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Abstract
This case study is an application of the integrated climatic modelling framework (GEO-CWB) in the 
metropolitan area of Torino (north Italy) for the projected period of 2080. The model was developed 
and validated at Trinity College of Dublin and uses Geographical Information System (GIS) as the cli-
mate change downscaling environment. The main goal of this research is to investigate the impacts of 
climate and land-use changes on the water resources vulnerability using GEO-CWB model with a wide 
range of input parameters and grids, including seasonal climate variables and changes, land use/land 
cover, seasonal parameters and future changes, seasonal groundwater depth, soil properties, topography 
and slope. An intense data collection activity was carried out for the year 2015, using all the possible 
sources available; additionally, potential evapotranspiration, as input data, was calculated using the 
method of Blaney–Criddle and modelled in GIS platform. In order to parametrize the hydrological 
response of the metropolitan area of Torino to the changes in climate and land use, GEO-CWB has a 
number of simulation stages (WBt) as follows: WBt stage (1) – dynamical water balance (DWB), WBt 
stage (2) – surface runoff iteration and WBt stage (3) – climate and land-use vulnerability parameters. 
As a result, GEO-CWB gives a wide range of seasonally and yearly gridded output layers as surface 
runoff, subsurface water, interception, evapotranspiration, soil evaporation, transpiration including total 
uncertainties or error in the water balance. GEO-CWB outputs could allow the scientific community, 
modelers, planners and decision makers to study the impact of climate and land-use changes on regional 
water resources vulnerability.
Keywords: climate change, GIS, north Italy, water balance, water vulnerability.

1  Introduction
Most assessments of global water resources have focused on surface water [1], but unsustain-
able depletion of groundwater has recently been documented on both regional [2] and global 
scales [3]. It remains unclear how the rate of global groundwater depletion compares to the 
rate of natural renewal and the supply needed to support ecosystems. It seems that the size 
of the global groundwater footprint is currently about 3.5 times the actual area of aquifers; 
that said, 80% of aquifers have a groundwater footprint that is less than their area, meaning 
that the net global value is driven by few overexploited aquifers. Groundwater occupies a 
considerable portion of the world’s freshwater resources and is related to climate change 
via surface water such as rivers, lakes and marshes and direct interactions, being indirectly 
affected through recharge [4]. Modelling and assessing the impacts of climate change effects 
on water resources is a multistage process, which can be processed through several methods 
and techniques such as physically based models, statistically based models and machine 
learning methods [5, 6, 7, 8]. Dynamical downscaling used by S.S. Gharbia for the GEO-
CWB model relies on the use of a regional climate model (RCM), similar to a GCM in its 
principles but with high resolution. RCMs take the large-scale atmospheric information sup-
plied by GCM output at the lateral boundaries and incorporate more complex topography, the 
land–sea contrast, surface heterogeneities and detailed descriptions of physical processes in 
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order to generate realistic climate information at a spatial resolution of 50 km. Geographical 
Information System (GIS) is well suited for urban hydrology because of the strong spatial 
variability and fast dynamics of urban lands. Urban databases, with detailed and up-to-date 
information, are a precious source of information for hydrological statistic models [9], and 
this approach was followed for this case study in a city located in a sensitive area to climate 
change impact. In Italy, the water demands and threats to both surface water and groundwa-
ter resources have grown dramatically in recent years, fueled by the competing interests of 
urbanization, industrial development and tourism and compounding the threats now posed 
by climate change.

2  STUDY AREA
The study area considered in this research includes the metropolitan area of Turin (239 m 
a.s.l.), a city in the north-west of Italy (45°03’N, 7°40’E) in the Region of Piemonte. On the 
territory of the province of Turin weighs more than half of the population of the whole region 
and a high concentration of productive settlements; there are about 60,000 total wells, of 
which 15,000 for non-domestic uses and 3,000 derivations, 2,000 discharges and 15 conces-
sions of mineral and thermal waters. The observations available and developed by Regional 
Agency for Environmental Protection of Piemonte (ARPAP, 2018) have shown an increase 
in temperatures of 1.5°C in the region over the last 60 years, in practice twice as much as 
the global average. Rainfall, however, did not change significantly although there is a weak 
statistical signal of an increase in ‘extreme’ events in recent years; in other words: longer 
drought periods alternating with more intense rain, all these aspects affect the regional water 
balance (WB) and the annual evapotranspiration (ET) processes. For this research, the moni-
toring area has been extended to 1,782 km2 in order to have as much information as possible; 
Fig. 1 shows the study area localization and all weather stations used for this study and man-
aged by ARPA.

