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ABSTRACT
Synthetic and biological fl exoelectric membranes are actuators that bend under the action of external 
electric fi elds, a phenomenon of interest to the development of emerging adaptive materials as well as biological 
mechano-transduction. This paper presents an actuator model of fl exoelectric membranes based on a 
Helmholtz free energy that incorporates tension, bending, and torsion as well as polarization and dielectric 
energies. The electro-elastic components of the membrane tension, moment tensor and tensor are derived 
and used to construct an actuator model that includes dissipation due to viscous fl uids in contact with the 
membrane. The actuator model is expressed by a balance between the externally imposed electric forces, the viscous 
dissipation of the contacting fl uid phases, and the elastic storage of the membrane. The nonlinearity is shown 
to originate in the viscous dissipation. The model is analyzed for externally imposed oscillating electric fi elds. 
The Deborah number De given by the ratio of driving frequency and the resonant frequency is shown to control 
the viscoelastic response. The key fi ndings are: (i) for De � 1 the response is purely elastic and the electric 
energy is stored in the elastic deformations of the membrane; (ii) at larger De, the response is anharmonic and 
viscoelastic; (iii) due to the nature of the viscous nonlinearity only even harmonics are generated in the response; 
and (iv) secondary resonant frequencies appear at lower driving frequencies. These fi nding contribute towards 
the emerging understanding of fl exoeletricity in biological membranes, pioneered by Petrov and co-workers 
(Petrov, A.G., The Lyotropic State of Matter, Gordon and Breach Science Publishers: Amsterdam, 1999).
Keywords: actuator model, electro-elastic response, fl exoelectric membranes, frequency response.

INTRODUCTION1 
Current interest in synthetic and biological functional materials with sensor and actuator abilities 
is driven by the need for advanced performance in aerospace, transportation, drug delivery, and 
medical devices [1]. The sought after materials have the ability to change shape under external fi elds 
(actuator mode) and generate a detectable signal due to mechanical deformation (sensor mode). 
An additional motivation is the understanding of many biological processes that involves mechano-
transduction mechanisms, which also involve couplings between mechanical–chemical-electrical 
fi elds. Materials displaying sensor/actuator responses are known as adaptive materials. Examples 
include piezoelectrics, shape memory alloys, electro-magnetorheological fl uids, liquid crystals, 
and polymer gels. Synthetic and biological membranes that display polarization under bending 
deformations are another but less explored class of adaptive materials known as fl exoelectric [2]. 
This paper focuses only on fl exoelectric membranes.

Flexoelectricity is the property of synthetic and biological fl at membranes to bend under the impo-
sition of an external electric fi eld, and the capacity to become polarized under bending [2]. The former 
is known as the actuator mode and the latter the sensor mode [2]. The basic science and applications of 
membrane fl exoelectricity was developed by Petrov and co-workers and is described in detail in [2–4]. 
Figure 1 shows the sensor (full line) and actuator (dashed line) modes of fl exoelectric membranes.

The fl exoelectric actuator mode is given by a linear relation between input (electric fi eld E) and 
out-put (average curvature H):
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where H = Is:b/2, s= −∇b k is the symmetric curvature tensor [5, 6], k is the membrane unit normal, 

s s( ) ( )∇ • = ⋅∇ •I is the surface gradient operator [5, 6], s = −I I kk is the surface unit tensor, � is 
the fl exoelectric constant [2], kc is the membrane bending rigidity [2], and E is the magnitude of 
the imposed electric fi eld. Typical values of � for dipolar lipid membranes are 10–20 C [2]. The 
fl exoelectric sensor mode of synthetic and biological membranes is given by a linear relation between 
input (average curvature H) and output (electric polarization P):

 ( ) ( )= =� � 2HsP k I : b k
 

(2)

where P is aligned along the membrane unit normal k. Membrane bending distortions hence create 
an electric polarization. Figure 2 shows the schematics of the sensor and actuator modes that explain 
the physical meaning of eqns. (1) and (2).

The relationship between displacement D, polarization P and electric fi eld E appearing in Fig. 1 is:

  = 4  + π ε ⋅D P E  (3)

The relationship between the moment tensor M and the curvature tensor b is defi ned in eqn. (6). The 
main difference between fl exoelectric and piezoelectric effects is that in the latter, polarization is 
coupled to the membrane strain, while in the former it is coupled to curvature. The implications of 
this fundamental difference between piezo- and fl exoelectric membranes in shape changing abilities 
under externally imposed electric fi elds were discussed in [7, 8].

