PERVASIVE SYSTEMS AND UBIQUITOUS COMPUTING

WITPRESS

WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles. www.witpress.com

WITeLibrary

Home of the Transactions of the Wessex Institute, the WIT electronic-library provides the international scientific community with immediate and permanent access to individual papers presented at WIT conferences. Visit the WIT eLibrary

at http://library.witpress.com

PERVASIVE SYSTEMS AND Ubiquitous Computing

A. Genco and S. Sorce

University of Palermo, Italy

A. Genco and S. Sorce

University of Palermo, Italy

Published by

WIT Press

Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853 E-Mail: witpress@witpress.com http://www.witpress.com

For USA, Canada and Mexico

WIT Press

25 Bridge Street, Billerica, MA 01821, USA Tel: 978 667 5841; Fax: 978 667 7582 E-Mail: infousa@witpress.com http://www.witpress.com

British Library Cataloguing-in-Publication Data A Catalogue record for this book is available from the British Library

ISBN: 978-1-84564-482-6

Library of Congress Catalog Card Number: 2010920130

The texts of the papers in this volume were set individually by the authors or under their supervision.

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. The Publisher does not necessarily endorse the ideas held, or views expressed by the Editors or Authors of the material contained in its publications.

© WIT Press 2010

Printed in Great Britain by MPG Book Goup, Bodmin and King's Lynn.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.

Contents

Preface		
C	hapter 1: Introduction	1
C	hapter 2 Augmented Reality and Virtual World	5
1	From virtual reality to augmented reality	5
	1.1 Virtual reality and virtual world	5
	1.2 Augmented reality	6
2	AR technologies	
	2.1 HMD (head-mounted display)	6
	2.2 Optical HMD	7
	2.3 Video HMD	8
	2.4 RSD (retinal scanning display)	9
	2.5 HHD (handheld display)	9
	2.6 SAR (spatially augmented reality)	9
	2.7 SID (spatially immersive display)	10
	2.8 Augmented tools	10
3	AR and VW projects	10
	3.1 MediaCups	11
	3.2 ActiveSpaces	12
	3.3 Access Grid	12
	Acknowledgements	13
	References	13

C	hapter 3	Human–computer interaction	15
1	Introduct	ion	15
	1.1 Defin	ition	15
	1.2 HCI a	nd ubiquitous computing	16
	1.2.1	Classic HCI	16
	1.2.2	Modern HCI	17
2	Implicit a	nd explicit HCI	18
	2.1 Implie	cit and explicit HCI: a comparison	18
	2.2 Implie	eit HCI	18
	2.3 What	is 'context'?	19
	2.3.1	Context representations	19
	2.4 Explic	eit HCI	20
3	Adaptive	and intelligent HCI technologies and methodologies	21
	3.1 Perce	ptive processing	23
	3.1.1	Limbs' movements	23
	3.1.2	Facial data elaboration	24
	3.1.3	Visual perception	27
	3.1.4	Voice perception	28
	3.2 Behav	vioural processing	29
	3.3 Cogni	tive comprehension	29
4	Input/out	put devices	30
	4.1 Input	devices	30
	4.1.1	Keyboards	30
	4.1.2	Pointing devices	30
	4.1.3	Cameras	31
	4.1.4	Audio input devices	31
	4.2 3D in	put devices	32
	4.3 Outpu	t devices	32
	4.3.1	Visual outputs	32
	4.3.2	Aural outputs	33
	4.3.3	Haptic outputs	33
5	Usability		33
	5.1 Relev	ance for ubiquitous computing technologies	33
	5.2 Usabi	lity issues and technology changes	34
6	Portabilit	У	34
	6.1 Why '	information portability'?	34
	6.2 Some	issues about portability	35
7	Conclusio	ons	35
	Acknowl	edgements	36
	Reference	es	37

Cł	apter 4 Disappearing hardware	39
1	Introduction	39
2	Invisibility, a key paradigm for ubiquitous systems	40
	2.1 User-centric versus desktop-centric systems	41
	2.2 Environment-distributed systems	42
3	Evolving hardware	42
	3.1 Wireless networks	44
	3.1.1 Bluetooth	45
	3.1.2 IrDA	45
	3.1.3 HomeRF	45
	3.1.4 Wi-Fi	46
	3.2 Increasing computing power	46
	3.3 Increasing memory capacity	46
	3.4 High-resolution displays	47
4	Building ubiquitous systems	47
	4.1 Infrastructure-based systems	47
	4.2 Personal systems	48
5	Invisibility: problems and limits	48
	5.1 Size and power consumption	48
	5.2 Control loss and lack of feedback	49
	5.3 Breaking the traditional mental model	50
6	Conclusions	51
	Acknowledgements	51
	References	51
Cł	napter 5 Wireless technologies for pervasive systems	53
1	Wireless data transmission	53
2	Bluetooth	55
	2.1 Piconets	56
	2.2 Establishing a Bluetooth connection	58
	2.3 Scatternets	59
	2.4 The Bluetooth stack	59
	2.5 Bluetooth profiles	62
3	Wi-Fi	63
	3.1 Technical details	65
4	IrDA	66
5	HomeRF	67
6	Wireless technologies comparison	67
7	RFID	68
	7.1 Passive tags	69
	7.2 Active tags	70

