

Comparing Design in Nature with Science and Engineering

WITPRESS

WIT Press publishes leading books in Science and Technology.

Visit our website for the current list of titles.

www.witpress.com

WITeLibrary

Home of the Transactions of the Wessex Institute.
Papers presented at Design & Nature III are archived in the
WIT eLibrary in volume 87 of WIT Transactions on
Ecology and the Environment (ISSN 1743-3541).

The WIT eLibrary provides the international scientific community with immediate and permanent access to individual papers presented at WIT conferences.

http://library.witpress.com

THIRD INTERNATIONAL CONFERENCE ON COMPARING DESIGN IN NATURE WITH SCIENCE AND ENGINEERING

Design and Nature III

CONFERENCE CHAIRMEN

C.A. Brebbia

Wessex Institute of Technology, UK

International Scientific Advisory Committee

A G Abbott D Lewis M Atherton R Lieb M A Baez G Lorenzini G Barozzi R L Magin A Bejan A C McIntosh P Pascolo S C Burgess M Platzer A Carpi C Dowlen G Prance J Fernandez A D Rey S Gorb T Speck H Hendrickx E Stach C Jenkins E Tiezzi D Kirkland **GA Walters**

Organised by

Wessex Institute of Technology, UK

Sponsored by

The International Journal of Design and Nature

Transactions Editor

Carlos Brebbia
Wessex Institute of Technology
Ashurst Lodge, Ashurst
Southampton SO40 7AA, UK