As demonstrated by Petrov [2], fl exoelectricity is important in a number of biophysical processes 
including protein-protein interaction in curved membranes, ion transport, membrane fl uctuations, 
mechano-transduction, biomolecular electronics, and functioning of outer hair cells in hearing [2]. 
In many biological processes, the membrane is in contact with viscous and/or viscoelastic phases 
and the fi elds are dynamic. Laboratory characterization of fl exoelectricity also is carried-out 
using oscillatory electric fi elds [2]. Hence, a better understanding of the frequency response of fl exo-
electric membranes to oscillating electric fi elds is necessary for a better understanding of biological 

Figure 1: Schematic of sensor and actuator modes in fl exoelectric membranes.
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Figure 2: Schematics of sensor and actuator modes of fl exoelectric membranes.
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processes as well as for the characterization of membrane electro-mechanics. Previous analysis and 
experiments show that when the membrane is immersed in viscous media, the response to oscillating 
electric fi elds becomes nonlinear as suffi ciently high driving frequencies [2]. This observation has a 
number of potential implications, including anharmonic frequency response, multiple sub-harmonic 
resonances, and combination frequencies when two fi elds of different frequencies are applied [9]. 
Future experimental work in conjunction with theory and simulation is necessary to establish the 
impact of these effects on biological processes.

This paper contributes to the on-going efforts in membrane mechano-transduction and electro-
mechanics by developing a simple model that predicts the frequency response of a fl exoelectric 
membrane to oscillating electric fi elds in the presence of contacting viscous fl uids. The response of 
biological cells to oscillating electric fi elds is of on-going interest because it affects cell function [10, 11]. 
This paper builds on a previously presented static model for fl exoelectric membranes under constant 
fi elds and immersed in inviscid fl uids [8, 9].

The objectives of this paper are:

to derive a transient membrane fl exoelectric model in the presence of viscous dissipation and 1. 
fl uctuating electric fi elds;
to identify the main features of the frequency response and correlate them to the electro-2. 
mechanical properties of fl exoelectric membranes.

To avoid repetition of lengthy derivations, the reader is refereed to [7, 8] for mathematical details of 
the static fl exoelectric membrane model. In this paper, we will only focus on derivations involving 
viscous dissipation and fl uctuating electric fi elds.

MEMBRANE ELECTRODYNAMICS2 
The description of membrane electro-thermodynamics is based on the expression of the membrane stress 
tensor Tm in terms of the bending moment tensor M and the tangential electro-capillary vector //� . 
The bending moment tensor M is a symmetric 2 × 2 tensor that measures changes in free energy due 
to changes in the 2 × 2 symmetric tangential membrane curvature tensor b. The electro-capillary 
vector is a tangential vector that relates free energy changes to changes in the membrane unit normal k. 
To derive the membrane stress tensor, one starts with the Helmholtz free energy and then the stress 
and moment tensors are obtained through a variational calculation.

The Helmholtz free energy per unit mass Â of the membrane is given by [7, 8]:

 

:
Â +
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(4)

where µ is the Gibbs function per unit mass, ρ is the surface mass density, γ is the membrane tension, 
and e is the dielectric tensor. In the absence of an electric fi eld, we recuperate the surface Euler 
equation [6]. At a constant electric fi eld E, the total differential of Â is [7, 8]:
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The membrane tension γ, bending moment tensor M, and the electro-capillary vector //� are [7, 8]:
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where the superscript “T” in eqn. (6b) denotes transpose. Equation (6) shows that 
( ) 2: / 8 /γ − ⋅ − π ρP E EEe is the conjugate to ρ, M/ρ is the conjugate of curvature b, and the local 
electro-capillary vector // /ρ� is the conjugate to k. Using eqn. (4), a direct variational calculation 
gives the electro-elastic membrane tensor Tm [7, 8]:
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EE
T P E M b I M b M k������� �e

 
(7)

where the overbar on the second term ( )⋅M b������� denotes a traceless tensor. The fi rst term in eqn. (7) are 
the extension stresses (Texten), the second the shear stresses (Tshear), and the third the bending stresses 
(Tbend). Figure 3 shows the membrane stress components (left) acting on a patch of the membrane 
and the matrix (right) representation. Extension and shear stresses do not involve bending. Bending 
stresses are associated with shape changes and act in a direction normal to the membrane.

CONSTITUTIVE EQUATIONS FOR ELECTRO-ELASTIC MEMBRANES3 
The Helfrich free energy per unit area ρÂc [12], widely used to describe the elasticity of membranes 
and surfactant-laden interfaces, reads:

 ( ) ( )2
c c cÂ H, K 2k H k Kρ = +

 
(8)

where K is the Gaussian curvature and ck  is the torsion elastic moduli. Bending and torsion 
deformation in membranes are indicated in Fig. 4.

