E-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 1-12

A VIRTUAL REPOSITORY FOR LINKED-DATA-BASED
DISASTER MANAGEMENT APPLICATIONS

F.-P. YANG, Y.Z. OU, C.W. YU, J. SU, S.-W. BAI J.-M. HO & J.W.S. LIU
Institute of Information Science, Academia Sinica, Taiwan.

ABSTRACT

Typical state-of-the-art disaster management information systems (DMIS) cannot support responsive
discovery and access of data and information needed to handle unforeseen emergencies. Adding seman-
tics and relations to legacy data and transforming them to linked data (LD) can remove this limitation.
The virtual repository presented in this article is a development environment for this purpose: It pro-
vides application developers with tools for incremental transformation of legacy data and information
in the DMIS into LD as needed by the applications. The virtual repository also provides the applications
with support for runtime access of LD created and maintained using its tools.

Keywords: Disaster management applications, format translation, linked data.

1 INTRODUCTION
Experiences from past disasters have shown time and again that people’s abilities to cope
with natural disasters depend critically on the availability of data and information needed to
support preparedness and response decisions and operations. Such information not only can
help save lives, prevent injuries and reduce damages, but also can make emergency response
and rescue operations safer and more efficient. Statistics also show, however, that the positive
impact of information deteriorates rapidly with time following a disaster [1]. For making
decision support information easily discoverable and accessible by Emergency Operation
Center (EOC), responders, victims and general public should be a primary design objective
of all disaster management information systems (DMIS).

Today, this objective is met only partially by DMIS of numerous countries and regions in
the world, including Taiwan and most of Asia. Typical state-of-the-art DMIS rely mainly on
data and information in sources owned by government agencies responsible for disaster man-
agement. As a part of standard operating procedures (SOP) in preparation for a disaster,
likely emergency scenarios are developed based on knowledge on similar past disasters and
experiences in dealing with them. When the disaster becomes imminent, the EOC identifies
the data and information needed to deal with the scenarios and has the data retrieved from
available sources and cached on devices, computers and display systems and thus makes the
data ready for use by decision makers and responders during the emergency. This practice
and the DMIS used to support the SOP work sufficiently well for disasters (e.g. typhoons,
seasonal downpours and earthquakes of usual severities) that occur frequently in the region.

They fall short, however, in case of unforeseen calamities, especially when the levels of
devastations exceed the prediction. Examples include Morakot Typhoon in Taiwan, 2009
Haiti and 2011 Japan earthquakes and hurricanes Katrina and Sandy in USA. Data and infor-
mation on things such as floor plans/structures of collapsed buildings, available pumps and
transports, locations of people needing help, etc. in hands of emergency managers, respond-
ers and victims can save lives and properties. A typical DMIS offers little or no support to
enable timely discovery, access and use of such data when the data are in sources outside of
the official DMIS and across institutional boundaries.

© 2015 WIT Press, www.witpress.com
ISSN: 2041-9031 (paper format), ISSN: 2041-904X (online), http://www.witpress.com/journals
DOI: 10.2495/SAFE-V5-N1-1-12

2 F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

The virtual repository (VR) described in Ou et al. [2] is a part of a middleware-level frame-
work for building open information systems that are free of these limitations. Generally
speaking, a VR provides client applications (and services) served by it with interface services
and interoperability tools to hide the fact that data and information brought to the applications
may reside physically in multiple and diverse (information) sources, some of which may be
owned by non-government entities (e.g. businesses, institutions, communities and NGOs).
An obstacle to responsive flow of information during emergencies arises from policies and
mechanisms erected by information sources for the sake of security and privacy protection.
The VR provides an accountability-based information brokerage service [3] designed to
remove this obstacle for client applications during emergencies on the one hand, while pro-
viding its client information sources with confidentiality and privacy protection on the other
hand. The next section will present an overview of these VR services.

A way to enable discovery of data and information is to exploit linked data (LD) and
related technologies [4—6]. Semantics of data and relations between them provided by LD
can ease the discovery of critically needed data during emergencies and enable the design and
implementation of new and more effective disaster preparedness and response applications.
Research projects on building emergency information systems and management infrastruc-
tures on LD and Linked Open Data (LOD) include the ones described in reference [7-9].
Tools provided by projects such as LOD2 [10] and SIMILE [11] can help to reduce the effort
and speed up the development of LD-enabled DMIS and disaster management applications.

