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ABSTRACT 
The bonds between pollution sources, contaminant concentrations and ecological damage are quite 
complex to access, but the proper management of river basins requires the full understanding of those 
interactions. In the present study, four SEM-PLS models were used to set up environmental  
cause–effect relationships in a heavily polluted urban catchment: the Ave River Basin. Data were 
collected within this watershed relative to point source discharges, diffuse emissions, diffuse indicators 
(e.g. land use), contaminant concentrations and a Portuguese index of macroinvertebrates diversity 
(IPtIN). The same dataset was used in the four SEM-PLS models, but each run was based on a different 
combination of latent variables. In all cases, it was possible to recognize that nitrogen discharges from 
livestock production, industrial and urban treatment plants are the dominant threats to water quality. 
The model results were robust, characterized by high, adjusted R Squared values – from 0.744 to 0.931. 
The models were also used to draw water quality maps. Now, the purpose was to test their prediction 
capability. Since more than 80% of the water courses were correctly classified for IPtIN, the predictions 
were considered feasible. 
Keywords:  SEM-PLS, water quality, ArcGIS, Ave River basin. 

1  INTRODUCTION 
Growing population, intense economic development and following demographic expansion 
place not only heavy demands but also pollution sources in hydric resources. To respond to 
such threats is crucial to apply conservative management policies, guided by supportive 
studies with an environmental scope. 
     In water quality studies is crucial to use models, which can be process-based (mechanistic) 
or data-based (statistical) [1]. For the first case, it is necessary to have a deep scientific 
awareness, since these models are based in physical, chemical and biologic processes [2]. 
Streeter-Phelps equation [3], is a clear example of a mechanistic model, where dissolved 
oxygen and oxygen demands can be calculated along with time and distances. Many  
process-based models can be used for surface water quality studies, since they reveal to be 
powerful tools that can be used to predict transport of contaminants in water bodies, such as 
SWAT (Soil and Water Assessment Tool) [4], WASP (Water Quality Analysis Simulation 
Program) [5], MIKE 11 [6], HSPF (Hydrological Simulation Program-FORTRAN) [7], 
ELCOM-CAEDYM (Estuary and Lake Computer Model Computational Aquatic Ecosystem 
Dynamics Model [8]. Data-based models appeal to statistical methods and can be used for 
prediction or to establish cause-effect relationships. The advantage is that for experimental 
datasets the interactions between variables are revealed, what does not happen in  
process-based models, where all the interactions between pollution sources and contaminants 
are already defined.  
     SEM (Structural Equation Modelling), is an advanced statistical tool that has been widely 
used mostly to reveal complex cause-effect relationships. Generically there are two types of 
SEM [9], CB-SEM (Covariance-based SEM) and PLS-SEM (Partial Least Squares SEM) 
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also called as PLS-PM (PLS Path Modelling). In the first case, the estimation procedure is 
based on a maximum likelihood estimation, while PLS-SEM is based in ordinary least 
squares regression [10]. The benefits of each type of SEM differs from study, purpose and 
dataset, but the opinion of the most appropriate method is still divergent [9], [10]. SEM first 
steps were given in social studies, nowadays non-social sciences are adopting this modelling 
technique, including environmental sciences. Already in 1994 SEM was applied to study 
surface water quality [11], years later other studies used SEM, for purposes such as an 
evaluation of groundwater quality [12], comparison of pollution sources in surface waters 
[13] and even population awareness about water quality [14], [15]. In a recent study [16] 
SEM-PLS was used to compare the relationship between point source pressures, diffuse 
pressures and diffuse indicators with contaminants and ecological integrity, while [17] used 
simplified SEM-PLS models. 
     In this study, SEM-PLS was applied to an Ave River basin environmental dataset. This 
area (Fig. 1) was chosen due to the vast water pollution background. In the second half of the 
20th Century, it was classified as one of the most polluted river basins in Europe, due to  
the high effluent discharge without treatment. At the end of the century, the Portuguese 
Government was committed with a Plan to remediate the Ave River. Since then water quality 
has improved, but some problems persist, which has caught the attention of several experts 
and researchers that conducted studies to evaluate the pollution status and changes in this 
river basin. In 1992 a study [18] evidenced that several industries were the cause of heavy 
metal pollution. In 2009 when comparing data from previous studies [19] it was noticed that 
heavy metal pollution was decreasing [20], on the other hand, other threats have arisen in this 
river basin. The eutrophication effects were accessed in a study [21], accusing not only 
nutrients from discharges but even from agricultural practices, though other authors [22], 
[23] defend that livestock production is another threat for the water quality of this river  
basin. Therefore to approach such immensity of variables SEM-PLS was the chosen 
statistical method. 
 

