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ABSTRACT 
The objective of a drinking water network is to provide a good quality of water to users. Accidental or 
intentional contamination can degrade the water quality and consequently threats the consumer’s health. 
Generally, the water quality is monitored using traditional methods, based on manual sampling, which 
can take several days. Early warning of water contamination can be achieved using smart technology. 
This paper presents a field study of the use of this technology in real-time monitoring of the water 
quality. The field study is conducted at the Campus of the University of Lille in the North of France 
within the European Project “SmartWater4Europe” (http://www.sw4eu.com). Two sensors are installed 
in the campus: S::CAN and EventLab which measure several water quality parameters such as TOC 
(Total Organic Carbon), turbidity, refractive index, etc. This paper presents analysis of these parameters 
as well as the influence of hydraulic parameters on the water quality. It presents also an event detection 
system, which is developed using CANARY software. A sensitivity study is presented to determine the 
appropriate parameters in order to reduce false alarms and to determine the probability of possible 
event. 
Keywords: water quality, monitoring, event detection, smart technology. 

1  INTRODUCTION 
The main objective of the water supply is to ensure a safe drinking water for consumers. 
Water distribution system (WDS) can be subjected to accidental contamination or malicious 
attack which can affect the water quality. Although treatment works are closely monitored 
and controlled in the developed countries, this is not the case for all less developed countries. 
Many factors such as backflow, pipes break, physico-chemical and biological reactions and 
corrosion, can induce the deterioration of water quality. 
     In order to protect public health from contamination events, water utilities are concerned 
by a real-time monitoring of the water quality. In general, water quality control is based on 
taking manual samples in a periodic basis, and then doing several laboratory analyses:  
i) physico-chemical to determine organoleptic characteristics of tested water; and  
ii) microbiological to identify the presence of pathogenic microorganisms. These traditional 
methods can take from several hours to some days.  
     Contamination could occur in WDS and causes serious diseases. Recently, a 
contamination by industrial chemical (MCHM) occurred in the distribution networks of 
Charleston, West Virginia (USA) and affected more than 300,000 consumers [1]. 
     In order to prevent contamination events earlier and to protect the water network from any 
intrusion, water companies could use smart technology, which allow a rapid detection of 
abnormal events. On-line water quality sensors can be used to enhance the monitoring of the 
water quality in real-time [2]. According to a recent survey by Walsby [3], the smart 
technology could lead to high savings in water industry (between 7.1 and 12.5 billion US$ 
per year). The use of the smart technology in real-time monitoring of the water quality is 
recent. It requires yet both laboratory and field studies for its implementation at high scale. 
This paper concerns this issue, it presents the results of the use of the smart technology for 
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the real-time control of the water quality in the Scientific Campus of the University of Lille, 
which stands for a town of around 25,000 users. 

2  MATERIALS AND METHODS 
Within the European project SmartWater4Europe, we have used S::CAN and Optiqua 
EventLab for the on-line control of the water quality.  
     EventLab uses an optical probe that ensures an Early Warning System (EWS) for water 
distribution grid, without the need of reagents or any consumables. It can be installed and 
accessed for servicing without interrupting the main flow [4]. Based on Mach-Zehnder 
Interferometer (MZI) principle, this device measure continuously, each minute, the variation 
of refractive index (RI), which is an effective indicator of the status of water quality. Any 
substance dissolved in water affects the refractive index of the water matrix [5]. Basing on 
its benefits, the refractive index (RI) is used for early alert of water contamination. The use 
of refractive index (RI) has a number of advantages for water quality monitoring and the 
detection of water quality incidents: consistent sensitivity for all substances, response linear 
with concentration and high resistance to matrix interference [6]. The variation of refractive 
index (RI) is illustrated by the measurement of variation of phase to which it is directly 
proportional. The water temperature is also monitored. Data is accessible via server web. 
This sensor has proved a high sensitivity in the rapid detection of any type of chemical 
contaminant: organic or inorganic [4]. 
     S::CAN micro::station allows an online monitoring of various water quality parameters. 
It contains three main elements: Spectro::lyser, S::CAN probes and controller assembled on 
one panel. With a 3G SIM card, the data are transmitted continuously to a web server that 
can be connected to a Supervisory Control and Data Acquisition (SCADA) system. A 
con::cube terminal with moni::tool software ensures data acquisition, data display and station 
control [7]. The main function of this device is to detect anomalies in the controlled 
parameters. A reference line for each parameter is obtained for a good quality of water. Then, 
any significant deviation from the reference is detected as possible events occurred in water, 
due to the potential presence of a contaminant. Four main probes ensure the measurement, 
every minute, of the water quality parameters: 