Figure 1: �L ocalization of ARPA weather stations (Source: O. Salimbene, 2020).
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3 INPUT DATA & WBT MODEL
GEO-CWB requires a wide range of input raster information; Table 1 shows all sources of 
data used in this research. In order to obtain geological information, several research insti-
tutes have been consulted: the Institute for Plants and the Environment (IPLA), the Hydrol-
ogy and Natural Hazards Department of Forecasting Systems of ARPAP and the regional 
data archive of the Piemonte region (Italy). 

The depth of a water table is influenced by seasonal fluctuations in fluvial weather, water-
course regime and intensive agricultural activity (pumping from wells and canal irrigation). 
A grid of depth of water table was obtained as the difference between the topographic grid 
and the grid of the piezometric level. This matrix was then displayed as a raster map to rep-
resent the groundwater level of the study area in accordance with winter and summer fluctua-
tions. Furthermore, to best represent the hydrogeological conditions, for each type of soil, the 
porosity values were associated, as well from the literature. 

Concerning meteorological and climatic data, 50 meteorological stations managed by 
ARPAP were considered. The 2015 results were found to be in the standard in terms of rainfall, 
but their peculiarities were an alternation of very rainy months with other ones characterized 
by warm weather and absence of precipitation. A moderate drought occurred between July 
and August, while, starting from November, there was a very prolonged dry period, ending at 
the beginning of 2016. The precipitations were scarce in January and starting from 29 October 
2015; for the subsequent 97 consecutive days, never was observed a day with an average rain-
fall on the region exceeding 5 mm. This extended period was one of the four longer registered 
in Piedmont in the last 60 years and comparable only to the April/May 1997 and February 
1981. Therefore, this rare and particular situation has affected the water reserves available on 
the territory. The pluviometric anomaly has been going on for three years in the study area 
and was also recorded during the succeeding years 2017–2018. All the data described have 
been analyzed with GIS software; raster maps have been developed for each weather–climate 
parameter, and the same geostatistical analysis was carried out for the classification of the soil, 
slope and cover land. Regarding weather and climatic information, all the data have been pro-
cessed to obtain geospatial maps as input data in GEO-CWB. For each parameter (wind, tem-
perature, solar radiation, humidity and rainfall), 12 raster maps were produced, one for each 
month of the year 2015. It was necessary to apply deterministic interpolation techniques based 
on either the extent of similarity Inverse Distance Weighted (IDW) interpolation to obtain total 

Table 1:  Sources of data used in this research (O. Salimbene, 2020).

Data Source

Catchment and sub-catchment AIPO – Interregional Agency for the Po River (Italy)

Hydrometric data ARPAP – Regional Agency for Environmental Protection 
of Piemonte, To (Italy)

Meteorological data ARPAP – Regional Agency for Environmental Protection 
of Piemonte, To (Italy)

Land-use and land-cover land CORINE – Copernicus Land Monitoring Service (EU)

Soil data Hydrology and Natural Hazards, ARPAP – To (Italy)

Topography CORINE – Copernicus Land Monitoring Service (EU)

Ground water level Regional Authority of Piemonte, To (Italy)
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coverage across the study area. Additionally, GEO-CWB requires the spatial estimation of 
potential evapotranspiration (PET), and therefore, the Blaney–Criddle method for estimating 
was applied using eqn (1)

				    PET= +kp TA( . . )0 46 8 13                                          (1)

in which PET is ET in mm from a reference crop for the period corresponding to p, T
A
 is 

the mean temperature in °C for the same period, p represents the percentage of total daytime 
hours for the period used (whether daily, weekly, monthly, etc.) out of total daytime hours 
of the year, i.e., 365 × 12, and k is a monthly consumptive use coefficient [10], depending 
on vegetation type, location and season. Eqn (1) is most well known in the USA, but it has 
been used extensively elsewhere; Food and Agriculture Organization (FAO) of the United 
Nation temperature methodology recommended by Pruitt and Doorenbos, 1977, is based on 
the Blaney–Criddle method.