 

Figure 1:   Portugal Map with altitude, Ave River basin land uses. 
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2  METHODOLOGY 
The objective of this study was to use pollution data in four structural equation models, 
transpose the results into water quality maps for Ave River basin. The applied six-step 
methodology is represented in Fig. 2.  
 

 

Figure 2:  Schematic methodology. 

     As a first step, it was gathered all the necessary data for structural equation models. Data 
were grouped into three categories, pollution sources, contaminants concentration, and  
water quality.  
     For pressures, it was gathered a vast number of variables such as industrial and urban 
annual discharges in surface waters of phosphorous, nitrogen, oxygen demands (CBO5 and 
COD) (kg.year-2), percentage of area covered with different land uses and land use conflicts 
[24], population density, soil loss (t.ha-1.year-1), wildfire risk, nitrogen and phosphorous 
discharges from agriculture and forest (in the same variable) and livestock production 
(kg.km-2.year-1). For contamination, the gathered variables were the annual averages of 
concentrations of metals As, Cr, Cu, Fe, Pb, Zn (µg/l); nutrients NO3 and PO4 (mg/l); total 
suspended solids (mg/l) and oxygen demands COD and BOD5 (mg/l). For Water Quality, was 
used as a single variable, North Invertebrate Portuguese Index (IPtIN). This index  
was calculated through the count and diversity of benthic macroinvertebrates in river sites, 
variating the index score from 0 to 1 (dimensionless). A high score represents high 
macroinvertebrates biodiversity while a low score conveys that there is a lack of biodiversity. 
One advantage of the usage of this bioindicator is that macroinvertebrates are sensitive to 
practically all forms of pollution, so by calculating the IPtIN pollution effects are accessed, 
for a detailed explanation, please see [25]. All the data sources are demonstrated in Table 1.  
     For step 2, it was necessary to interpolate IPtIN, surface water parameters, urban and 
industrial discharge, using Topo to Raster tool in ArcMap [26], to create a raster file for each 
variable. For other variables, it was not necessary to interpolate since the information was 
provided in the form of shapefiles and rasters covering the river basin. Since this study is 
hydrological and statistic, it was chosen to use sub-basins as statistical samples, delineated 
through ArcHydro [27]. In step 3 it was attributed a value of each variable for each sub-basin, 
using Zonal Statistic as Table tool, creating a data matrix for each river basin. In step 4 it was 
removed some variables due to multicollinearity, the used criteria were that the VIF (variance 
inflation factor) of each variable among a group (contamination, pressures) would not be 
higher than 5, which is a recommended limit value for SEM-PLS models [28]. For Water 
Quality this VIF analysis was not applied since this latent variable is composed of a single 
measured variable, IPtIN. In Fig. 3 is demonstrated an example of an SEM-PLS formative 
model, composed of three latent variables (A, B and C) and nine measured variables (1 to 9).  
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Table 1:  SEM-PLS data Source for models. 

Variable Used In Model Units Data Source 

IPtIN x Dimentionless 
https://www.sciencedirect.com/ 

science/article/pii/S014765131630207X 

BOD5 x mg/l 

http://snirh.pt/ 

COD x mg/l 

NO3 x µg/l 

PO4 x µg/l 

As  µg/l 

Cr x µg/l 

Cu  µg/l 

Fe x µg/l 

Pb  µg/l 

Zn  µg/l 

TSS  mg/l 

Wildfire Risk x dimensionless http://www.icnf.pt 

Population Density x inhabitant/km2 http://censos.ine.pt 

Agricultural Areas x %(km2/km2) http://www.dgterritorio.pt/ 

Conflicts x %(km2/km2) 
http://www.sciencedirect.com/ 

science/article/pii/S0048969715313139 

Agriculture and Forest N  kg/yr/ km2 

http://www.apambiente.pt 

Agriculture and Forest P x kg/yr/km2 

Livestock N x kg/yr/ km2 

Livestock P  kg/yr/ km2 

Industry BOD5  kg/yr 

Industry COD x kg/yr 

Industry N x kg/yr 

Industry P  kg/yr 

Urban BOD5  kg/yr 

Urban COD  kg/yr 

Urban N x kg/yr 

Urban P  kg/yr 
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Figure 3:  Formative structural equation model example. 