 i::scan probe allows the control of various reliable indicator of quality, the absorbance 
UV254, the turbidity (EPA and ISO), organic substance by measuring TOC (Total 
Organic Carbon) and DOC (Dissolved Organic Carbon), the color and the 
temperature. 

 Condu::lyser measure the conductivity, as indicator of water mineralization, and the 
temperature. 

 pH::lyser ensure the measurement of pH and temperature. 
 Chlori::lyser evaluate the quantity of free chlorine in water. 

     In addition to the deployment of quality sensors in the distribution network, an Event 
Detection System (EDS) constitutes an important part of the Contamination Warning System 
(CWS). An EDS can ensure an interface that analyses real-time data and detects any 
unexpected data. The open source software Canary is used in this work for analysis of water 
quality data collected in the Campus. The main purpose of Canary is to analyze, in near  
real-time, the data (water quality signals and operations data) from a SCADA System. Then, 
it identifies the probability of possible events in water. An event in the water signal is defined 
as an anomalous reading from sensors that differ from normal data. Water quality event 
detection algorithms within Canary automatically identify significant deviations from 
expected water quality values [8]. 
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     The detection methodology used in Canary software can be summarized in four steps [8]. 
Firstly, a future value is predicted based on historical data. This can be done by two main 
approaches: Linear Prediction Coefficient Filter (LPCF) and Multivariate Nearest Neighbor 
(MVNN). The LCPF method uses the weighted average of previous data to estimate the value 
at the next step. The MVNN approach compares the Euclidean distance between the current 
measured water quality and any water quality measurement within the recent past in the 
multivariate space [9]. Once the value at the next step is available from the sensors, it is 
compared with the estimated one by calculating the residual (difference between observed 
and predicted value) in units of standard deviation. The maximum residual is then compared 
with a user predefined threshold, and classified as an outlier when it exceeds the limit. The 
final step is Binomial Event Discriminator (BED), based on the binomial distribution, which 
calculates the probability of event as a function of the number of outliers in a defined window. 
It is important to note that Canary works in both offline (historical data) and online (via 
SCADA connection) modes. 

3  WATER QUALITY CONTROL OF THE SCIENTIFIC  
CAMPUS OF THE UNIVERSITY OF LILLE  

3.1  Site description 

The water quality control system was implemented at the water distribution network of the 
Scientific Campus of the University of Lille. This campus is located in Villeneuve d’Ascq, 
Lille in the north of France. It stands for a small town. It covers an area of around 110 hectares 
hosting around 25,000 users in 150 buildings (for administration, teaching and research, 
student’s residence, restaurant). The campus includes about 100 km of urban networks 
(drinking water, electrical network, heating and sewage). 
     The water network length is about 15 km of grey cast iron pipes (diameter between  
20 and 300 mm). It is equipped with 250 isolations valves, 49 hydrants for fire fighting, in 
addition of stabilizers and purges [10]. The campus is supplied at five sections located in the 
North, West and South of the campus. 

3.2  Instrumentations 

In order to cover the majority of zones in the campus and to compare the water quality in two 
types of building’s usage, two locations has been chosen for the installation of EventLab and 
S::CAN (Fig. 1). The first installation concerns the engineering school Polytech’Lille, while 
the second location is located at Barrois restaurant. The installation uses a main pipeline 
passing near the target location, a connection is taken from this pipe and then the sensors are 
installed on this connection. The water samples are taken continuously by sensors which 
measure each minute various parameters and then the water passes throughout a discharge.  

