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ABSTRACT
A methodology for goal-oriented active learning with local model networks (LMNs) is proposed. It 
is applied for the generation of training data for a computational fluid dynamics (CFD) metamodel. 
The used metamodel is an LMN trained with data originating from CFD simulations. This metamodel 
describes the total-to-static efficiency for a given design point, defined by the pressure rise at a specific 
volume flow rate, depending on geometrical parameters of an impeller of centrifugal fans. The goal-
oriented nature originates from three main targets that are addressed simultaneously during the active 
learning procedure. (I) The concentration on possibly optimal geometries and (II) the focus on areas in 
the input space where the metamodel’s performance is considered to be worst. Additionally, (III) new 
measurements should differ from already simulated geometries as much as possible. With these goals 
three important issues in modeling are addressed simultaneously: (I) optimality, (II) model bias, (III) 
model variance/uniformly space-filling property. In order to fulfill all goals, special properties of LMNs 
are utilized (embedded approach). Through the structure of LMNs, it is possible to assign local model 
errors to specific areas in the input space. New measurements are preferably placed in such high-error 
regions, while concentrating on presumably optimal geometries that differ most from the ones already 
available in the training data. In the field of fluid machinery, the range of achievable design points is 
usually identified by the Cordier diagram. While the design points obtained in the passive learning 
phase fairly agree with the standard Cordier diagram, an extension of achievable design points was 
observed due to the proposed goal-oriented learning strategy. In addition, the total-to-static efficiency 
could be improved in some areas of the Cordier diagram.
Keywords: active learning, aerodynamic optimization, design of experiments, experimental modeling, 
impeller of centrifugal fans, metamodeling.

1 INTRODUCTION
Measurements play the key role in experimental modeling. The quality of the data used to 
build models restricts the performance that can be achieved. Since measurements are always 
time-consuming and might be very expensive, the aim is often to find the necessary minimum 
of measurements in order to fulfill some task sufficiently well. Therefore, the design of exper-
iments (DoE) should contain the most informative measurements. In principle there are two 
ways to obtain such a DoE, which are faced in Fig. 1. If a passive learning strategy is pursued, 
all points contained in the DoE are known before the first measurement is carried out. This 
experimental design might be optimized according to some optimality criterion, see Refs. 
[1–3] for common criteria. In case of an active learning strategy the experimental design is 
not known completely a priori. Information gathered through already obtained measurements 
are used to select new queries. A query specifies the point in the input space at which a label 
or the output value should be measured. In the context of metamodeling tasks, a more com-
mon expression for active learning is sequential sampling, see Refs. [4, 5].

Active learning strategies have the potential to achieve the same model quality with signif-
icant less data compared to passive learning strategies, as stated e.g. in Refs. [6–9]. Active 
learners can be distinguished by their query strategies, i.e. how they choose the next query.  
A good survey on possible query strategies for active learners is given in [10]. The proposed 
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goal-oriented active learning strategy here is an extension of the hierarchical local model tree 
for design of experiments (HilomotDoE) proposed in Ref. [11]. The main focus of the query 
strategy of HilomotDoE is to reduce the error of a local model network (LMN). Since the 
error of the model can be decomposed into a bias and variance part [12], HilomotDoE 
addresses and reduces both error parts as described in [13].

The extension of HilomotDoE proposed in this paper is meant for models that should be 
utilized for optimization tasks and is described further in Section 2. It is successfully used for 
the generation of training data for a computational fluid dynamics (CFD) metamodel. This 
metamodel describes the total-to-static efficiency for a given design point depending on 
geometrical parameters of an impeller and is valid for all typical design points of centrifugal 
fans according to the Cordier diagram. The optimization task is to find geometrical parame-
ters of the impeller for a given design point such that the efficiency of the centrifugal fan is 
maximized, see Section 3 for more details. A customization and application of the proposed 
active learning strategy for the CFD metamodel task together with the corresponding results 
is described in Section 4 before Section 5 concludes this paper.