     As a fifth step, SEM-PLS models were created. In an SEM-PLS model, the user creates 
latent variables (LV), establishes the connections between them and chooses which measured 
variables (MV) compose each LV. The algorithm attributes weights (w) for each  
measured variable and path coefficients (pc) for each connection between LVs to maximize 
the R squared. For each LV is assigned to a measured and predicted score eqns (1) and (2) 

 Measured Score: LVi=∑ (MVi×wi)
n
i=1 , (1) 

 Predicted score: LV௝ ൌ ∑ ሺLVi→j×
n
i=1 pc

i→j
ሻ. (2) 

     The measured score is based in the sum of the product of each MV with the attributed 
weight, while the predicted score is based in the sum product of the antecedent latent 
variables with the respective path coefficient. In the example, latent variable A is the only 
that does not have a predicted score because it does not have any antecedent latent variables.  
After determining the predicted score of IPtIN (for each sub-basin), it was created a raster file 
through the interpolation of the values in each sub-basin centroid. The created raster was used 
to attribute an average value of IPtIN for each watercourse, which is step 6. 

3  RESULTS AND DISCUSSION 
Four SEM-PLS models were applied for the same dataset. Model 1, Fig. 4, was depicted with 
only 3 latent variables, “pollution sources”, “contamination” and “water quality”, similar to 
one of the models presented in a previous study [17]. In Model 2 “water contamination” was 
divided into three types of contamination, by “oxygen demands”, “nutrients” and “metals”. 
Model 3 “pollution sources” were divided according to their type of source, “point source 
pressures”, “diffuse emissions” and “diffuse indicators”. Model 4, Fig. 5 it is the most 
complex model, where all the water contamination forms, and pollution sources  
are differentiated.  
     At first sight, all the models seem to be highly explicative, since the adjusted R squared 
values are high for “water quality”, where the values for models 1 to 4 are 0.931, 0.816, 0.928 
and 0.828, respectively. It is also stated that, for the same dataset, when more latent variables 
are used in a model, the algorithm loses the capacity to reach higher R-squared values for 
endogenous latent variables (with incoming arrows), because are shown the adjusted  
r-squared values in models.  
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Figure 4:  Structural equation models 1, 2 and 3. 
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Figure 5:  Model 4. 

     Most of the path coefficients from all the models seem to have a correct sign. For example 
in model 1 “pollution sources” increase “water contamination” (pc = 0.937) while “water 
contamination” decreases “water quality” (pc = -0.965). But in other models, there are some 
path coefficients that do not have an expected value. In model 2 “nutrients” have a null effect 
in “water quality” this can be possible if the other pollution sources have a stronger impact 
in the loss of ecological integrity, so the effect of “nutrients” is absorbed by other variables. 
In model 3 “point source pressures” and “diffuse emissions” increase “water contamination”, 
but “diffuse indicators” decrease it (pc = -0.211). Possibly this happens because the other 
LVs have a direct impact in “water contamination”, while “diffuse indicators” are not so 
directly associated to “water contamination” and is attributed a negative sign because the 
measured variables that composed it are positively correlated with “water contamination”. 
For model 4 is clearly verified the same, besides both “point source pressures” and “diffuse 
emissions” have a positive pc in “nutrients”, “oxygen demands” and “metals”, but  
“diffuse indicators” path coefficients are negative. In model 4 is still noticed that nutrients 
have an almost null effect in “water quality” just like in model 2.  
     To compare the effect of each latent variable and measured variable among the four 
models it was calculated the product between the total effect of each LV in “Water Quality” 
with the weight of each measured variable that composes it (Table 2). For instance, in model 
1 the direct effect (or path coefficient) of “pollution sources” in “water quality” is 0 because 
these variables are not connected, but since “pollution sources” composes “water 
contamination” (pc = 0.937) that composes “water quality” (pc = -0.965), the indirect effect 
of “pollution sources” in “water quality” is the product of (-0.965 × 0.937) which is -0.904. 
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The total effect is the sum of the direct and indirect effects, which is still -0.904 in this case. 
In model 1 the product of the total effect with the weight of nitrogen from urban discharges 
(Urban N weight = 0.159) is -0.144. This procedure was applied to all variables in all models, 
as is shown in Table 2. 

