DYNAMICS IN THE PRACTICE OF STRUCTURAL DESIGN

WITPRESS

WIT Press publishes leading books in Science and Technology.

Visit our website for the current list of titles.

www.witpress.com

WITeLibrary

Home of the Transactions of the Wessex Institute, the WIT electronic-library provides the international scientific community with immediate and permanent access to individual papers presented at WIT conferences. Visit the WIT eLibrary at www.witpress.com

DYNAMICS IN THE PRACTICE OF STRUCTURAL DESIGN

O. Sircovich Saar

DYNAMICS IN THE PRACTICE OF STRUCTURAL DESIGN

O. Sircovich Saar

Published by

WIT Press

Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853 E-Mail: witpress@witpress.com http://www.witpress.com

For USA, Canada and Mexico

WIT Press

25 Bridge Street, Billerica, MA 01821, USA Tel: 978 667 5841; Fax: 978 667 7582 E-Mail: infousa@witpress.com http://www.witpress.com

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available from the British Library

ISBN: 1-84564-161-2

Library of Congress Catalog Card Number: 2005928180

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

© WIT Press 2005.

Printed in Great Britain by *************

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.

Contents

Preface		ix
Acknowledg	gements	xi
List of syml	bols	xv
Chapter 1	Structural design in dynamic situations	1
PART 1	Basics	3
Chapter 2	General overview	5
1	The dynamic response of structures	5
2	Dynamic equilibrium of forces	
3	Energy in structural vibrations	
4	Linear and nonlinear response of structures	24
5	Vibrations in existing structures	
6	Working with the computer	29
7	Superposing static and dynamic effects	30
PART 2	Dynamics in design	33
Chapter 3	Dynamic events and effects	35
1	Introduction	
2	Dynamic events and effects	35
3	Response of structures	37
Chapter 4	Dynamic loads on structures	39
1	General description	
2	Working machines	41
3	Vehicle loads	44
4	Human activities	46
5	Construction loads	40

Chapter 5	Vibrations	51
1	Introduction	51
2	Vibrations of structures	51
3	Sources of vibrations	52
4	Vibrations in the design process	
PART 3	Structural materials in dynamic situations	57
Chapter 6	The rate of strain	
1	Introduction	
2	The rate of loading	
3	The rate of strain	
4	Structural materials	
5	Structural elements	64
Chapter 7	Fatigue	67
1	The phenomenon	67
2	Fatigue in structural materials	70
3	Fatigue in structural elements	
Chapter 8	Damping	77
1	Introduction	
2	Viscous damping	
3	Hysteretic damping	
4	Damping in structures	
PART 4	Structural dynamics design	81
Chapter 9	Mathematics	83
1	Introduction	83
Chapter 10	Single degree of freedom system	97
1	Introduction to SDOF	
2	Free vibration	
3	Forced vibrations	
4	Dynamic modification factor	
5	Resonance	
6	Dynamic loads	
7	Mathematical approaches	
8	The time domain	
9	The frequency domain	
10	Elastoplastic systems	
11	Nonlinear systems	
12	Torsion dynamic forces	

Chapter 11	Multidegree of freedom: lumped mass system	. 111
1	Introduction to MDOF	
2	Vibration modes	
3	Forced vibrations	. 118
4	Pulsating load	
5	Modal analysis	. 123
6	Damping in MDOF	. 124
7	The lumped masses	. 124
Chapter 12	Distributed mass system	. 127
1	Introduction	. 127
2	Mathematical approach	. 129
3	Design of a beam	. 132
PART 5	Natural dynamic loads	. 133
Chapter 13	Earthquakes	
1	Introduction	
2	Earthquakes	
3	Earthquake loads	
4	Earthquake response analysis	
5	Static force procedure	
6	Linear elastic response spectrum	
7	Analytic procedures for linear elastic response	
8	Nonlinear inelastic response	
9	Ductility	
10	Pushover analysis	
11	Soil–foundation interaction	. 154
Chapter 14	Wind loads	
1	Introduction	
2	Quasi-static wind loads	
3	The dynamic response	
4	Aeroelastic phenomena	
5	Vortex	
6	Buffeting	
7	Galloping	
8	Flutter instabilities	. 173
Selected bibl	iography	177
Index		179

Preface

Structural dynamics is a theme of wide-ranging knowledge covering a variety of topics, some of them of direct application in structural design. Among the latter a clear distinction can be made between those necessary for the engineer in the daily practice of structural design and those related to academic activities, research, and the development of commercial products.

This book was conceived and is written as an overview of some aspects of structural dynamics. It is intended for engineers who normally tackle design situations involving dynamic loads with the appropriate computer software in the daily practice of design. Presumably, the book will be complemented by (a) the technical information required for any particular dynamic problem; (b) consultation with experts about unusual dynamic design situations.

The usual practice in structural design offices is to continuously collect and update valuable technical information in this field of practice. This collection includes textbooks, a variety of Codes of Practice, Committee's Guidelines, National and International Reports on natural events and disasters, expert and especially professionally oriented reports, scientific publications, professional journals, professional catalogues of commercial products, and more.

Each chapter of the book deals independently with a subject in structural dynamics without a necessary link to the foregoing chapters, as is the case with textbooks. This approach allows the engineer to go directly to the topic of his interest at any given moment, with one exception: this is the sequence of chapters 9–12, where a certain continuity and correlation was considered for reasons of clarity of presentation. To minimize difficulties for the reader, in these chapters only a schematic elaboration of the mathematical treatment of structural dynamics is included.

In the other chapters mathematical formulations are given just by way of complementary information, so as to refresh the background of the practicing engineer. This particular means is necessary for the acquisition of a thorough insight into structural dynamics.

In some chapters portions of text are set in italic, which is designed to bring the reader's attention to topics or other text of particular importance.

This book has benefited from countless publications, mainly textbooks, reports, papers, symposium and conference proceedings, journals, and many more, dealing with structural dynamics, published in the course of decades. Together they have created a vast, rich, and deep panorama on the theme. Structural engineers, working in design and consulting engineering, like the

author of this book, are indebted to them for furnishing the professional knowledge required in their daily practice.

Last but not least, this book was conceived and written with the most profound regard for the author's colleagues, structural engineers in the daily practice of design, who carry on their shoulders enormous responsibility for the stability of structures built everywhere.

Oscar Sircovich Saar 2005