2 ACTIVE LEARNING STRATEGY
The pursued active learning strategy deals with models utilized for optimization tasks and it 
exploits special properties of LMNs. Through the structure of LMNs it is possible to assign 
local model errors to specific areas in the input space. New measurements are preferably 
placed in such high-error regions, while concentrating on presumably optimal geometries 
that differ most from the ones already available in the training data. Therefore a lot of poten-
tial queries are generated, from which only one or a small subset is chosen to be measured. 
These potential queries will be named candidate points from now on. In order to focus on 
presumably optimal geometries, all existing candidate points are obtained through optimiza-
tions. For these optimizations the currently available model is used. In order to concentrate 
on areas with high local errors, only candidate points lying in these regions are considered 
during the selection of new queries. The similarity between the leftover candidate points and 
the already existing training data is evaluated in terms of the Euclidean distance. As a result, 
the candidate point closest to the largest hole in the training data within the area of the highest 
model error is chosen as query. More details about LMNs, the active learning strategy, and 
the new generation method of the candidate points are given in Sections 2.1, 2.2 and 2.3.

Figure 1: Comparison of passive and active learning strategies.
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2.1 Local model networks

LMNs follow a divide-and-conquer strategy. The whole input space, here spanned by the 
physical inputs u, is divided into subregions. In each subregion a local model (LM) ŷ1 is 
estimated. So called validity functions Φ i define regions in which the LMs are valid and how 
interpolation between neighboring LMs should be conducted. According to [14] the model 
output ŷ of a LMN with M LMs is calculated by

 ( ) ( ).u ui
i

M

i=

=

∑
1

Φŷ ŷ  (1)

For a reasonable interpretation the so-called partition of unity has to be fulfilled [12], i.e. the 
validity functions Φ i have to sum up to one at any point in the input space.

For the active learning strategy the training algorithm Hilomot (hierarchical local model 
tree) [15] is used with local affine models. The schematic LMN training procedure of Hilo-
mot can be explained with the help of Fig. 2. The algorithm incrementally grows an LMN, 
i.e. in each iteration, the number of LMs is increased by one. At the beginning there is only 
one LM valid in the whole u-input space. Then all axes-orthogonal splits through the center 
of the so-called parent LM are tested (dashed lines in Fig. 2). Hilomot uses the best orthogo-
nal split as an initialization for a nonlinear split optimization in which the position and 
orientation of that split are further adjusted. Only the current split is optimized, all already 
existing splits are kept unchanged. The parameters of the two LMs affected by the split 
adjustment are obtained through a weighted least squares technique nested in the nonlinear 
split optimization. After that the LM with the worst local error measure (gray shaded regions 
in Fig. 2) are subdivided further. The resulting validities are utilized to weight the errors of 
the whole LMN yielding the local error measures. After the first split is performed one addi-
tional split is tested before the nonlinear optimization starts, which is the direction of the 
parent split going through the center of the parent LM. The algorithm stops as soon as a 
measure for the LMN’s generalization performance gets worse. Usually Akaike’s informa-
tion criterion (AIC) [16] or a distinct validation data set is used to evaluate the generalization 
performance of the LMN. Through the nonlinear split optimization Hilomot allows for an 
axes-oblique input space partitioning yielding advantages especially for high-dimensional 
input spaces. For more details on how the validities are constructed and additional advantages 
of Hilomot compared to other LMN training algorithms please refer to Ref. [12].

Figure 2: Schematic Hilomot training procedure for a 2-dimensional input space.
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2.2 Active learning with local model networks

The active learning algorithm HilomotDoE proposed in Ref. [11] is described in the follow-
ing. The novelty of this paper regarding the candidate point generation is outlined in Section 
2.3. Another innovation is concerned with the generation of more than one query and is 
explained at the end of this section. As already mentioned the active learning strategy with 
LMNs aims at reducing the error of the final model. It is assumed that the highest error reduc-
tion can be obtained if the queries are placed in the areas of the input space with the highest 
local error measure eLM,i i ∈ {1,…, M}. For the calculation of the local error measures eLM,i 
the measured outputs y, the local model outputs yi , the effective number of local parameters 
nef f,i and the local validity matrix Qi = diag( ( ))Φ i u  are required:

 
− −

e
y y Q y y

i MLM,i

i i i( ) ( )
, { , , }.=

−

∈

T

trace( )Q ni eff,i

1…
ˆˆ

 (2)

Each squared error between an LM output and the measured output is weighted with the 
corresponding validity value and is divided by the leftover degrees of freedom. For more 
details on how to compute the effective number of parameters nef f,i for each LM please refer 
to Ref. [13].