The GEO-CWB-modelled WB for the projected period of 2080 uses the ArcView GIS 
platform through a series of customized scripts. Therefore, the source code is a mix of GIS 
operations, implemented through the use of the python scripting language. The tool is imple-
mented within an ad hoc ArcView project in which all the scripts, datasets and output are 
stored according to the predefined paths. The model simulates three different systems which 
are climate, land use and the hydrological system; the relationships between the three systems 
in the model need to be multidimensional as a flexible two-way simulation iterations process. 
Statistically based models and machine learning techniques in the design of the GEO-CWB 
have been used in the fine-scale resolution downscaling for climate simulations [11]. Statisti-
cally based models have been used widely in addressing complicated hydrological problems 
[12, 13, 14]. Figure 2 shows the flowchart of GEO-CWB, the input data required, the three 
work stages and all output projections of simulation.

During the processing stages, the physically based algorithm designed for GEO-CWB (Pix-
elated Cubical Balance Approach) works in the following direction: it suggests dividing the 
model extent into small cubes (the higher the number of cubes, the higher the accuracy), with 
each small cube having its own simulation process, which happens within the same time scale 
and allows the linkage between the physically and statistically based models. GEO-CWB 
simulates water balance (WBt) for each single cell as is summarized in the following equation:

			   P ET S R Icell CELL CELL CELL CELL= + + + 	                            (2)

Figure 2: F lowchart of GEO-CWB (Source: S.S. Gharbia, adapted by O. Salimbene, 2020).
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where P
cell

 represents the precipitation component, R
cell

 is the subsurface water component, 
S

cell
 is the surface water component, Et

cell
 is the evapotranspiration and I

cell
 is the interception 

component. Each single pixel in the domain in each time step runs through the GEO-CWB-
designed algorithm, using the input rasterized datasets as following: land use (raster maps), 
precipitation (raster maps), PET (raster maps), wind speed (raster maps), temperature (raster 
maps), groundwater level (raster maps), soil texture (raster maps), slope, DEM raster, topog-
raphy, average porosity (as a single value) or average porosity (raster map).

4 A PPLICATION AND RESULTS
The aim of the study is to apply GEO-CWB to calculate all the components of the WB 
projected to 2080. To simplify all output projections, the results have been organized into 
two seasonal semesters as following: summer and winter WB for the projected period 2080. 
GEO-CWB processed the results in three stages divided into: WBT stage (1) – dynamical 
water balance (DWB); WBT stage (2) –surface runoff iteration (SRI); and WBT stage (3) – 
climate and land-use vulnerability parameters (CLUVp).

4.1 WB t simulation stage (1) – DWB

At this stage, the individual dynamical pixel WB is calculated by summing up the independ-
ent pixel’s subdivision-simulated WB. Depending on the land-use type assigned to each pixel, 
the tool divides the upper pixel’s surface into vegetated area, bare soil area, open waterbod-
ies and impervious area. This section shows the simulated annual, summer and winter WB 
variables and components for the study area. The annual average and the seasonal surface 
runoff maps simulated by GEO-CWB are shown in Fig. 3(a) that represents the mean winter 
and summer surface runoff for the combinations and interactions of land-use and soil classes. 
The largest surface runoff occurs on the soil group with wetlands and in urbanized areas 
(the yellow area in Fig. 3(a) is the most urbanized area and represents the extension of Turin 
city) with largest annual value of 76.68 mm, while the lowest values are for the soil group 
with agricultural areas. The traceability of the soil-type boundaries and the higher standard 
deviation values of the runoff for different soil groups show that the surface runoff is more 
influenced by soil type than by land use. 