	7.3 Readers/writers	
	7.4 RFID systems	70
	7.5 RFID for pervasive systems	71
	Acknowledgements	71
	References	72
Cl	hapter 6 Positioning in pervasive systems	75
1	Introduction	75
2	Position detection techniques	77
	2.1 Triangulation	77
	2.1.1 Lateration	77
	2.1.2 Angulation	79
	2.2 Scene analysis	80
	2.3 Proximity	80
3	Properties and features of positioning systems	81
	3.1 Physical vs. symbolic position	81
	3.2 Absolute versus relative position	82
	3.3 Accuracy versus precision	82
	3.4 The range	83
	3.5 Identification	84
4	Positioning systems	84
	4.1 GPS	85
	4.2 Active Bat	86
	4.3 RADAR	86
	4.4 MotionStar magnetic tracker	87
	Acknowledgements	88
	References	88
Cl	hapter 7 Security in ubiquitous computing	91
1	Introduction	91
	1.1 One single word: Security!	91
	1.2 Security in information systems	92
	1.3 Transient secure association	93
2	Security protocols	94
	2.1 Guarantees of a security protocol	94
	2.1.1 Confidentiality	94
	2.1.2 Integrity	95
	2.1.3 Non-repudiatebility	95
	2.2 Protocols developed for the security of wireless communications	95
	2.2.1 Encryption with static WEP keys	95
	2.2.2 WEP/EAP authentication	95

	2.2.3	Current status: the WPA, the best solution	96
3	Encryption		97
	3.1 Terminology		98
	3.2 Cryptography algorithms		98
	3.2.1	Private key algorithms	99
	3.2.2	Public key algorithms	100
	3.2.3	The technique adopted in practice	101
	3.3 Digita	al signature	102
	3.4 Hashi	ng algorithms	102
	3.5 Certif	ication	103
	3.6 Concl	usions on cryptography	103
4	Bluetooth	architecture	103
	4.1 Secur	ity levels	104
	4.2 Secur	ity manager	105
	4.3 Ad He	oc networks	106
5	Authentic	cation systems	107
	5.1 RADI	US	107
	5.1.1	Configuring the RADIUS	107
	5.1.2	Exchanging messages	107
	5.2 Kerbe	pros	109
	5.3 Other	secure authentication systems	110
	5.3.1	Biometrics: definition and fundamental components	110
	5.3.2	Hardware keys	111
	5.3.3	Smarts cards	112
	5.3.4	Proximity tools	112
	5.3.5	WAP/UMTS communication as a system	
		of authentication	113
	5.3.6	WTLS	113
6	Weaknes	ses and attack methods	114
	6.1 Delib	erate attacks	114
	6.2 Sniffi	ng	116
	6.3 Denia	l of service attack	117
	6.4 Distri	buted denial of service	117
	6.5 Sleep	deprivation torture	119
	6.6 MAC	address spoofing	119
	6.7 Attacl	ks on Smart Cards	120
7	Security of	on wireless channels	121
	7.1 Blueto	both	121
	7.1.1	Eavesdropping and impersonation	121
	7.1.2	Location attacks	122
	7.2 WLA	Ns	122

	7.2.1	Breaking WEP keys	123
	7.2.2	AirSnort	124
	7.2.3	WEPCrack	125
	Acknowle	edgements	125
	Reference	es	126
Ch	apter 8	Service discovery	129
1	Introducti	ion	129
	1.1 Data transmission in ubiquitous systems		130
	1.2 Objectives		130
	1.3 Model of ubiquitous node server		131
2	Disk and server scheduling algorithms		132
	2.1 The ADoRe algorithm		133
	2.2 The Flush algorithm		134
	2.3 The OWeiST algorithm		135
	2.4 The RxW/S algorithm		136
	2.5 Cache memory in a server node		136
	2.6 LF-LRU algorithm		136
	2.7 LRU-K algorithm		137
	2.8 Considerations on the use of a finite speed		
	transn	nission channel	138
3	Context-awareness		139
	3.1 What is context-awareness?		139
	3.2 Possible applications		139
	Acknowle	140	
	Reference	28	140

Index

143

Preface

The ancient Greek agorà was the place where people met other people to communicate or discuss philosophical issues as well as human daily troubles and joys. Nowadays, we are still attracted by the same kind of place even if in a new virtual modality which is now made possible by internet technology. The new current agorà has different names, for instance Myspace, Facebook and other virtual squares where we go to when we want to encounter real or virtual friends, or want to shop in a virtual market place.

The internet agorà has broken generational walls so that older people, as well as the young, want to spend part of their own time with a computer and internet applications.

The only troubling side of that is in considering a computer something like a medium totem where we need to go, or a window open into the main virtual square. Although many people feels it very comfortable to stay at home and interact with others worldwide from one's own beloved armchair, the pleasure of going outside and meeting real persons and shops should not be in contrast with internet services. Ubiquitous Computing and Pervasive Systems are novel compromises which are capable of putting together internet services and real open environments. All that we do by means of a pc, we can now do also living and moving among real people and real things, with a little help from wireless technology.

Ubiquitous Computing and Pervasive systems are no more futuristic visions; they are something easy to be implemented. Mobile devices and programming languages are there, available to be used to this end. The question why pervasive applications have not fully replaced pc internet applications yet is very likely to be singled out in commercial issues. Nevertheless, the pervasive solution does not seem to have actual alternatives at the moment, and it seems more likely to have the strength of an obligatory direction.

Many engineering faculties introduce pervasive systems in regular courses as well as other faculty, as for instance in the field of motor sciences or commerce, where the actual advantages of a pervasive technology are as evident as attractive.

This book has been written mainly having in mind its use as a text book for regular courses in engineering-technological faculties where a wide discussion and technical elements are requested.

A. Genco, 2010