Figure 3 visualizes the situation during the active learning phase for a two-dimensional 
input space if only one query is sought. An LMN is trained with Hilomot based on all cur-
rently available data. As one result the partitioning of the input space is obtained and for each 
LM a local error measure according to (2) can be calculated, see Fig. 3a. In the original, not 
yet extended version of HilomotDoE, candidate points are generated through random sam-
pling from a uniform distribution (dots in Fig. 3b). From all randomly generated candidate 
points only the ones lying in the LM with the worst local error measure are considered in the 
following. The candidate point inside the worst LM that fills the greatest hole of the already 
measured training data is chosen as query. In order to find the greatest hole, the nearest neigh-
boring training data point to each considered candidate is determined. The candidate point 

^

Figure 3:  Partitioning of a LMN with local errors (a) and with focus on the worst LM together 
with training data (x), candidates (⋅) and the chosen query (o).
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with the greatest distance to its nearest neighboring training data point is chosen as query. 
During the distance calculations, all training data samples are considered, but only candidates 
within the worst performing LM are taken into account. After the measurement for the cur-
rent query has finished the training data set is updated, a new LMN is trained with Hilomot 
and the next query can be determined.

For algorithmic efficiency reasons it might be reasonable to request more than one query 
at a time. If nq > 1 queries are demanded, a new strategy for HilomotDoE is proposed. Still 
Hilomot is used to train an LMN and yield a partitioning of the input space. Then, all local 
error measures are calculated and normalized, such that their sum equals one:

 e
e

e
LM i

LM i

LM jj

M,
,

,

=
∑

 (3)

The number of demanded queries from each LM nqLM,i is obtained by rounding the overall 
number of demanded queries nq multiplied with the corresponding normalized local error 
measure êLM,i:

 = ⋅n nqLM q LM, ,[ .]êi i  (4)

With this approach more queries are demanded from an LM the bigger its local error measure 
is in relation to the local error measures of all other LMs.

2.3 Generation of candidate points

Another novelty of this paper lies in the generation of the candidate points, which are subse-
quently used by HilomotDoE. A block diagram of the whole goal-oriented active learning 
procedure is shown in Fig. 4. The candidate points are generated through an evolutionary 
optimization algorithm based on the currently available model, trained with all yet accessible 
measurements. More details of the used evolutionary optimization algorithm can be found in 
Ref. [17]. With the help of the model the objective function J(u) can be determined for each 
design vector u u u uT

nd= [ ]1 2  . In order to distribute the initial values for the optimiza-
tion runs in a space-filling manner throughout the whole input space, the extended 
deterministic local search (EDLS) algorithm proposed in Ref. [18] is used to generate a max-
imin Latin Hypercube (LH) design. To prevent the optimization from generating too similar 
candidate points, nc constraints for each initialization point coming from the LH design are 
applied. If no constraints would be demanded almost all optimizations might lead to the same 
optimum. More details about the used constraints follow in the next paragraph. All resulting 
candidate points are provided to HilomotDoE, that determines queries as described in Sec-
tion 2.2. After the queries are measured, they are added to the available measurements. 
Through the altered training data the model and therefore the outcome of optimizations with 
the new model might change, even if neither the constraints nor the LH design is changed.

If no constraints would be applied to the optimization runs, a lot of very similar or identical 
candidate points could possibly be the result, depending on the properties of the optimization 
problem. Additionally, these constraints might reflect later usage scenarios, if some design 
parameters are bounded, e.g. due to limited available construction space. If the number of 
optimization variables is nd, there are nc = 2nd possible constraint combinations specifying 
which variables are held fixed. For each point contained in the LH design all possible con-
straint combinations are applied. Constrained optimization variables are held fixed at the 

^
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value of the corresponding LH design point. As an example Fig. 5 together with Table 1 
illustrate this for nd = 2 optimization variables for the i-th point of the LH design. Four opti-
mization scenarios arise with different constraints; all listed in Fig. 5 and Table 1. The 
variable uj,lh

 denotes the value coming from a point in the LH design that is fixed during the 
corresponding optimization run. In case of opt. in a field of Table 1, the value of the corre-
sponding variable is yielded by the optimization. With this approach Nc = NLH ⋅ nc 
optimization runs are necessary to obtain all candidate points.