Also, it is noticeable that both winter and summer runoff profiles are different, but in this 
simulation, the data of the year 2015 are used, a year mainly dry during the autumn–winter 
season and with great rainfall during spring–summer. This explains the difference between 
the values of the winter and summer runoff projections and highlights how extreme events 
due to climate change abnormally affect the seasonal runoff. Each single pixel in the domain 
in each time step runs through the GEO-CWB-designed algorithm, using the input rasterized 
datasets as following: land use (raster maps), precipitation (raster maps), PET (raster maps), 
wind speed (raster maps), temperature (raster maps), groundwater level (raster maps), soil 
texture (raster maps), slope, DEM raster, topography, DEM raster, average porosity (as a 
single value) or average porosity (raster map).

4.2 WB t simulation stage (2) – SRI

The main aim of this stage is to recalculate the subsurface water component and surface 
runoff maps by iterating the groundwater depth variable. The inputs at this stage will be 
the output from the first-stage DWB and the outputs will be the same variables, but after the 
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iteration, all the outputs will have the number 2 in the file name to indicate that this file is 
the final map for this parameter, which has resulted from stage (2); specifically, the outputs 
are spatially distributed groundwater recharge (GWR), subsurface flow (SSF), rainfall inter-
ception (RI), ET, soil evaporation (SE) and transpiration (TR), and all maximum values for 
winter and summer are summarized in Table 2.

Based on that and according to data availability, at this stage, GEO-CWB calculates the 
subsurface water component which includes SSF and GWR; however, the model has the 
framework setup to separate the two main components, SSF and GWR, once the spatially 
distributed data for the recharge caps are available. GWR is concerned with the percolation 
of water through the soil, subsoil and down through the unsaturated zone to the water table 
[4, 15]. GEO-CWB provides the framework of a cell-by-cell multidimensional dynamical 
GWR calculation for the catchment scale by applying the WB calculation for each cell’s 
subfraction, which provides a high-accuracy simulation compared with the currently used 
approaches, when the spatially distributed recharge data are available. GWR in the study area 
(Fig. 3(b)) and anywhere else is promoted by low ET and low surface runoff; e.g., typically 
for a flat topography and permeable soils, the maximum of average annual recharge projected 
value is 126.51 mm as shown in Table 2. In the north-west of Italy, the water demands and 
threats to both surface water and groundwater resources have grown dramatically in recent 
years, fueled by the competing interests of urbanization, industrial development and tourism 
and compounding the threats now posed by climate change. As mentioned in Section 2, the 
study area weighs more than half of the population of the whole region and a high concentra-
tion of productive settlements; there are about 60,000 total wells, of which 15,000 for non-
domestic uses and 3,000 derivations, 2,000 discharges and 15 concessions of mineral and 
thermal waters; furthermore, the disparity between demand and supply is likely to increase 
with climate change. SSF components depend strongly on the percentage of soil waterproof-
ing; Fig. 3(c) gives the mean annual SSF subsurface water component values for different 
combinations and interactions of land use and soil classes. The largest SSF component is 
observed for the area with the relatively gentler slopes with a maximum annual average value 
of 72.68 mm. RI is the fraction of precipitation which falls into vegetation but never reaches 
the ground, instead of evaporating from the wet canopy. The model calculates the RI as a 
direct fraction of precipitation, separated from the ET, which means the total water lost from 
the precipitation in the catchment can be calculated by the sum of both ET and interception. 

Table 2: �WB t simulation stage (2) – SRI water balance components, max values in [mm] for the 
projected period 2080, (Source: O. Salimbene, 2020).

