Computational Methods in Multiphase Flow III

WIT*PRESS*

WIT Press publishes leading books in Science and Technology. Visit our website for new and current list of titles. www.witpress.com

WIT*eLibrary*

Home of the Transactions of the Wessex Institute. Papers presented at Computational Methods in Multiphase Flow III are archived in the WIT eLibrary in volume 50 of WIT Transactions on Engineering Sciences (ISSN 1743-3533).

The WIT eLibrary provides the international scientific community with immediate and permanent access to individual papers presented at WIT conferences. http://library.witpress.com

FLUID MECHANICS

Editorial Board

B.N.Mandal Indian Statistical Institute India

E.Baddour National Research Council of Canada Canada

S.K. Bhattacharyya Indian Institute of Technology Kharagpur, India

A. Chakrabarti Indian Institute of Science India

S.K. Chakrabarti Offshore Structure Analysis, Inc USA

M.W. Collins South Bank University UK

G. Comini Universita di Udine Italy

L.Debnath University of Texas-Pan American USA

J.P. du Plessis University of Stellenbosch South Africa

H.J.S. Fernando Arizona State University USA **R.Grimshaw** Loughborough University UK

R.Grundmann Technische Universität Dresden, Germany

R.C.Gupta National University of Singapore Singapore

D.Hally Defence Research Establishment Canada

M.Y.Hussaini Florida State University USA

D.B. Ingham University of Leeds UK

L G Jaeger DalTech, Dalhousie University Canada

S.Kim University of Wisconsin-Madison USA

T.Matsui Nagoya University Japan

A.C.Mendes Universidade de Beira Interior Portugal **T.B.Moodie** University of Alberta Canada

A.J.Nowak Technical University of Silesia Poland

M. Ohkusu Kyushu University Japan

W. Perrie Bedford Institute of Oceanography Canada

H.Pina Instituto Superior Tecnico Portugal

E.Outa Waseda University Japan

H.Power University of Nottingham UK

D. Prandle Proudman Oceanographic Laboratory UK

K.R. Rajagopal Texas A & M University USA MRahman Dalhousie University Canada

D.N. Riahi University of Illinois USA

M G Satish DalTech Canada

H.Schmitt Bovenden Germany

P. Škerget University of Maribor Slovenia

P.A. Tyvand Agricultural University of Norway Norway

R. Verhoeven Ghent University Belgium

L.C. Wrobel Brunel University UK

M.Zamir The University of Western Ontario Canada THIRD INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN MULTIPHASE FLOW

MULTIPHASE FLOW III

CONFERENCE CHAIRMEN

C. A. Brebbia Wessex Institute of Technology, UK

A.A. Mammoli University of New Mexico, USA

INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE

M Gorokhovski M I Ingber C Koenig W-Q Lu S Parameswaran C Petty N C Shapley L Skerget Z Wu

Organised by:

Wessex Institute of Technology, UK and University of New Mexico, USA

Sponsored by: WIT Transactions on Engineering Sciences

Computational Methods in Multiphase Flow III

Editors

A.A. Mammoli University of New Mexico, USA

C. A. Brebbia Wessex Institute of Technology, UK

A.A. Mammoli

University of New Mexico, USA

C.A. Brebbia

Wessex Institute of Technology, UK

Published by

WIT Press

Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Tel: 44 (0) 238 029 3223; Fax: 44 (0) 238 029 2853 E-Mail: witpress@witpress.com http://www.witpress.com

For USA, Canada and Mexico

Computational Mechanics Inc

25 Bridge Street, Billerica, MA 01821, USA Tel: 978 667 5841; Fax: 978 667 7582 E-Mail: infousa@witpress.com http://www.witpress.com

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available from the British Library

ISBN: 1-84564-030-6 ISSN: 1746-4471 (print) ISSN: 1743-3533 (on-line)

> The texts of the papers in this volume were set individually by the authors or under their supervision. Only minor corrections to the text may have been carried out by the publisher.

No responsibility is assumed by the Publisher, the Editors and Authors for any injury and/ or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

© WIT Press 2005

Printed in Great Britain by Cambridge Printing.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.

Preface

The topic of multiphase flow is broad, encompassing a variety of fluids, transported solids and flow regimes. A common feature is that there is generally a dispersed, or discontinuous phase, carried by a continuous phase. The interactions between particles or deforming drops in the disperse phase dominate the overall behavior of the flow. Much of the research has focused on understanding these complex interphase interactions, through a wide array of theoretical, computational and experimental techniques. Research in multiphase flows is driven by the challenge of understanding such complex phenomena, as well as by practical considerations dictated by technological needs.

Despite recent advances in experimental and computational capabilities, multiphase flows still present many open questions. While for individual, rather restricted classes of flows (such as, for example, rigid spheres in a Newtonian fluid) there exist several models which provide good simulation under a certain set of conditions, these are not robust. Difficulties arise especially when the scale of the disperse phase is comparable to the scale of the characteristic dimension of the flow itself. In this case, boundary conditions are particularly difficult to impose. Modeling has been approached from all length scales, from the particle level, with direct numerical simulation, to the continuum level via constitutive equations of varying complexity, while some recent work was aimed at combining various length scales within the same model.

Similarly, experimental work can focus of many aspects of the flow process, from phase distributions, to small-scale interactions between two particles, to macroscopic fluid and flow properties. The presence of multiple phases renders optical observation difficult for moderate and high concentrations of the disperse phase, so non-invasive techniques have been adapted and devised to achieve the capability of seeing inside the flow, sometime in real-time. For low concentrations, optical observation and PIV are still the preferred choice.

