoir during 
previous time period; It is the inflow during the time period t; IRt is the total irrigation release 
from the reservoir during the time period t; Ot are the losses from the reservoir (evaporation 
and other leakage losses); and SPt is the spill from the reservoir during the time period t. The 
system constraints, reservoir operating rules and the release decisions are captured using 
IF-THEN-ELSE statements in the simulation model. If the storage is greater than the irriga-
tion demand, then the actual demand is released; else the available storage is released.

The system performance for the reservoir irrigation (SPi,t) is expressed as the ratio of 
actual release made for irrigation and the demand during the time t:

 
,SP

IR

IRi t
t

t
demand

=  (7)

where IRt
demand is the irrigation demand during the time period t. This performance measure 

is used for quantifying the space-time dynamic resilience.
Analysis of the inflow data shows that the reservoir is highly intermittent in nature and 

receives inflow only during the monsoon season. Inflow during the non-monsoon season is 
negligible. The reservoir supplies irrigation water to the command area at the downstream 
through the lift irrigation scheme. The illustrative model is set to include 100 individual fields 
to be irrigated by the reservoir. The releases are made sequentially starting from field 1, 
which is closest to the reservoir finishing with filed 100 being furthest away from the reser-
voir. In event of water scarcity, all the fields may not be irrigated to their full demand. The 
system performance is estimated individually for each field using Eqn (7).

The computational procedure integrates (a) SD reservoir and resilience simulation models 
and (b) spatial irrigation release distribution model. Integrated system provides for space-
time dynamic resilience calculation of single-purpose reservoir operations.

Figure 5: Temporal variation of resilience to irrigation water scarcity.

Figure 6: Spatial variation of resilience to irrigation water scarcity.
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The dynamic resilience of all 100 fields is shown in Fig. 5. It is observed that initially all 
fields receive sufficient amount of water resulting in high resilience for most of the time. 
Once the demand exceeds the supply, failure state, the resilience of individual fields starts to 
vary significantly due to partial satisfaction of the demand, or no satisfaction. During the 
failure periods, due to lower amount of water being available, not all the fields receive the full 
demand. Only the closest few fields receive the full demand, some fields receive partial 
demand and most of the fields do not receive any water. Hence, there is variation in resilience 
value with time and in space.

The spatial dynamic resilience of all 100 individual fields is shown in Fig. 6 for four 
selected time periods. Figure 6a shows resilience of all fields at early part of the simulation 
period, day 30. During the initial period, irrigation demand of all individual fields is fully 
met and therefore a high resilience value. However, over of time, due to lower inflow in to 
the reservoir, the irrigation demand can be satisfied only for some fields. Due to the simple 
assumptions that the water from the reservoir is delivered in accordance with the distance 
(first the closets and so on) some fields closer to the reservoir get their demand fully satisfied 
whereas fields further away do not. Figure 6b shows the spatial distribution of resilience at 
day 710. The fields closer to the reservoir always receive sufficient amount of water and 
therefore show high resilience. Most of the fields further away fail to receive the irrigation 
releases and hence their resilience drops to zero. Figure 6c shows day 715 where some of 
the fields already recovered from failure and their resilience increased. Figure 6d shows day 
780 when almost all fields are receiving the water for irrigation and their resilience is on the 
rise. As it can be seen from Fig. 6, the value of resilience of individual fields varies 
 significantly.

3.3 Example 3 – space-time dynamic resilience of complex infrastructure networks

The infrastructure network model is based on network theory, where two basic components, 
nodes and edges, build up the model of a system. A network is represented by set of nodes G, 
set of junctions and end points N, and set of undirected segments E. For illustrative purposes, 
the simple infrastructure system is considered as shown in Fig. 7. The system contains streets 
(grey layer in Fig. 7), power grid (red layer in Fig. 7), water supply network (blue layer in Fig. 
7), and information infrastructure layer (green layer in Fig. 7).

Figure 7: Schematic of interdependent infrastructure system model.
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Since various hazards may affect the infrastructure components, their location in space is 
of high importance. In an infrastructure network model, the location of nodes is modelled in 
accordance with their geographical location, defined in a two-dimensional Euclidean coordi-
nate system. Each node in the infrastructure network has three coordinates (j, x, y), where j 
denotes the type of infrastructure, and x and y denote the geographical location of the node. 
Since network infrastructure elements exhibit a high level of interdependencies the model 
includes: node dependences; node/edge path dependencies; node/edge cluster dependencies; 
and geographic dependences.

The resilience model of complex infrastructure system considers magnitude of interrupted 
services and the duration of interruption. Each element of infrastructure system can be in one 
of two states: functioning (1) and not functioning (0).

Following the mathematical description of the interconnected infrastructure network 
 system and original definition of resilience [4], the single layer (j) resilience for multiple 
disturbances (j) is calculated (using three dimensions: robustness, resourcefulness and 
 rapidity) as:
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and for multilayer infrastructure system as:
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The notation used in Eqns (8) and (9) is shown in Fig. 8 for the case with two disturbances.
A simple numerical example including a multilayer infrastructure network with 16 street 

crossings and end points, 54 street segments, 16 water infrastructure elements (pumps, 

Figure 8: Infrastructure network performance.
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 storage facilities, etc), 16 water pipes, 36 electric sources, 16 electric transmission lines, 5 
internet provider nodes and 8 internet cable connections is considered. The network is 
 subjected to flooding.

The simulation results shown in Fig. 9 compare the network resilience for each layer and 
complex multilayer system for five adaptation strategies: (i) RS-FF - first repair the first 
 failure (blue line in Fig. 9); (ii) RS-FL - first repair the last failure (red line in Fig. 9); 
(iii) RS-IE- first repair the critical components (grey line in Fig. 9); (iv) RS-ED – first repair 

Figure 9: Case study results.
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the obvious dependent elements (orange line in Fig. 9); and (v) RS-EP – first repair the 
non-obvious dependent elements (dark blue line in Fig. 9).

4 DISCUSSION AND CONCLUSIONS
The paper presents an original framework for the quantification of resilience through spatial 
SD simulation, STDRM. The quantitative resilience measure can combine various impacts 
(economic, social, health, physical etc.) caused by natural disasters. The framework is 
designed to provide for: (i) better understanding of factors contributing to system resilience; 
and (ii) comparison of adaptation options using resilience as a decision-making criterion. The 
developed measure defines resilience as a function of time and location in space. Three 
 illustrative examples demonstrate the utility of the proposed measure.
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