WBt stage (2) – SRI
 ⇒ 2080 

Annual
[mm]

Winter
[mm]

Summer
[mm]

Water balance components Fig. 3 Max value

GWR (b) 126.51 57.59 97.56

SSF (c) 72.68 21.86 50.82

RI (d) 65.68 17.01 48.67

ET (e) Five subclasses

SE (f) 31.11 14.83 16.03

TR (g) 36.05 17.57 18.48
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The annual and seasonal averages spatially distributed maps for the projected period 2080 
are shown in Fig. 3(d). The most vegetated areas to the north-west have greater interception 
values (65.68 mm), as well as the areas in the south-east of Po River which is covered by the 
city park of Valentino. GEO-CWB calculates the ET and RI components (open water fraction 
and vegetated fraction) individually which means that the total water loses from precipitation 
in the catchment is the summation of the two components. Greater ET takes place during 
the summer season; this is obviously due to the unequal temporal distribution of the tem-
perature during the winter season but also partly to the fact that the vegetation is less active 
in the winter season. The annual and seasonal averages spatially distributed ET maps for the 
projected period 2080 are shown in Fig. 3(e). Four classes of ET values were identified with 
a minimum value of 2.63 mm and a maximum value of 37.07 mm in vegetated area (north-
west and Po Valley), where also soil evaporation simulation returns maximum values. Soil 
evaporation is the evaporation from open soil area as a fraction of each simulated pixel and 
forms part of the total ET. The annual and seasonal averages spatially distributed SE maps are 
shown in Fig. 3(f), and the maximum annual average value simulated for 2080 period is 31.11 
mm and concerns the non-urbanized areas. Regarding transpiration, it is the vaporization of 
water, which is contained in plant tissues and that mainly occurs through the stem and leaf 
stomata. TR, like direct evaporation, depends on factors such as radiation, air temperature, air 
humidity and wind speed. In addition, the soil water content and the ability of the soil to con-
duct water upwards play a role. The length of the plant’s root system also plays an important 
role in determining the transpiration rate, in addition to the vegetation type. The annual and 
seasonal spatially distributed average TR maps for the period 2080 are shown in Fig. 3(g); 
the higher values correspond precisely to the areas where there is an intense vegetated area 
(north-west) with annual maximum value of 36.06 mm and in the area of the city park of Val-
entino along the Po River. GEO-CWB calculates also the error/change in storage fraction in 
each simulated cell WB, which provides an error/change in storage in WB for each simulated 
time step in each simulated climatic scenario. The small error/change in storage in the WB 
comes from the assumption that waterbodies can always evaporate at PET rate. Hence, this 
error should be subtracted from the runoff as open waterbodies are supplied by runoff from 
surrounding areas and does not leave the basin as river flow but are evaporated instead. 

4.3 WB t simulation stage (3) – CLUVp

The WBt model produces some parameters from which an assessment can be made of the 
vulnerability to climate and land-use changes as follows: Accumulated Surface Runoff 
Volume (ASRV), the Safe Yield Groundwater Abstraction (SYGA) and the Water Deficit for 
Ideal Crop (WDIC). ASRV volume in the rainy season is an indication of how much runoff 
water could be harvested every year during the rainy season. The calculated accumulated 
runoff volume, as a result of the different climate change conditions and land-use scenarios, 
has significant evidence of high values in the cemented areas (>100 × 106 [m3]).

Regarding SYGA rates calculated by GEO-CWB, they could be used as an indication and 
a rough estimate of how much groundwater can be abstracted in a sustainable way with-
out depleting the groundwater resources; the maximum annual value projected for the 2080 
period is 0.83 m3/day/h calculated as a result of the different climate change conditions and 
land-use scenarios. The areas most sensitive to the impact of climate change are where there 
is already an overexploitation of water resources; on the whole, GEO-CWB simulates the 
absence of water deficit for ideal crop for the green areas close to the mountain (north-west) 
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(a)  WBt stage (1) - DWB

(b)  WBt Simulation stage (2) - SRI/ GWR 

(c)  WBt Simulation stage (2) - SRI/ SSF

(d)  WBt Simulation stage (2) - SRI-RI

Figure 3:  (Continued)
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Figure 3: �WB t simulation stage (1) & stage (2), output simulations for the projected pe-
riod 2080. (a) WBt stage (1) – DWB, (b) WBt simulation stage (2) – SRI/GWR, 
(c) WBt simulation stage (2) – SRI/ SSF, (d) WBt simulation stage (2) – SRI-RI, 
(e) WBt simulation stage (2) – SRI-ET, (f) WBt simulation stage (2) – SRI-SE 
and (g) WBt simulation stage (2) – SRI-TR (Source: O. Salimbene, 2020).