3 APPLICATION: AERODYNAMIC OPTIMIZATION OF CENTRIFUGAL FANS
The proposed goal-oriented active learning strategy is applied in the field of centrifugal fans. 
The general purpose of fans is to generate a gaseous fluid flow under build-up of pressure. 

Figure 4: Block diagram of the goal-oriented active learning procedure.

Figure 5: Illustration of all optimization scenarios for point i of an LH design with two inputs.

Table 1: Each column contains one constraint for the optimization. An optimization variable 
uj might either be constrained to a specific value (uj, LH (i)) or can be free, i.e. the 
value is determined through the optimization (opt.).

Optimization scenario: 1 2 3 4

Opt. variable u1 opt. opt. u1,LH (i) u1,LH (i)
Opt. variable u2 opt. u2,LH (i) opt. u2,LH (i)
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Typically, the design of a new fan comprises two main targets. Firstly, the design point (i.e. 
the desired flow rate Q and pressure rise ∆p) must be fulfilled. Secondly, the shaft power Pshaft 
shall be as low as possible. The achievability of the first design target mainly depends on the 
choice of the outer fan diameter D and the rotational speed n. Cordier [19] found that the 
specific fan diameter
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of all fans and pumps lie in a narrow band around the curve depicted in Fig. 6, which were 
later known as the Cordier curve and the Cordier diagram, respectively. The original Cordier 
diagram is based on fan performance data stemming from the 1950s, but its validity was 
confirmed in numerous more recent studies, see e.g. the work by Willinger et al. [20–22]. 
Figure 6 furthermore indicates the typical realm of centrifugal fans, which is in the area of 
low specific fan speeds but high specific fan diameters. The rest of the Cordier band is asso-
ciated with other fan types such as axial or mixed flow. The second design target (the 
minimization of Pshaft) is equivalent to the maximization of the aerodynamic efficiency 
defined as

 η =
∆Q p

Pshaft

.
. (7) 

In the present application, only the impeller as the key component with respect to aerody-
namic efficiency is investigated. The impeller geometry is described by nine geometrical 
parameters including the inner diameter, the inlet width, the outlet width, the inlet blade angle 
and the outlet blade angle. Those parameters are supposed to be most relevant in order to 

Figure 6: Cordier diagram with indication of the typical realm of centrifugal fans.
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adapt the fan geometry to a large variety of potential design points [23]. Optimal geometrical 
parameters are found by the evolutionary algorithm described in Ref. [17]. The objective 
function is maximization of total-to-static efficiency ηts with penalty terms for the violation 
of the desired design point. The focus on total-to-static efficiency originates from the assump-
tion that the fan exhausts into an open environment. Under these circumstances, the kinetic 
energy of the fluid at the fan exit must be considered as loss and ∆p must be diminished 
accordingly when computing the efficiency with eqn. (7). The objective function is evaluated 
using metamodels of CFD. CFD is a numerical simulation technique, which solves the flow 
field in a discretized computational domain for given boundary conditions (e.g. flow rate, 
ambient pressure, velocity of moving walls, etc.). A detailed description of the CFD model 
can be found in [24]. This reference furthermore contains detailed information about the 
parameterization of the impeller. Since CFD simulations are time-consuming and require 
considerable computational resources, there is a strong interest to keep the number of query 
points to a minimum. At the same time, the metamodels must be extremely precise for opti-
mal geometries to avoid that the optimizer exploits weaknesses of the metamodel instead of 
finding the real aerodynamic optimum. Given these two requirements, the active learning 
strategy suggested in this paper is well-suited to be applied in the fan optimization problem.