Email: carlos@wessex.ac.uk

WIT Transactions on Ecology and the Environment

Editorial Board

Y N Abousleiman University of Oklahoma

USA

D Almorza Gomar University of Cadiz Spain

M Andretta Montecatini

Italy

J G Bartzis

Institute of Nuclear Technology

Greece

J Boarder

Cartref Consulting

Systems UK

H Boileau ESIGEC France A Aldama IMTA

Mexico

A M Amer Cairo University

Egypt

J M Baldasano

Universitat Politecnica de

Catalunya Spain

A Bejan

Duke University

USA

B Bobee

Institut National de la Recherche Scientifique

Canada

C A Borrego

University of Aveiro

Portugal

A H-D Cheng

University of Mississippi USA

A Cieslak

Technical University of Lodz Poland

M da Conceicao Cunha

University of Coimbra Portugal

A B de Almeida

Instituto Superior Tecnico Portugal

C Dowlen

South Bank University UK

J P du Plessis

University of Stellenbosch South Africa

D Elms

University of Canterbury New Zealand

D Emmanouloudis

Technological Educational Institute of Kavala Greece

R A Falconer

Cardiff University UK

G Gambolati

Universita di Padova Italy

C-L Chiu

University of Pittsburgh USA

W Czyczula

Krakow University of Technology Poland

M Davis

Temple University USA

K Dorow

Pacific Northwest National Laboratory USA

R Duffell

University of Hertfordshire UK

A Ebel

University of Cologne Germany

D M Elsom

Oxford Brookes University UK

J W Everett

Rowan University USA

DM Fraser

University of Cape Town South Africa

N Georgantzis

Universitat Jaume I Spain

F Gomez

Universidad Politecnica de Valencia Spain

W E Grant

Texas A & M University USA

A H Hendrickx

Free University of Brussels Belgium

I Hideaki

Nagoya University Japan

W Hutchinson

Edith Cowan University Australia

K L Katsifarakis

Aristotle University of Thessaloniki Greece

B A Kazimee

Washington State University USA

D Koga

Saga University Japan

B S Larsen

Technical University of Denmark Denmark

D Lewis

Mississippi State University USA

K G Goulias

Pennsylvania State University USA

C Hanke

Danish Technical University Denmark

S Heslop

University of Bristol UK

W F Huebner

Southwest Research Institute USA

D Kaliampakos

National Technical University of Athens Greece

H Kawashima

The University of Tokyo Japan

D Kirkland

Nicholas Grimshaw & Partners Ltd UK

J G Kretzschmar

VITO Belgium

A Lebedev

Moscow State University Russia

K-C Lin

University of New Brunswick Canada

J W S Longhurst

University of the West of England
UK

U Mander

University of Tartu Estonia

J D M Marsh

Griffith University Australia

K McManis

University of New Orleans USA

M B Neace

Mercer University USA

R O'Neill

Oak Ridge National Laboratory USA

J Park

Seoul National University Korea

B C Patten

University of Georgia USA

V Popov

Wessex Institute of Technology UK

MRIPurvis

University of Portsmouth UK

T Lyons

Murdoch University Australia

N Marchettini

University of Siena Italy

J F Martin-Duque

Universidad Complutense Spain

C A Mitchell

The University of Sydney Australia

R Olsen

Camp Dresser & McKee Inc. USA

K Onishi

Ibaraki University Japan

G Passerini

Universita delle Marche Italy

M F Platzer

Naval Postgraduate School USA

H Power

University of Nottingham UK

Y A Pykh

Russian Academy of Sciences Russia

A D Rev

McGill University

R Rosset

Laboratoire d'Aerologie France

S G Saad

American University in Cairo Egypt

J J Sharp

Memorial University of Newfoundland Canada

I V Stangeeva

St Petersburg University Russia

T Tirabassi

Institute FISBAT-CNR Italy

J-L Uso

Universitat Jaume I Spain

A Viguri

Universitat Jaume I Spain

G Walters

University of Exeter UK

A C Rodrigues

Universidade Nova de Lisboa Portugal

J L Rubio

Centro de Investigaciones sobre Desertificacion Spain

R San Jose

Technical University of Madrid Spain

H Sozer

Illinois Institute of Technology USA

E Tiezzi

University of Siena Italy

S G Tushinski

Moscow State University Russia

R van Duin

Delft University of Technology Netherlands

Y Villacampa Esteve

Universidad de Alicante Spain

Design and Nature |

Comparing Design in Nature with Science and Engineering

Editor:

C.A. BrebbiaWessex Institute of Technology, UK

C.A. Brebbia

Wessex Institute of Technology, UK

Published by

WIT Press

Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853 E-Mail: witpress@witpress.com http://www.witpress.com

For USA, Canada and Mexico

Computational Mechanics Inc

25 Bridge Street, Billerica, MA 01821, USA Tel: 978 667 5841; Fax: 978 667 7582 E-Mail: infousa@witpress.com http://www.witpress.com

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available from the British Library

ISBN: 1-84564-166-3 ISSN: 1746-448X (print) ISSN: 1743-3541 (on-line)

The texts of the papers in this volume were set individually by the authors or under their supervision.

Only minor corrections to the text may have been carried out by the publisher:

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

© WIT Press 2006

Printed in Great Britain by Cambridge Prining.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.

Preface

This volume contains papers presented at the 3rd International Conference on Design and Nature, held in the New Forest, England, in 2006, and is part of the Transactions of the Wessex Institute, permanently available on-line at www.witpress.com.

Launched in 2002, this conference acts as a forum for researchers from around the world working on a variety of studies involving nature and its significance to modern scientific thought and design. The Conference provides a channel of communication between all those working in this exciting new discipline, whether they are in academia, research institutions or industry.

Many leading discoveries have been prompted by parallels between nature and human design. Today, advances in scientific knowledge coupled with powerful computers and simulation models have made comprehensive studies of nature possible.

This book includes sections dealing with: Design in nature; Shape and form in engineering and nature; Nature and architectural design; Thermodynamics in nature; Biomimetics; Natural materials in engineering; Mechanics in nature; Bioengineering; Bionics; Solutions from nature; Evolutionary optimisation; Complexity and Sustainability studies.

The Editor is grateful to the members of the International Scientific Advisory Committee and other colleagues for helping to select the papers published in this book and to all contributors for the quality of their work.