Table 2:  Product of total effect on water quality and the weight for each measured variable. 

  Model 1 Model 2 Model 3 Model 4 
BOD5 0.181 0.164 0.164 0.184 
COD -0.832 -0.996 -0.807 -0.933 
NO3 -0.186 0.000 -0.161 0.005 
PO4 -0.260 0.000 -0.276 0.004 
As 0.300 0.073 0.303 0.066 
Cu 0.102 -0.005 0.104 -0.002 
Fe 0.236 -0.120 0.214 -0.119 

Agricultural Areas -0.054 -0.067 0.021 -0.013 
Agriculture and Forest P 0.073 0.082 0.105 0.090 

Conflicts 0.135 0.221 0.106 0.089 
Industry COD 0.783 0.356 0.751 0.520 

Industry N -0.925 -0.504 -0.888 -0.683 
Livestock N -0.297 -0.592 -0.306 -0.444 

Population Density -0.156 -0.110 -0.018 -0.003 
Urban N -0.144 -0.203 -0.175 -0.226 

Wildfire Risk -0.033 -0.075 0.129 0.040 
 
     By analysing the reported results in Table 2, it can be assured that chemical oxygen 
demand (COD) is the surface water parameter that has the most substantial effect in the 
decrease of “water quality”, while biological oxygen demand (BOD5) do not. This difference 
might be due to the fact that COD in surface water is high when many industrial effluents are 
discharged due to the low concentration of organic matter. In the other hand, BOD high 
values are typical from rivers with urban effluents due to the high organic loads. Probably 
the model attributed a stronger and negative effect to COD, and weaker and positive to BOD 
since industrial effluent discharge has a higher impact in the river basin, rather than urban 
effluents. Arsenic (As) concentration is another parameter that has a similar effect in all 
models, and it does not low “water quality”. This cannot be viewed that As increases water 
quality, because the nefarious effects of arsenic in the environment are well-known, but 
according to the applied modulation technique this variable is not restraining water quality 
in Ave river basin, probably because pollution sources that release arsenic few, which is 
concordant to the decreasing tendency of heavy metal pollution [20].  
     According to the models, the contribution of NO3, PO4, Fe and Cu in IPtIN is 
inconclusive. Since is seen that in models 1 and 3 nutrients decrease water quality, while in 
models 2 and four, nutrients do not increase water quality, but Cu and Fe decrease. The main 
difference from models 1 and 3 to models 2 and 4 is that the latent variable “contamination” 
is substituted by three other latent variables, where the type of contamination becomes 
differentiated into “metals”, “nutrients” and “oxygen demands”. In models 2 and 4 is possible 
to trace the individual effects of “metals”, “nutrients” and “oxygen demands”. Maybe the 
effects of nutrients occur when these variables are gathered with other surface water 
parameters, which can be called as a combined effect. While for Fe and Cu, the effect might 
occur isolated. Anyhow for both of these variables, their contribution might be 

152  Water and Society V

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and the Environment, Vol 239, © 2019 WIT Press



underestimated in different models due to the fact that COD has high influence in water 
quality and might absorb their effect. As it can be seen in supplementary material, COD is 
the variable with the strongest correlation with IPtIN ( rPearson = -0.888), and so is the surface 
water parameter with strongest decrease effect with IPtIN along with the four models. 
     For agricultural areas, the product is positive for models 1, 2 and 4 but near to zero for all, 
so this variable does not seem to restrain water quality. For wildfire risk in models 1,2 and 4 
the product is near to zero, only in model 3 the product is positive and considerable, so in an 
overall perspective, the effect of this variable is unknown for Ave river basin water quality. 
The releases of phosphorous from forest and agriculture, land use conflicts and released COD 
from industry are pressures that do not restrain water quality. Discharges of nitrogen from 
industry, livestock, and urban discharges are the pressures that considerably decrease water 
quality in the river basin, while for population density it is verified that besides the sign of 
the product is negative for all models, the results are near to zero, so it is assumed as a  
minor pressure.  
     The SEM-PLS prediction of IPtIN for each sub-basin were interpolated into raster files, 
for each watercourse. It was calculated the average value and then classified as  
very poor, poor, moderate, good and excellent according to the IPtIN Portuguese classification 
[25], Fig. 6. 
     Since adjusted R squared values of “water quality” are considerably high, the prediction 
maps of are quite similar measured IPtIN. The classification of water courses majorly matches 
for all models, the unmatched watercourses are presented in Fig. 6 (F). For a clear distinction 
of the prediction results, the percentage of Ave River basin watercourses length is shown in 
Table 3, comparing the measured classification with the predicted. 
 