Nevertheless, the adoption of LD within information systems for disaster management has
been extremely slow and in some parts of the world, it may not happen. A reason is that the
effort required to turn existing DMIS into LD is enormous, and the data providers who do this
enhancement may not be benefited directly from the effort. VR aims to speed up the adoption
of LD by providing developers of LD-based applications with tools and services for incre-
mental transformation of legacy data in DMIS and other sources into LD on demand as
needed by the applications. In this way, VR serves as a development environment of LD,
enabling LD consumers to be LD producers. In addition, VR provides its clients with storage
for LD created and maintained using its tools and supports runtime access of the data. For this
reason, VR can be viewed by client applications with similar data requirements as an exten-
sible repository of links and cached LD.

This article focuses on a system of tools and services collectively called X2R converter, or
simply X2R. The system is a multi-format converter for transforming legacy data into LD in a
Resource Description Format (RDF). X2R builds on existing translation and mapping tools
[12—15]. For the sake of concreteness without loss of generality, subsequent discussion assumes
that when presented by a developer with a file of application data in a supported format, one of
the RDFizers maintained by MIT SIMILE group and W3C [11, 15] is used by X2R to convert
the data into RDF. The RDF file produced automatically often contains temporary Universal
Resource Identifiers (URIs) generated by the translator. The file may also have blank nodes.
Clearly, one cannot search for these types of nodes. Their presence in a file hinders the discov-
ery of the content of the file. For this reason, they are referred to as bad nodes. To improve the
quality of the RDF file produced by the transformation process, X2R performs a refactoring
process: In this process, all the bad nodes in the RDF file produced by the translator are
extracted. For each extracted node, X2R searches a specified list of external ontologies to find
a URI that meets the developer approval as replacement; failing to find a suitable replacement
helps the developer to construct a suitable one, and then replaces each extracted node with the
developer-approved URI. X2R also provides a service to manage URIs created by application
developers, support their reuse, and thus, build a VR internal ontology incrementally.

F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 3

Following this introduction, Section 2 presents a brief overview of the architecture and key
components of VR to make this article more self-contained. Section 3 presents a pilot study
in order to identify complications that a developer may encounter in the process of converting
application data in legacy formats to LD in an RDF format. The lessons from this study
helped to guide the design of the X2R described in Section 4. Section 5 summaries the article.

2 STRUCTURE AND COMPONENTS OF VR

Figure 1 presents a runtime system view of a VR to illustrate the relationship among the
middleware, its client applications (i.e. the applications served by the VR) and client (data)
sources (i.e. data sources used by one or more client applications). Typically, the VR is dis-
tributed; it runs on diverse computers and smart devices, which by prearrangement are made
available pervasively (e.g. at convenience stores, schools, hospitals, etc.) to provide storage,
computing and communication resources to the middleware and some of the client sources
and applications. These computers and devices are called points of service (POS).

2.1 Sample applications

As examples, Fig. 1 shows three client applications. A C3 (Command, Control and Commu-
nication) system deployed at an EOC is included here to highlight the possible diversity of
applications served by a VR. Application systems exemplified by C3 typically access some
of the client sources directly. For the sake of simplicity, the figure omits those access paths.
The figure also omits details about VR interface services needed to support models and views
of the client applications and hide the fact that data and information used by the applications
may reside in independent sources.

Mobile Assistant for Disasters (MAD) [2] is the basis of the case study described in the
next section. It is a service designed to make emergency preparedness information and data
(EPID), including data on locations and available resources of emergency response facilities
(i.e. shelters, hospitals, parks with portable water, etc.) readily available to the general public

Cached data triple set 1
PTIBS 1 ™| Update procedure other [TIRTIBS1 > MAD
Accountability clauses | metadata
Other
| Sources | =— PTIBS 2 - Cached data triple set 2 -—‘RT|BS ZF o [T|ADAST
Update procedure Other ‘E’
Scientifie; Accountability clauses | metadata ®
Databases 3
cee] c3
\ 5
Open Data Cached data triple set n ACn £ =
Sources | =— PTIBS n i Update procedure Other € 2
LoD Accountability clauses ;| metadata £
Sources
| Cached link triples |
joana || ==
Official Tools and Index Triples IASS
DMIS Resources -
. Databases l Internal Vocabularies |

Figure 1: Runtime view of a VR and its clients.