Under an external electric fi eld E, eqns. (2–4) and (8) show that the total Helmholtz free energy 
per unit area ρÂ is [7, 8]:
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Figure 3: Schematic of stresses acting on a membrane (left) and matrix representation (right).
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Figure 4: Schematic of bending (left) and torsion (right) deformation in membranes.
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To derive an expression of the actuator model for a fl exoelectric membrane using eqn. (9), we must 
fi nd expressions for the following primary quantities: (i) membrane tension γ, (ii) bending moment 
tensor M, and (iii) the membrane capillary pressure Ts : b, as follows. Using eqns. (4) and (9), the 
membrane tension γ is found to be [7, 8]:

 
o

1
H( ) :

2
γ = γ + ⋅ +k E M b�

 
(10)

where γo is the tension at zero fi eld (E = 0) and zero curvature (H = K = 0). Expressing the symmetric 
2 × 2 moment tensor M in terms of unit tensor Is and curvature tensor b we fi nd using eqns. (6) and 
(9) that [7, 8]:
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where the two bending coeffi cients {C1, C2} are [7, 8]:

 ( ) ( )1 c 2 cC 4k H 2 ,      C k= − ⋅ =k E�
 

(12)

Lastly, using eqns. (7), (10), and (11) the total membrane capillary pressure Ts : b is [7, 8]:
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Equations (11) and (12) show the origin of the actuator mode in fl exoelectric membranes, since 
the electric fi eld has the ability to create a contribution ( ) s− ⋅k E I�  to the moment tensor M. 
Neglecting torsion 2 c(C k 0)= =  it is seen that when M = 0, eqn. (11) implies eqn. (1). Equation (13) 
indicates that the capillary pressure Ts : b is a function of the dielectric energy.

NONLINEAR ACTUATOR MODEL FOR FLEXOELECTRIC MEMBRANES4 
In this section, we use eqns. (11) and (13) to derive the actuator model fl exoelectric membrane. 
The actuator model is found by using an integral normal forces balance equation on a membrane, 
subjected to moments (M) along its edges, normal forces (kk : ∆Tb) due to contacting viscous 
phases, and resisting capillary forces (Tm : b) due to tension and dielectric energy and assuming 
constant curvature deformations. In this paper, we assume that deformations are always spherical 
and the average curvature is H = –1/R, where R is the sphere radius.

To construct a tractable actuator model for fl exoelectric membranes we use the integral balance 
approach widely used in interfacial transport phenomena. The virtual power expression due to 
a normal displacement ⊥ξ  of the membrane reads [7, 8]:

 

{ } ( )m b s
C

: : dS d 0⊥ ⊥+ ∆ ξ + ⋅ ⋅ ∇ ξ =∫ ∫T b kk T M �� m
 

(14)

where the fi rst integral denotes normal forces over the surface S, and the second is the normal 
force due to couples acting on the edge C of the membrane; m is the tangent to the membrane at the 
membrane edge C. Due to the assumed constant curvature the integrands in eqn. (14) are constants 
and hence:
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We now defi ne a geometric factor that collects all the geometric information appearing in eqn. (15):
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The unit of the geometric factor ¡ is reciprocal area. Introducing the shape factor ¡ into the integral 
shape equation (eqn. (15)) gives:

 ( )b m: : 0∆ + + ⋅ ⋅ ℑ =kk T T b Mm m
 

(17)

Using eqns. (11)–(13), neglecting dielectricity, the spherical electro-viscoelastic shape equation is:
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where the imposed fi eld E = E · k is the driving force which balanced by the viscous dissipation in 
the bulk fl uid phases and the elastic deformation of the membrane. Equation (18) is the actuator 
model for a fl exoelectric membrane of constant curvature in the absence of dielectricity. In the 
absence of viscous bulk phases contacting the membrane, and neglecting tension and torsion 

o c( k 0)γ = = eqn. (18) gives eqn. (1). Equation (18) indicates that the electric energy pumped into 
the actuator system is partly dissipated in the contacting fl uid phases and partly stored in the elastic 
membrane. To model a specifi c actuator system, the jump stresses must be expressed in terms of the 
average curvature H and its time derivative dH/dt.