(f)  WBt Simulation stage (2) - SRI-SE

(g)  WBt Simulation stage (2) - SRI-TR

(e)  WBt Simulation stage (2) - SRI-ET

and a little possible deficits [1.9 mm] in the most cementated area with a maximum in the 
area covered by airport and industrial area. WDIC growth can be estimated as the difference 
between the crop water requirement and the real ET. 

At the end of the stages and simulations, the model returns the statistical parameters related 
to the WB calculated according to the equation of WB:

			              WB P R E R mmO T E= − − −   	                            (3)
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Table 3: �WB t simulation stage (3) – CLUVp water balance components, maximum values 
in for the projected period 2080, (Source: O. Salimbene et al., 2020).

WBt stage (3) – CLUVp
 ⇒ 2080 

Annual Winter Summer

Max value

ASRV [N × 106 m3] >100 urban areas and airport areas

SYGA [m3/day/h] 0.86 0.2 0.66

WDIC [mm] 1.9 0.9 1.03

Table 4: �W ater balance for 2080 projected period, Ro = runoff, E
T
 = evapotranspiration,  

Se = soil evaporation, In = interception, Tr = transpiration, Re = subsurface water com-
ponent, P = precipitation; SDT = standard deviation, (Source: O. Salimbene, 2020).

Ro [mm] E
T
 [mm] Se [mm] In [mm] Tr [mm] Re [mm] P [mm]

9.24 ± 5.1 SDT 18.52 ± 
7.64 SDT

10.35 ± 
7.11 SDT

16.62 ± 
11.6 SDT

7.8 ±  
4.2 SDT

63.25 ± 
25.57 STD

73.78

                         Wb = P-Ro-Et-Re = −17%                 WBe = WB/P = −23%

in which RO is the runoff , ET  is the evapotranspiration and RE  is the subsurface compo-
nent. Table 4 summarizes all values and the final results of WB projected for 2080 period 
(WB=− . %17 23 ) and the annual error of WB (WBe=− %23 ).

The results show that the urbanized and cemented areas greatly influence the ET capac-
ity of the soil; indeed, these areas also present the lowest ET and interception values. The 
maximum transpiration values fall in all the most vegetated areas (in the north-west of the 
study area) and close to the river Po whose banks are largely covered by a rich vegetation and 
the central core of the Turin city is flanked by a large urban park. The most vulnerable areas 
concerning the extraction of groundwater are just those next to the urban nucleus, probably 
already overexploited in previous years.

5 CONCLU SION
The Regional Authority of Piemonte has dedicated efforts and resources to expand the status 
of the knowledge on the situation of the water on its territory, with the aim of safeguarding its 
availability and quality. Over time, it has developed a management model-integrated resource, 
which involves and enhances the most significant experiences at local level. The GEO-CWB 
model could help and support water sector modelers, planners and decision makers to simulate 
and predict future spatially distributed dynamic WBs using a GIS environment at local scale 
[11]. Through the model, it is possible to test any assumed or planned future scenarios and 
to quantify their impacts and intrinsic uncertainties related to different components making 
up the catchment WB. GEO-CWB operates on a GIS platform, and thus, its results could 
be used as inputs for other GIS-related applications, such as drought and flood risk analysis 
and aquatic ecosystem applications in order to target areas for enforcement of environmental 
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regulations [16,17]. The research presents an integrated case study assessment of the impacts 
of climate and land-use changes using the model with a wide range of input parameters and 
grids, including seasonal climate variables and changes, land-use/land-cover and its seasonal 
parameters and future changes, seasonal groundwater depth, soil properties, topography and 
slope. Additionally, GEO-CWB presents three main advantages: (i) the ability to work with 
multidimensional files and phenomena, (ii) the ability to reuse the output from the model as 
inputs for other impact models because of the flexibility with the file formats and (iii) provid-
ing a simple user-friendly interface for such a complicated tool [18].
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