4 F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

at all times, especially during emergencies. The application has a client-server structure:
MAD clients run on mobile devices of the end users and bring to the users EPID in easy-to-
use forms. There is at least one Interface Server (IS) and a POS server on each POS used by
MAD. The former is the MAD component responsible for retrieving data needed by MAD to
service its users from sources containing open data provided by local governments. Today,
open data sources are available in numerous cities and counties worldwide, including Taipei;
London, England and Yokohama, Japan. The latter are servers that run on POSs. POS servers
are shared by the VR and client applications of the VR and provide to them some of the basic
VR services, including Internet access and local download support.

Specifically, for each region serviced by MAD, the IS server retrieves from local govern-
ment source(s) data on emergency response facilities, converts the data into LD in RDF
format, partitions the data into subsets and publishes to each POS server the subset(s) con-
taining data on facilities in the neighborhood around the POS. Figure 1 refers to the MAD
data stored on POSs as ‘Cached data triple set 1.” By thus distributing the data on POSs and
making the data downloadable via local connections to diverse mobile devices, MAD makes
EPID critically needed during emergency highly available even when Internet and phone
connections are disrupted during and after a major disaster. Because data exchanged within
MAD components are in RDF format regardless of the data models and formats of data
retrieved by the Interface Server, MAD mobile clients work in all geographical regions with
the service.

While the RDF model and format(s) are a design choice of internal data for applications
such as MAD, they are essential for applications that must be able to discover and access as
soon as possible data from sources not contained in the official DMIS. Automatic Disaster
Alert System for Tourists (ADAST) [2] is such an application: In response to an alert declared
by a responsible authority (e.g. the Central Weather Bureau) warning of an imminent calam-
itous event (e.g. a severe storm and possible landslides), ADAST proactively notifies people
in the affected areas specified by the alert. When the threatened areas include popular national
parks, the application must reach not only local residents, but also tourists. The data required
for this purpose are likely to be in sources maintained by multiple government agencies and
companies (e.g. real-time data on numbers and locations of tourist groups are likely to be in
databases maintained by Tourism Bureaus and tour companies). The VR serving this and
similar applications should provide at least semantics on and links to data critical for the
applications to meet their minimal requirements. In the case of ADAST, a minimal require-
ment is that the contact persons of all tour companies operating in the park(s) and park ranger
stations are notified. Hence, semantics and links to data on these entities, referred to collec-
tively as ‘Cached link triples’ in Fig. 1, are created during the design and development process
of the application and maintained in the triple store of the VR. The values of the data related
by these links are released to selected POS servers following policies governing when and to
whom such data are to be released during emergencies.

2.2 VR services

Figure 1 shows two VR services: Intelligent Active Storage System (IASS) [16] and Trust-
worthy emergency Information Brokerage Service (TIBS) [3]. IASS aims to provide a
DMIS built from passive sources served by a VR with the capability of automatic event-
triggered, push-based delivery of critical data to specified applications and through them to
the end users. It does so by allowing client applications to define events or conditions that
will trigger push-data operations in terms of values of specified data objects in client sources

F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 5

and the VR triple store and specify the data sets and recipient applications of each push-data
operation.

As an example to illustrate how IASS may be used, we consider a landslide warning appli-
cation. The application may request IASS to monitor sensor readings from a soil moisture
sensor data source and the rainfall forecast by the Central Weather Bureau. It can then specify
that its alert message be sent to designated disaster preparedness applications when moni-
tored sensor readings indicate increasing moisture level beyond a specified threshold and the
weather bureau forecasts more rain during the day. The version of the VR described in [3] has
a more commonly seen variant of monitoring and notification service, called client subscribe
and notification service. To use the service, an application first registers with the services and
specifies the types of disaster alerts (e.g. typhoon, earthquake, debris flows and downpour)
about which it wants to be notified and the maximum allowable delay in notification for each
type of alert. These services monitor the authorized sources where the specified types of
alerts and warnings are posted (or published) and notify the requesting application when a
specified alert is found (or received).

TIBS [3] is a VR service that supports emergency information release and access policies
specified by the data sources. The policies are defined by release clauses and accountability
clauses. The release clause of a set of data defines the conditions under which the data may
be released. (e.g. EPID are released and kept up to date by local open data sources at all time
and can be retrieved anytime by applications such as MAD. In contrast, the identities and
possible locations of tourists in an area are released only when the area is threatened by
floods and landslides.) Release policies are enforced by the prospective part of TIBS, referred
to as PTIBS in Fig. 1. The assumption here is that PTIBS processes are executed by the VR
as parts of the procedures to refresh the cached data triples or retrieve values of links stored
within the VR. This way, no change to the client sources is required to use TIBS.