A recent area of research is multiphase flow in porous media, in which the carrier phase and the dispersed phases (drops, bubbles, particles) interact with each other and with the porous phase, thereby adding another level of complexity. These flows are increasingly important, particularly in the energy sector (geological sequestration of greenhouse gases, enhanced oil recovery, fuel cells). This research area is becoming treatable due to constantly increasing computing capacity, as well as improved experimental diagnostics This book covers a broad spectrum of the most recent research in multiphase flow, ranging from basic research, to industrial applications, to the development of new numerical simulation techniques.

Hoping that the readers finds this collection of papers useful in pursuing their activity, the authors wish to acknowledge the invaluable help of the Scientific Advisory Committee in selecting the papers and ensuring their quality.

The Editors Portland, Maine, 2005

Contents

Section 1: Suspensions

Modelling of coagulation efficiencies in rotating systems M. Breitling & M. Piesche	3
The study of asphaltene precipitation in dilute solution by calorimetry <i>A. Miadonye, L. Evans & T. M. McKenna</i>	13
Section 2: Bubble and drop dynamics	
A homogenous cavitation transport model in turbo machinery I. Biluš, L. Škerget, A. Predin & M. Hriberšek	25
Mixing in a gas/liquid flow countercurrent bubble column T. A. Bartrand, B. Farouk & C. N. Haas	35
A contribution to the problem of the continuous dewatering process J. Mls	45
Numerical modelling of the Riemann problem for a mathematical two-phase flow model D. Zeidan	53
Droplet collisions using a Level Set method: comparisons between simulation and experiments S. Tanguy, T. Ménard & A. Berlemont	63
An indirect boundary integral equation for confined Stokes flow of drops	
G. Zhu, A. A. Mammoli & H. Power	73

Simulations of pressure pulse-bubble interaction using the	
boundary element method	
K. C. Hung, S. W. Fong, E. Klaseboer, C. K. Turangan, B. C. Khoo	
& T. G. Liu	33

Section 3: Flow in porous media

Multilevel adaptive modeling of multiphase flow in porous media H. Gotovac, R. Andričević, B. Gotovac, M. Vranješ & T. Radelja
A three-dimensional finite element method for simulating gas and water two-phase flow induced by excavation in sedimentary rock <i>H. Li, P. G. Ranjith, Y. Narita, Y. Kawahara & M. Sato</i>
Section 4: Interfaces
Influence of the interfacial pressure jump condition on the simulation of horizontal two-phase slug flows using the two-fluid model <i>J. N. E. Carneiro, A. J. Ortega & A. O. Nieckele</i>
Interfacial phenomena during crystal growth: solute redistribution, double-diffusive convection and non-isothermal phase-change <i>WQ. Lu, K. Shi & J. Liu</i>
Phase-field simulation of two-phase micro-flows in a Hele-Shaw cell <i>Y. Sun & C. Beckermann</i>
Section 5: Turbulent flow
Stabilization of heat transfer in a turbulent film flow

Stabilization of heat transfer in a turbulent film flow S. Sinkunas, J. Gylys & A. Kiela	61
Effects of droplet preferential segregation in turbulent flows on the	
mixture fraction topology J. Réveillon & F. X. Demoulin	71

Section 6: Injectors and nozzles

Numerical analysis of three-dimensional two-phase flow behavior	
in a fuel assembly	
K. Takase, H. Yoshida, Y. Ose & H. Akimoto	183

real-fluid model	
G. C. Cheng & R. C. Farmer	193
A three dimensional three phase reactive flow for simulating the pulverized coal injection into the channel of the blast furnace raceway <i>J. A. Castro, A. W. S. Baltazar & A. J. Silva</i>	207
Section 7: Particle image velocimetry	
Gas-liquid two-phase flow in a downward facing open channel	
D. Toulouse & L. I. Kiss	219
D. Toulouse & L. I. Kiss	219
 D. Toulouse & L. I. Kiss The effect of two inclined circular plunging jets on air entrainment in an aeration tank M. S. Baawain, M. Gamal El-Din & D. W. Smith	219 229

Section 8: Macroscale constitutive models

A fixed coarse-grid thermal-fluid scheme and a heat conduction	
scheme in the distinct element method	
Y. Shimizu	241
Modeling multi-phase flow using CFD with related applications	
D. Lin, P. Diwakar, V. Mehrotra, B. Rosendall & J. Berkoe	251

Section 9: Large eddy simulation

The dispersion of a light solid particle in high-Reynolds number	
homogeneous stationary turbulence:	
LES approach with stochastic sub-grid model	
M. Gorokhovski & A. Chtab	. 265
Formulation of a two-phase filtered density function approach for	
large eddy simulation	
M. D. Carrara & P. E. DesJardin	. 275
Application of the two-phase filtered density function approach for	
LES of a 2D droplet laden turbulent mixing layer	
M. D. Carrara & P. E. DesJardin	. 283

Section 10: Finite volumes

A linearly semi-implicit AMR method for 1D gas-liquid flows N. Andrianov, F. Coquel, M. Postel & QH. Tran	295
Computational fluid dynamics simulation of a very dense liquid-solid flow using a Eulerian model J. Yang & R. J. Chalaturnyk	305
Section 11: Interface tracking methods	
The liquid-liquid interface under planetary rotation C. S. König & I. A. Sutherland	317
Development of low-diffusion flux-splitting methods for gas-liquid flows with interface propagation and phase variation D. Mao, A. D. Harvey & J. R. Edwards	. 327
Primary break-up: DNS of liquid jet to improve atomization modelling T. Ménard, P. A. Beau, S. Tanguy, F. X. Demoulin & A. Berlemont	. 343
A coupled interface-tracking/interface-capturing technique for free-surface flows M. Watts, S. Aliabadi & S. Tu	353
Author Index	. 363