4 ACTIVE LEARNING FOR THE CFD METAMODEL
In case of the active learning for the CFD metamodel the procedure illustrated in Fig. 4 is 
applied with minor adjustments to meet problem specific needs. A maximin LH design for an 
11-dimensional input space is generated with NLH = 586 samples. 2 of the 11 inputs specify 
a design point defined by the pressure rise and a specific volume flow rate. These two inputs 
always belong to the set of constrained optimization variables, since the efficiency is maxi-
mized for these design points. The remaining nd = 9 inputs correspond to the geometric 
parameters that should be optimized. It follows that there are nc = 2nd = 512 possible optimi-
zation problems with all constraint combinations. As explained in Section 2.3, all possible 
combinations of constrained optimization variables are applied to each point contained in the 
LH design, resulting in Nc = 512 ⋅ 586 = 300032 candidate points after all optimization runs 
are finished. Here, 500 queries are demanded in each loop of the active learning strategy. As 
soon as one loop is finished, i.e. the optimization of all candidate points is accomplished and 
queries are calculated, the list of queries to be CFD-simulated is updated. This procedure 
avoids any time lags between CFD simulations due to not in time finished query optimiza-
tions.

4.1 Results

The influence of the proposed goal-oriented active learning strategy is evaluated based on 
three aspects. First, the model quality over the number of samples available for the training is 
assessed. Second, the extension of achievable design points in the Cordier diagram is shown. 
And third, the improvements of the achievable total-to-static efficiency are visualized for all 
achievable points in the Cordier diagram.

For the model quality assessment CFD-based optimizations are completed for 545 differ-
ent design points. The optimized designs together with the achieved total-to-static efficiencies 
serve as test data for the models generated with different amounts of training data. The target 
value of the model is the total-to-static efficiency hts. Figure 7 shows the curve for the model 
quality versus the training data amount. Lower root mean squared errors (RMSE) correspond 
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to better generalization performances. The dashed line marks the point, where the passive 
learning phase has ended and the active learning strategy has started.

Figure 8 shows the extension of achievable regions in the Cordier diagram through the 
proposed goal-oriented active learning strategy. For almost each viable specific fan speed s 
higher specific fan diameters d are possible. Additionally, lower and higher specific fan 
speeds could be achieved through the active learning phase compared to the passive one.

The absolute total-to-static efficiencies in the area of possible impeller designs after the 
active learning strategy and the corresponding improvements are shown in Fig. 9a and b, 
respectively. The absolute efficiency could be improved up to a value of ∆hts = 0.3 (≈ 100%) 
by the active learning strategy. The improvements are mostly achieved above the Cordier 
curve, where the specific fan diameter δ is relatively high. The efficiency improvements are 
only shown in areas, where data from the passive learning phase is available, compare to  
Fig. 8. That is the reason, why the area covered by possible designs is less in Fig. 9b  
compared to Fig. 9a.

Figure 7: RMSE on test data originating from CFD-based optimization runs vs. amount of 
training data.

Figure 8: Extension of achievable design point area in the Cordier diagram.
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5 CONCLUSION
The proposed goal-oriented active learning strategy with local model networks (LMN) is 
meant for models that should be utilized for optimization tasks. Active learning strategies 
allow for an interactive adaption of the design of experiments (DoE) to the process under 
investigation. Information gathered through already obtained measurements are used to select 
new queries. This adaption has the potential to achieve the same model quality with signifi-
cant less data compared to a-priori fixed DoEs (passive learning). Through an extension of 
the already proposed hierarchical local model tree for design of experiments (HilomotDoE) 
[25] algorithm, a goal-orientation is introduced. These three goals are (I) the concentration on 
possibly optimal geometries, (II) the focus on areas in the input space with minor generaliza-
tion performance and (III) a high diversity of training data samples. Therefore, the way 
potential queries or candidate points are generated is adjusted, such that all three goals are 
met. The proposed methodology is applied to the generation of training data for a computa-
tional fluid dynamics (CFD) metamodel. It is shown, that the area of achievable design points 
is extended, see Fig. 8, and the total-to-static efficiencies could be improved up to 100% in 
some areas of the Cordier diagram, see Fig. 9. Even though the application incorporates a 
metamodel, there is no principal restriction to metamodeling tasks of the proposed active 
learning strategy.
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