The accountability clause associated with a set of released data specifies the minimum user
identity and traceability requirements for releasing the data. (As an example, the interior
layout of a private building may be released to rescue workers as long as they download the
layout using valid cell phone accounts. Later, in the recovery phase, these workers can be
tracked down based on their cell phone numbers and will be held accountable for actions
enabled by the information provided by the layout.) The clauses are enforced by the retro-
spective part of TIBS, referred to as RTIBS. In contrast to PTIBS, RTIBS should be added
(and can be easily added) to some applications, e.g. C3 and ADAST used by an EOC where
accountability can be tracked more effectively. For other applications, such as MAD and
many mobile emergency response applications, it makes sense to have RTIBS, i.e. account-
ability processes, executed by the VR on POSs.

It is worth noting that TIBS has three types of functional modules: administrators, provid-
ers and helpers. It has at least one administrator, running on a resource-rich POS server or on
a cloud. The administrator maintains definitions of user roles and release and accountability
policies and binds them with the data released by PTIBS. It also serves RTIBS processes as
an audit center for tracking down information abuses and identifying the abusers. TIBS pro-
viders run on POS servers that hold some of the proactively released data. They enforce
release and accountability policies during dissemination of the data, and maintain transaction
audit records as required by the accountability policies. A provider may also be equipped
with a rule/attribute-based access control (AC) subsystem. To illustrate this point, Fig. 1
shows that a C3 system makes use of this capability. Finally, TIBS helpers are components
on ultra-lightweight POS servers. Their main function is to keep track of ad hoc transfers of
data that have been released. One approach is to use a lightweight RESTful web proxy on

6 F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

X2R Converter workflow

Translation Tools :

Input: data in X (XML, or CSV,
X2D, D2RQ, Xquery, . . - : _JSON, ... or RDF) format

l

| RDFizer (translator) |
I I

URI Search Service (USS) and
URI Management Service (UMS)

Indexers RDF file with default terms

Data Validation and R
Update Module (DVM) |

w’/ File-term mapping
------ Uss
’ Cached Data Triples ‘
‘ Cached Link Triples | File-Term-URI
mapping
’ Index Triples ‘
]
| |

]
Internal Vocabularies | UMs | Mapi)er |

k—’/
Output: RDF data with

VR tools and resources reusable URIs

Figure 2: VR tools and resources.

POS servers. The proxy will produce metadata that tags each and every data transfer across
user-specified information domains. Later, when the need arises, the metadata tags can be
traced to reconstruct the flow of each data set released under the care of the helper.

2.3 VR resources and tools

Figure 2 provides further details on the box labeled VR tools and resources in Fig. 1. Specif-
ically, the left part of Fig. 2 shows some of the important tools provided by VR. The right part
of the figure shows the workflow among component tools within the X2R for incremental
transformation of legacy data into LD. Section 4 will describe the converter as well as URI
search and management services (USS and UMS) used by the converter.

Indexers are tools for building indexes of contents of media files. These files are typically
in formats such as JPEG, TIFF, AVI, MP3, etc. that cannot be represented in an RDF format.
The indexes built by these tools are in RDF N-triple format and are stored in the triple store
of the VR as shown in the figure.

Finally, data validation and update module (DVM) is responsible for maintaining the con-
sistency of data stored within the VR with external data stored in the original sources. Each
triple or set of related triples in the VR triple store has a valid interval. The interval is speci-
fied by the client application to which the triples belong. A triple is considered expired and
hence invalid when time elapses beyond its valid interval. When this happens, the DVM calls
the update procedure associated with the triple to update it.

3 A CASE STUDY
As stated earlier, the X2R converter, described in the next section, is a system of tools for
converting data in legacy formats retrieved from existing DMIS into LD in RDF format. Its
intended users include developers of LD-based client applications served by a VR. To provide
rationales and motivation behind use case development, requirement capture and user inter-
face design of X2R, the development of MAD was used as a case study: MAD developers have

F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 7

converted open data retrieved from multiple cities in diverse formats into LD in RDF format
without the help of the X2R converter. By observing the conversion processes carried out by
MAD developers, the steps that are challenging and time consuming for some or all of the
developers were identified. The current version of the X2R converter, described in Fig. 2 by
the workflow of the conversion process and interfaces between component tools, aims not only
to ease developers’ efforts by automating challenging steps as much as possible but also to
improve the quality of the RDF outputs produced by the converter.