OSCILLATING MEMBRANE UNDER CAPILLARY CONFINEMENT5 
A geometry that is used in the experimental characterization of membrane fl exoelectricity is the 
capillary tube [2], where the membrane is attached to the wall of the capillary, as shown in Fig. 5a. 
The tube is fi lled with a fl uid of viscosity η and the oscillating electric fi eld E(t) creates a periodic 
response in the membrane (see Fig. 5b).

Using an oscillating electric fi eld distorts the membrane into a spherical cusp of height h(t), and 
radius R(t), shown in Fig. 6. In the spherical cusp geometry, and with a capillary of radius “a,” the 
geometric factor in eqn. (16) is 28 / aℑ = and the volume of the spherical cusp is 2a h / 2.π

As the membrane oscillates due to the imposed oscillating electric fi eld E(t), a viscous fl ow 
is created in the adjoining viscous fl uid phases (see Fig. 5a), which produces the viscous force 
(bulk stress jump) kk : ∆Tb. Following [2], we assume that the viscous fl ow is described by incom-
pressible Poiseuille fl ow [13]. The geometry and set-up is closely related to that used in pressure 
transduction systems [14]. Using cylindrical coordinates (r, φ, z), the velocity fi eld v in the viscous 
fl uid phase reads: z(0,0,v (r, t)),=v where zv (r, t) / z 0.∂ ∂ = The solution to the Navier–Stokes equa-
tions in the absence of inertia leads to the well-known formulas for the axial velocity 
vz(r, t), average axial velocity 〈vz〉 and volumetric fl ow rate Q(t):

 

( ) ( )
2 2 2 4

z z z z
r a p a a p

v r, t 2 v 1 ;    v ;    Q t  = va 4 z 2 8 z

  ∂ π π ∂ = − = − = −    η ∂ η ∂ 
 

(19a,b,c)

Under the condition h/a = 1, the volume of the spherical cap is: 2V(t) a h(t) / 2.= π To fi nd the 
fl ow rate Q in terms of the curvature dynamics we fi rst consider fl ow rate in terms of the time 
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Figure 5: (a) Schematic of a fl exoelectric membrane anchored in a capillary of radius “a” containing 
a fl uid of viscosity η. As the fi eld E(t) oscillates, it creates distortions in the membrane 
(b) indicated by a nonzero average curvature H.
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Figure 6:  Schematic of the spherical cusp (shaded area) shape adopted by the fl exoelectric membrane 
when subjected to the electric fi eld E.
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derivative of the volume, 2dV / dt Q,= which upon use of eqn. (19c) gives the relation between 
dh/dt and 〈vz〉:

 

zvdh

dt 2
=

 
(20)

Using the geometric relation for the spherical cusp a2 = –2h/H and eqns. (19c) and (20), the fl ow rate 
can be expressed in terms of dH/dt:
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4dH a
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π

 
(21)

Using eqns. (19b), (19c), and (21) we fi nd the time rate of change of curvature as a function of the 
pressure drop:

 

dH 1 p 1 P
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∂ ∆
= − =
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where following [2] we used 2 p / z P / h.− ∂ ∂ = ∆ Using the relation a2 = –2h/H and eqn. (22) we fi nd 
the stress jump:
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Replacing the stress jump into eqn. (18) gives the nonlinear ordinary differential equation for H(t):
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The nonlinearity HdH/dt in eqn. (24) appears in the viscous dissipation term and arises because 
the fl ow rate Q and the resistance to fl ow are functions of the curvature H, as indicated in eqn. (23). 
If the electric fi eld E is constant in eqn. (24), we recuperate the static fl exoelectric result [7, 8]:
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(25)

which indicates that curvature is the ratio of driving force o(E )ℑ�  to resistance o c c(2 (2k k ) ).γ + + �  
Again, if we neglect tension and torsion, eqn. (25) is consistent with eqn. (1).

FREQUENCY RESPONSE OF DRIVEN FLEXOELECTRIC MEMBRANES6 
Next, we analyze the response of the actuator system to an externally imposed sinusoidal electric 
fi eld given by: oE(t) E sin t.= ω  It proves useful to nondimensionalize the governing eqn. (24). 
Scaling the electric fi eld with the oa / 2 ,ℑ γ� the time with driving frequency ω, and the curvature H 
with the capillary diameter “a,” eqn. (24) becomes:
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(26)



36 A.D. Rey, Int. J. of Design & Nature and Ecodynamics. Vol. 3, No. 1 (2008)

where the Deborah number De and resonant frequency ωo are:

 

o
o

o

De ;
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γω
= ω =

ω η  

(27)