The Editor
The New Forest, UK, 2006

Contents

Section 1: Shape and form in engineering and nature	
Flapping-wing aerohydromechanics in nature and engineering <i>K. D. Jones & M. F. Platzer</i>	3
A graphic way for notch shape optimization C. Mattheck, J. Sörensen & K. Bethge	.13
An inquiry into the morphology of Ciliate Protozoa using an engineering design approach E. L. Benjamin, M. W. Collins & D. McL. Roberts	.23
The optimized shape of a leaf petiole D. Pasini & V. Mirjalili	
Section 2: Nature and architectural design	
Sculpture house in Belgium by Jacques Gillet S. Van de Voorde, R. De Meyer, E. De Kooning, L. Taerwe & R. Van De Walle	.49
Analysis of the 'Cappadocian cave house' in Turkey as the historical aspect of the usage of nature as a basis of design <i>P. Yıldız</i>	.61
Build trees M. Despang	.71
Thermal performance of a dome-covered house Y. Lin & R. Zmeureanu	.81
Biodegradable building P. Sassi	.91

Section 3: Biomimetics

Self-healing processes in nature and engineering: self-repairing biomimetic membranes for pneumatic structures T. Speck, R. Luchsinger, S. Busch, M. Rüggeberg & O. Speck
Functional information and entropy in living systems A. C. McIntosh
Biomimetics of spider silk spinning process G. De Luca & A. D. Rey127
The preparation of biomimetic nano-Al ₂ O ₃ surface modification materials on gray cast iron surface Y. Liu, L. Q. Ren, Z. W. Han & S. R. Yu
Biomimetics: extending nature's design of thin-wall shells with cellular cores M. A. Dawson & L. J. Gibson
Designing new lubricant additives using biomimetics A. Morina, T. Liskiewicz & A. Neville157
Preparation, microstructure and properties of biomimetic nanocomposite coating L. Q. Ren, Y. Liu, S. R. Yu, Z. W. Han & H. X. Hu
Vision assistant: a human–computer interface based on adaptive eye-tracking
V. Hardzeyeu, F. Klefenz & P. Schikowski
Section 4: Natural materials engineering
Structural and torsional properties of the <i>Trachycarpus fortunei</i> palm petiole
A. G. Windsor-Collins, M. A. Atherton, M. W. Collins & D. F. Cutler185
A model for adaptive design T. Willey195
Reinforcement ropes against shear in leaves C. Mattheck, A. Sauer & R. Kappel205

Experimental investigation of moist-air transport through natural materials porous media	
I. Conte & X. Peng	211
Simulation of perspiration in sweating fabric manikin-Walter <i>J. Fan</i>	221
Section 5: Bioengineering	
State of the art of solid freeform fabrication for soft and hard tissue engineering	
P. J. S. Bártolo	233
Using Murray's law to design artificial vascular microfluidic networks R. W. Barber, K. Cieślicki & D. R. Emerson	245
Biomimetic robots for robust operation in unstructured environments <i>G. S. Ravindrabhai</i>	255
Section 6: Solutions from nature	
Animal analogies for developing design thinking C. Dowlen	267
Development of a novel flapping mechanism with adjustable wing kinematics for micro air vehicles	
A. T. Conn, S. C. Burgess & R. A. Hyde	277
Section 7: Sustainability studies	
Bionics vs. biomimicry: from control of nature to sustainable participation in nature D. C. Wahl	289
Active and adaptive sustainable environments for children's	
outdoor space M. Winkler & S. Macaulay	299
The creation of an eco-tourism site: a case study of Pulau Singa Besar A. Abdullah, A. M. Abdul Rahman, A. Bahauddin & B. Mohamed	309

Section 8: Education and training

Development and experience with a technical elective course	
"fluid flows in nature"	
J. A. Schetz	319
New educational tools and curriculum enhancements for motivating engineering students to design and realize bio-inspired products <i>H. A. Bruck, A. L. Gershon, I. Golden, S. K. Gupta, L. S. Gyger Jr.</i> ,	
E. B. Magrab & B. W. Spranklin	325
Author Index	335