Specifically, the conversion processes of two MAD developers, hereafter referred to as Joe
and Bob, were followed. Joe had worked with Taipei City Open Data developers on metadata
and application program interface (API) functions. He is familiar with RDF formats and
related techniques, as well as commonly used formats, such as JSON-LD and RDF/XML. In
contrast, Bob is a novice. Both Joe and Bob are familiar with the raw data, which are a col-
lection of data sets on emergency response facilities retrieved from open data sources of three
cities: Taipei, Taiwan; London, England and Yokohama, Japan. The formats of the raw data
sets are diverse, including CSV, XML, JSON and YAM. Again, the developers must convert
all the raw data to RDF format, the format of data exchanged among MAD components.

Figure 3a shows the workflows within Joe’s and Bob’s conversion processes. When pre-
sented a file of raw data, the first step for each of them was to select an RDFizer among all
translators that are capable of parsing and translating some of the raw data. During the case
study, Joe’s choice was RDF Translator [17] while Bob’s choice was OpenRefine [18]. The
former is a multi-format translation tool. Its service is triggered by either a URI or text input.
The tool can automatically detect several input formats (including RDFa, N3, XML and
JSON-LD) and produce output in one of many common formats, including RDF. The latter
is a general-purpose tool, for cleaning up messy data, as well as transformation of input data
in an even wider spectrum of formats.

Preprocessing of the input data is typically necessary in order to capture the semantics of
the input data and make the data conform to the conventions of the selected RDFizer. Joe
chose to do so, as shown in Fig. 3a. In contrast, after estimating the effort needed to make
input data conform to the complicated conventions of his RDFizer, Bob decided to skip this

Selecta Preprocess input to conform with RDFize

RDFizer conventions of the selected RDFizer processed data
Joe's workflow

Select a RDFize raw data Bob's workflow

RDFizer using default settings

Input: data in RDF format;
(a) Developers’ X2R conversion processes | Qutput: refactored RDF data;

1. extract bad nodes from input data;
2. while there is a bad node to be replaced, do {
Select a if X is not RDF, 3. extract semantic of the bad node;
RDFizer RDFize raw data 4. reusable URI for the node =
areusable URI found by USS;
5. if reusable URI for the node is NULL {

reusable URI for the node =
{ new URI minted with help from UMS;

Refactoring RDFized data }
/I replace the bad node by reusable URI
6. do node mapping;

(b) X2R converter conversion process return processed RDF file;

Figure 3: Conversion processes of application developers and X2R converter.

8 F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

step and to use the default settings. As a result, his RDF output data have correct syntax but
suffered semantics loss during the translation.

Both RDF Translator and OpenRefine are excellent RDFizers, but they do not support all
the formats of the open data retrieved by the MAD interface server. In fact, no existing
RDFizer can convert directly raw data in all the formats encountered by Joe and Bob to pro-
duce output of satisfactory quality. The developers chose to overcome this problem by first
converting data in a non-supported format into a supported format using other tools or cus-
tomized scripts. For example, Joe handcrafted a script and used it to inject URIs and needed
headers to transform raw data in JSON format to JSON-LD format, which is an acceptable
input format of RDF Translator. Bob used an online tool to convert YAM files to CSV files.
This kind of solution requires as many scripts or tools as there are input data formats not
supported by the selected RDFizer. An alternative is to use multiple RDFizers. One can easily
see that the expertise and efforts needed to process input data in multiple formats to conform
to multiple RDFizer-specific conventions can seriously discourage application developers
from transforming legacy data into LD in RDF format.

By far, the most tedious and time consuming tasks in the X2R conversion process for both
Joe and Bob are searching external ontologies for reusable URIs and creating new URIs that
can be reused by others. Joe and Bob relied on general-purpose search engines, which are not
effective for searching URIs. Semantics search engines or RDF endpoints are relatively effec-
tive, but require their users to learn SPARQL. Based on statistics published by W3C on LOD,
there are more than 31 billion RDF triples as of September 2011 and growing. For sufficient
coverage, the developers would have to issue queries to multiple semantics search engines and
aggregate the returned results. In addition, they must deal with issues such as result ranking
and disambiguating and query refinement. Consequently, the developers spent more than 50%
of the time on these tasks. An inexperienced developer like Bob is also challenged by the task
of injecting reusable URIs into raw data to meet the convention of his selected RDFizer.