The Deborah number is the ratio of the imposed frequency ω to the resonant frequency ωo. The 
magnitude of the De number defi nes the viscoelastic response of the system and hence we seek a 
series solution of the form:
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Substituting the expansion (28) into eqn. (26), we get:
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The curvature response, obtained by solving eqn. (29) at each order of the Deborah number De, is 
given by:
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where the fi rst term denotes a purely elastic response and the remainder contains the viscoelastic 
response in terms of higher harmonics of even order. Next, we discuss the main signatures of the 
response: (i) the anharmonicty, (ii) the zero frequency response, and (iii) the resonance frequencies, 
as follows:

The membrane response to fl uctuating electric fi eld is anharmonic and involves even harmonics:1. 
nsin t, sin 2 t, sin 4 t, , sin 2 t, .ω ω ω ω… … The origin of the anharmonicity is the viscous dis-

sipation term in eqn. (26) that arises, as mentioned above, because both the fl ow rate and 
resistance in the capillary Poiseuille fl ow are functions of the average curvature H.
According to eqn. (31) the zero frequency limit, 2. ω → 0, is purely elastic and given by:

 

( ) ( )
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s s
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(32)

 Equation (32) agrees with the expected steady state response given in eqn. (25). Increasing the 
fi eld increases the curvature amplitude. As an example of the application of eqn. (32), for typical 
values quoted in [2]: Eo = 25 mV/nm, γo = 5 mN/m, a = 0.5 mm, � = 20 × 10–18 C, c ck k = 0,=  
it is found that R ≈ 0.5 m. At low driving frequencies, the membranes oscillate with the fi eld and 
the coeffi cients of the higher harmonics in eqn. (31) are negligible;
The present nonlinear model (eqn. (26)) predicts sub-harmonic resonances. Hence scanning 3. 
the frequency ω we expect to encounter secondary resonance peaks at 02 = ,ω ω

n
0 04 = , , 2 = , .ω ω ω ω… … The presence of these secondary resonances is due to the 

dissipative nonlinearity.
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Electromechanical models of the outer hair cell involved in mammalian hearing have been recently 
reviewed [15]; it is concluded that a signifi cant number of fundamental issues need to be better 
understood and that modeling will continue to be a major driving force in understanding hearing. In 
this respect, the response of the outer hair cells to high frequency conditions and the cell viscosity 
continue to pose fundamental questions [15]. In the present paper, we have computed the frequency 
response of a simple fl exoelectric [16] membrane taking into account the viscosity of the surround-
ing phases, founding resonant frequencies without appeal to strain energies. This fi nding proves that 
fl exoelectricity has a role to play in more generalized models of outer hair cells.

7 CONCLUSIONS
This paper presents a model for the response of fl exoelectric membranes to external oscillating 
electric fi elds, in contact with viscous phases, relevant to biological processes such as the outer hair 
cells in the hearing apparatus. The membrane-viscous fl uid system acts as an actuator in the presence 
of the electric fi eld, creating membrane curvature as well as viscous fl ow in the adjoining phases. 
The viscous dissipation in the adjoining phases gives rises to a nonlinearity in the actuator system. 
The frequency response of the viscoleastic actuator to an oscillating electric fi eld is computed using 
a series expansion in terms of the Deborah number. The actuator anharmonic response is given in 
terms of a fundamental and even harmonics. The importance of the even harmonics increases with 
increasing Deborah number, or ratio between the driving frequency ω and the resonant frequency ωo. 
As expected in driven nonlinear systems, subsidiary resonant peaks appear at driving frequencies 
that are equal to n

0 / 2 ; n 1, 2, 3, ,ω = … where 1/ωo is the relaxation time of the actuator.
The present results contribute to the on-going work on mechano-transduction in biological 

systems and to the current work on applications of fl exoelectricity to hearing processes [17]. The 
basic actuator fl exoelectric mechanism was used to describe the role of electromotility in the process 
of mechanoamplifi cation that supports the detection of high frequency sounds by outer hair cells. 
In this model [16], nanoscale curvature of the plasma membrane of outer hair cells changes by 
depolarization or polarization. This change in curvature is transmitted to the underlying cytoskeleton 
causing length changes that amplify vibrations. Since membranes participating in the hearing 
process are in contact with viscous and/or viscoelastic phases and subjected to multiple frequencies, 
the nonlinearities in the actuator model predict that combination frequencies are likely to occur [9]. 
In addition, the viscous nonlinearity in conjunction with high amplitude oscillating electric fi eld has 
the potential to exhibit chaotic responses. Future work will extend the present work to oscillating 
membranes immersed in viscoelastic media.
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