 

Figure 6:  IPtIN comparison: (a) Measured; (b) Model 1 prediction; (c) Model 2 prediction; 
(d) Model 3 prediction; (e) Model 4 prediction; and (f) Mismatch predictions. 
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Table 3:  Comparison of measured IPtIN with prediction for each watercourse. 

Measured → Model Model 1 Model 2 Model 3 Model 4 
Very Poor → Very Poor 7.9% 7.9% 7.9% 7.9% 

Poor → Very Poor 1.3% 3.1% 1.3% 1.3% 
Poor → Poor 53.2% 44.9% 53.2% 46.8% 

Poor → Moderate 0.0% 6.4% 0.0% 6.4% 
Moderate → Poor 1.6% 0.0% 1.6% 0.0% 

Moderate → Moderate 29.3% 30.9% 29.3% 30.9% 
Good → Moderate 3.0% 3.0% 3.0% 6.8% 

Good → Good 3.7% 3.7% 3.7% 0.0% 
 
     For models 1 and 3, 94.1% of the prediction matches, while for models 2 and 4, 81.6% 
and 81.7% respectively. Models 1 and 3 have exactly the same prediction classification and 
the highest percentage of classification matches. These models have in common that the 
surface water parameters are all gathered in the same LV, which resulted in higher 
predictions, while in models 2 and 4 lower matching percentages were obtained. The used 
algorithm in SEM-PLS models tends to maximize all the R-Squared Values for all latent 
variables, so as more latent variables are placed in the model the R squared value of crucial 
variable “water quality” decreases, so since models 1 and 3 have only 2 latent variables that 
have a calculated R-squared, they can explain more variation of IPtIN, which make them more 
adequate for prediction purposes rather than models 2 and 4. 
     According to the Portuguese legislation (Decree-law no. 236/98), the maximum allowed 
concentration for drinking purposes are 250 mg/l (NO3), 50 µg/l (As), 100 µg/l (Cu), and  
50 µg/l (Fe). In any the locations of Ave River basin, these thresholds were not overlapped. 
For COD, BOD and PO4 the limit values are established for captured water for the production 
of human consumption water, respectively 3 mg/l, 30 mg/l and 400 µg/l. For the 92 analysed 
river basins it was founded that the concentration of BOD and PO4 exceeded the limit values 
in 1 and 12 sub-basins, respectively. Besides the number of exceedances is not high, it is 
essential to refer that even when the concentrations are below legal limits there is still 
possible to track damages in ecosystems [29]. So when water quality is studied is crucial to 
use bioindicators, because not only chemical status determines water quality, but also 
ecological integrity. 
     SEM-PLS was the chosen prediction technique, due to the fact that the presented models 
are simple to analyse. The cause-effect relationships were clearly demonstrated in four 
models and the mismatch predictions were low. When modelling techniques are used, is 
important to have not only a robust and explicative model but also, when possible, simple to 
analyse, by readers and or users, because models are communications tools [30]. 

4  CONCLUSIONS 
Four SEM-PLS data models were created with the same dataset, this study can lead to 
conclude that each model has its purpose. Model 1 is the simplest model, as an advantage is 
the most accessible model to interpret for practically any reader and like model 3, they are 
the most suitable for prediction purposes. Models 2 and 3 differentiate types of contamination 
and pollution sources separately, which makes them quite useful when these subjects are 
studied disjointedly. Model 4 contains more information than all the other models, due to the 
higher number of latent variables it can lead to a better understanding of the relationship 
between different pollution sources and released contaminants. 
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     In further studies is intended to use these models to predict IPtIN for Ave River basin, by 
using new pressure values in sub-basins, in order to verify the validity of these models for 
future data. As it was demonstrated in another study [17] that the application of SEM-PLS in 
unpolluted basins can result in lower R-Squared values what would lead to an incorrect 
classification of IPtIN. Anyhow this methodology should be compared and tested with another 
river basins, but it is warned that not the same variables can be always used because the 
dismissed variables through multicollinearity might not be the same. 
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