4 X2R CONVERTER

The design choice based on observations from the case study was to make the X2R converter
work as shown in Fig. 3b. The converter uses multiple RDFizers to support formats of input
data. Rather than preprocessing input data in diverse formats according to conventions of
multiple RDFizers, the tool post-processes the output RDF files produced by RDFizers. An
obvious advantage of post-processing is that the tool needs to manipulate only RDF model
and format. The post-processing step is called refactoring, a term borrowed from software
engineering: Refactoring is a technique to improve the code and to ensure that the changes
are safe. Here, RDF refactoring is done to improve the quality, in terms of reusability, and to
ensure syntactic correctness of the output RDF data.

4.1 Extract bad nodes and semantics

As stated in Section 1, output data generated by RDFizers often contain bad nodes: They are
nodes with RDFizer-generated URIs and blank nodes. RDFizer-generated URIs are tempo-
rary and may even be unreachable. Such URIs violate the design principles recommended by
Tim Berners-Lee [5]: Use URIs people can easily look up and include links to URIs to enable
their discovery. Blank nodes are undesirable because their identification is assigned by RDF
parsers. Consequently, the identification of a blank node in an RDF data set changes after
each processing, and the presence of blank nodes in a data set prevents the data from being

F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 9

fully linked. Replacing blank nodes with URI referenced nodes is called bnode skolemization
[19]. There is yet no automatic skolemization method.

For these reasons, the first step in RDF refactoring is the extraction from the RDF data
output of the translator RDFizer-generated URIs and blank nodes with the intent to replace
them with reuable URIs. Reusable URISs are either already in use and hence can be found in
commonly used ontologies or are created by the developer following the recommended
design principles and placed in the VR internal vocabularies to be shared by other client
applications.

The extraction work is done by the component tool called extractor, as shown in Fig. 2. To
detect bad nodes, the extractor parses the RDF data produced by the RDFizer and extracts all
URI references and blank nodes. It then examines each extracted URI reference to determine
whether the URI can be looked up through the HTTP protocol. URIs that cannot be thus
looked up are treated as bad nodes along with all the blank nodes. Another function of the
extractor is sense-making, i.e. to extract semantics of bad nodes to facilitate the search for
sense-compatible and reusable URIs, ideally widely used ones, as their replacements.
Sense-making relies on two kinds of information about each bad node: (1) context information
for making sense of the node and (2) prior knowledge of term usage of commonly used URIs.

Context information is relatively easy to find for RDFizers that generate URISs using repre-
sentative terms. Consequently, it is relatively easy to make sense of thus-named bad nodes.
Some RDFizers generate URIs containing meaningless terms, as often is the case when
default settings are used. For a node with a meaningless URI and for each blank node, anal-
ysis of the triple in which the node is involved, and sometimes, the whole RDF data set, is
necessary to get context information for the node. The current version of the extractor requires
the developer’s help to complete this task.

Prior information on term usage means developers’ knowledge of public URI vocabularies.
In this respect, application developers are often at a disadvantage. During the case study
described in the previous section, MAD developers had difficulties in selecting representative
terms because of insufficient knowledge of widely used URIs and frequently used terms.

The current version of the extractor does sense-making semi-automatically. The developer
needs to make the final decision of the extraction. In some cases, the developer needs to do
human computation tasks to help the extraction process, especially for blank nodes. For nov-
ice developers, this is also a major challenge.

4.2 Search for and mint reusable URI

A design objective of the X2R converter is to automate as much as possible the searches for
reusable URIs and creation of new URIs: The converter uses the USS and UMS provided by
the VR to automate the tasks of searching and minting reusable URIs. Intervention from the
developer is limited to the selection of a reusable URI among all the URIs found by USS from
a specified list of ontologies as possible replacements of a bad node (i.e. line 4 in the pseu-
do-code in Fig. 3b) and creation of a new reusable URI when the developer rejects all the URIs
found from existing ontologies (i.e. line 5). The pseudo-code describes an interactive mode of
the converter: The developer and the tool collaboratively find/mint a replacement for one bad
node at a time. The converter can also work in batch mode, as described by the workflow
shown in the right half of Fig. 2. In batch mode, the converter requests USS to find candidate
replacement URIs for all bad nodes and presents all the candidates for each of the bad nodes
to the developer for selection (or give approval of the tool’s selection) after the search.

10 F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

USS provides a Graphical User Interface (GUI) and an API function to support both inter-
active and batch searches. Once USS receives a searched term via the GUI or the API function,
the service connects to each of the specified ontologies in turn, queries each of them for URIs
based on the search term and integrates URIs returned by the searches into a list of reusable
URIs as the result of the search. In this way, USS enables the user to treat all external ontol-
ogies as a single source and thus avoid the need to search them individually manually.

After USS returns a URI list, a URI from the list is then selected to represent the term for
which the search was performed. The X2R converter allows the developer to make the selec-
tion or if the developer so chooses, makes the selection automatically and presents the
selection for developer’s approval.

Following a commonly adopted principle [20], a new URI is created only when a search of
the specified list of ontologies fails to find a suitable URI for the search term. The X2R con-
verter relies on UMS to assist the developer to create and manage new URIs. UMS is built on
Neologism, a vocabulary publishing platform for the Web of Data [21]. Every new URI cre-
ated by UMS is stored in the VR Internal Vocabularies to be shared by client applications of
the VR. UMS allows both manual and automatic addition of new URIs. Specifically, the GUI
of UMS lets the developer to manually classify and store new URIs offline. UMS also pro-
vides API functions using which a client application can request automatic addition of one or
more URIs into VR Internal Vocabularies.

4.3 URI-node mapping

The last step in RDF refactoring is node-URI mapping. In this step, the reusable URI found
by USS or minted by the developer and UMS for each bad node in the RDF data returned by
the RDFizer is used to replace the translator-generated URI of the node or to name the blank
node. Mapper is the X2R component responsible for this task as shown by the workflow
diagram in Fig. 2 and line 6 in the pseudo-code in Fig. 3. The mapper uses as input a node-
URI mapping file that contains an association of (bad node, replacement URI) of each bad
node extracted by the extractor and the replacement URI. The tool automatically does the
replacement and skolemization.

The process of node-URI mapping and the generation of the final RDF file is semi-auto-
matic. The developer selects a reusable URI for each extracted node, and the tool generates
the RDF file based on the developer’s selections.

5 SUMMARY AND FUTURE WORK
This article first presented an overview of a middleware-level system of resources, services
and tools called VR [2]. A VR facilitates the access and use of data by its client applications
from independent sources and provides the applications with interface services to support
their own models and views of the data. It is a key element of a framework for building open
information systems for disaster preparedness and response from independent data sources
for independent applications.

The VR is also a development environment for incremental transformation of data in leg-
acy formats into LD in RDF format. The targeted users of the system of tools called the X2R
converter are developers of LD-based applications. Rather than having to wait for owners of
data sources to provide them with LD, the X2R converter enables application developers to
be producers of LD on demand as needed by their applications.

When presented with a data set in a legacy format as input, the X2R converter first uses an
existing translator (e.g. one of the RDFizers supported by the MIT Simile Project) that

F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015) 11

supports the input format to translate the data into an RDF format without first pre-processing
the data to meet the conventions of the translator. The RDF data thus produced by the trans-
lator often contain bad nodes, i.e. blank nodes and nodes identified by unreachable URIs. The
presence of bad nodes prevents the data to be fully linked and hinders the discovery of the
data. In a post-processing step, the X2R converter works collaboratively with the developer
to eliminate these nodes, naming them with reusable URIs found from existing ontologies, or
created to be reused in cases when no suitable URIs can be found.

The previous sections presented rationales and motivations behind major design decisions
of the X2R converter. These decisions were made after observing the processes carried out by
two MAD developers to convert data on emergency preparedness facilities retrieved from
open data sources of multiple cities. Even for a relative simple application like MAD, devel-
opers have to deal with many input data formats, which no single RDFizer can translate. The
efforts in pre-processing input data to conform to conventions of individual translators grow
with the product of the number of input formats and the number of translators. The fact moti-
vated the post-processing step of the RDF data produced by the translator, rather than
pre-processing the input data of the translator. The observation that searching for reusable
URIs consumes a significant part of the developer’s time during their conversion processes
motivated the automation of the search of multiple ontologies for reusable URIs and thus,
enabled the search of all the specified external ontologies as if they were a single source.

A version of the X2R converter is functional. Its code is being restructured to improve its
testability and maintainability and will be released under GNU General Public License
license when this phase of its development completes. The tool will be used on an experimen-
tal basis by developers of MAD and other LD-based applications in a more extensive case
study in the future to determine the extent the tool meets its design goal of significantly
reducing the levels of expertise and effort required to convert diverse legacy data into linked
RDF data.

ACKNOWLEDGEMENTS
The authors would like to thank S. H. Tsai, Y. A. Lai, J. C. T. Hsiao, E. T.-H. Chu, K. J. Lin
and J. K. Zao for their contributions to the design and implementation of the VR presented
here. This work was supported by the Academia Sinica thematic project OpenISDM.

REFERENCES

[1] Murphy, R.R., A National Initiative in Emergency Informatics. Computing Community
Consortium, 2010.

[2] Ou,Y.Z., Tsai, S.H., Lai, Y.A., Su, J., Yu, C.W., Hsiao, C.T., Chu, E.T.H., Lin, K.J., Ho,
JM. & Liu, J.W.S., A linked-data based virtual repository for disaster management tools
and applications. WIT Transactions on the Built Environment, 133, pp. 161-173, 2013.
doi: http://dx.doi.org/10.2495/dman130171

[3] Zao, J.K., Nguyen, K.T., Wang, Y.H., Lin, A.C.H., Wang B.W. & Liu, J.W.S., Trustwor-
thy emergency information brokerage service (TIBS). WIT Transactions on the Built
Environment, 133, pp. 216-227, 2013. doi: http://dx.doi.org/10.2495/dman130221

[4] Bizer, C., Heath, T. & Berners-Lee, T., Linked data — the story so far. International
Journal on Semantic Web and Information Systems, 5(3), pp. 1-22, 2009. doi: http://
dx.doi.org/10.4018/jswis.2009081901

[5] Berners-Lee, T., Linked Data, available at http://www.w3.org/Designlssues/Linked-
Data.html. doi: http://dx.doi.org/10.4018/978-1-60960-593-3.ch008

12

(6]
(71

(8]

(9]

(10]
(11]
(12]
(13]

[14]
(15]
[16]
(17]
(18]
(19]
(20]

(21]

F.-P. Yang et al., Int. J. of Safety and Security Eng., Vol. 5, No. 1 (2015)

Bauer, F. & Kaltenbock, M., Linked Open Data: the Essentials, available at http:/www.
semantic-web.at/LOD-TheEssentials.pdf

Borges, M.R.S., de Faria Cordeiro, K., Campos, M.L.M. & go Marino, T., Linked open
data and the design of information infrastructure for emergency management systems.
Proceedings of International Conference on Information Systems for Crisis Response
and Management, 2011.

Silva, T., Wuwongse, V. & Sharma, H.N., Disaster mitigation and preparedness using
linked open data. Journal of Ambient Intelligence and Humanized Computing, 4(4), pp.
591-602, 2013. doi: http://dx.doi.org/10.1007/s12652-012-0128-9

Schulz, A., Doweling, S. & Probst, F., Integrating process modeling and linked open
data to improve decision making in disaster management. Proceedings of the CSCW
Workshop on Collaboration and Crisis Informatics, Vol. 9, pp. 16-22, 2012.

LOD2, Project, available at http://lod2.eu/WikiArticle/Project.html

SIMILE, Project, available at http://simile.mit.edu/

Converter to RDF, available at http://www.w3.org/wiki/ConverterToRdf

Stolz, A., Rodriguez-Castro, B. & Hepp, M., RDF translator: a RESTful multi-format
data converter for the semantic web. Technical Report TR-2013-1, E-Business and Web
Science Research Group, 2013.

Generic XML to RDF converter, an open source project hosted in SourceForge, available
at http://sourceforge.net/projects/xmltordf/

RDFizer Concept, available at http://wiki.opensemanticframework.org/index.php/RD-
Fizer_Concept

Lee, C.R., Ou, Y.Z., Yu, C.W., Tsai, S.H., Chern, FR. & Liu, J.W.S., Intelligent active
storage service. Presented in Work-in-Progress Session of International Workshop on
Resilient ICT for Management of Mega Disasters (RITMAN 2012), December 2012.
RDF Translator, an online service, available at http://rdf-translator.appspot.com/
OpenRefine, an open source translation tool, available at http://openrefine.org/
BnodeSkolemization, available at http://www.w3.org/wiki/BnodeSkolemization
Heath, T. & Bizer, C., Linked Data Evolving the Web into a Global Data Space, Morgan
& Claypool, 2011. doi: http://dx.doi.org/10.2200/s00334ed1v01y201102wbe001
Neologism, a linked-data vocabulary publishing platform, available at http://neologism.
deri.ie/