4  ANALYSIS OF WATER QUALITY SIGNALS 

4.1  EventLab 

Any change in the composition of the water matrix will induce a change in the combined 
refractive index (RI). These changes in refractive index (RI) are monitored by EventLab [6].  
     A linear relationship is maintained between refractive index (RI) and concentration of a 
contaminant [11]. Fig. 2(a) illustrates the concentration of Sodium Sulfate in pure water and 
the resulting change in refractive index (RI) [12]. Fig. 2(b) shows the response of EventLab 
after the injection of different concentrations of chemical product (Chloride of Mercury 
HgCl2) [13]. 
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Figure 1:  Water distribution network of the campus with sensors locations. 

 

(a)                                                                      (b) 

Figure 2:    EventLab. (a) Variation of refractive index (RI) as function of the concentration 
of Sodium Sulfate (Source: Wolf, 1984.); (b) Response of EventLab after 
injection of Chloride of Mercury HgCL2[13]. (Source: Abdallah [13].) 

    The main response of EventLab system concerns the phase measured each minute. In fact, 
the change in refractive index of the water ∆n water is given by [11]:  
                                       	∆n௪௧ 	ൌ 4	ൈ	10ିସ	ሺΔΦm/2ߨሻ.                                               (1) 
At each time step i, variation of phase, 

 			ΔΦ	ሺiሻ 	ൌ 	Φ	ሺi  1ሻ 	െ 	Φ	ሺiሻ.                                               (2) 
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     In normal drinking water, the refractive index is quasi-constant as well as the variation of 
phase. Any exceed from the normal variation (±3ߪ) is considered as an event [14], which 
could indicate a possible contamination. An example of EventLab response is illustrated in 
Fig. 3 for the period of October 3 and 4, 2016 for the location (Polytech’Lille). We observe 
that the majority of variation does not exceed the accepted limit, which indicates a safe 
drinking water. However, some events are detected (red circle in Fig. 3). In order to find an 
explanation for these events, the water consumption profile is displayed in Fig. 3. It shows 
that a sudden increase in the consumption can affect water signal and cause an outlier in the 
response. This result indicates that the water flow due to consumption could be responsible 
of the extraction of substances from the aging water pipes.   

4.2  S::CAN 

Multiple reliable indicators of water quality are continuously measured by S::CAN, each 
parameter is represented by a signal. For safe drinking water, signals are constant and below 
the standard thresholds. Therefore, any anomaly in the water affects the stability of the 
baseline reference and could induce a significant deviation. Fig. 4 shows data collected by 
S::CAN in July, 2016 at Polytech’Lille. Although the signals are generally quasi constant, 
some events could be identified. In order to analyze the source of these anomalies, the 
hydraulic parameters (consumption and pressure) are displayed in Fig. 4. We observe that 
pressure does not affect the water quality, while a significant correlation is observed between 
consumption and peak of signals. An increase in the consumption is accompanied by an 
increase in the quality parameters: During the night, the consumption is low and all signals 
are stable, while the water consumption in the morning, induces a variation of the majority 
of water quality parameters, in particular UV and turbidity. 
 
 
 

 

Figure 3:  EventLab response with consumption profile for October 3 and 4, 2016. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

‐0.2

‐0.15

‐0.1

‐0.05

0

0.05

0.1

0.15

0.2

3/10/16 3/10/16 3/10/16 4/10/16 4/10/16 4/10/16 4/10/16

C
o
n
su
m
p
ti
o
n
 (
m

3
/h
)

V
ar
ia
ti
o
n
 o
f 
p
h
as
e

Date

Variation of phase

Consumption (m³/h)

തܺ ߪ3 +

ܺ	ഥ െ ߪ3

Water and Society IV  241

 
 www.witpress.com, ISSN 1746-448X (on-line) 
WIT Transactions on Ecology and The Environment, Vol 216, © 2017 WIT Press



 

Figure 4:  SCAN response with hydraulics parameters for July 2016. 

5  SENSITIVITY ANALYSIS 

5.1  Methodology 

In order to test the ability of CANARY, as an EDS, to identify earlier any anomaly in water 
signal, a performance analysis is needed for a set of historical data. A water contamination 
event is identified when the real-time water quality data are outside the expected range of 
allowable water quality criteria, at which point an alert is issued [9]. The main objective is to 
configure the EDS in a way to decrease the number of missed detection, with the minimum 
number of false alarms. For this purpose, a configuration file, written in YML markup 
language, has to be adjusted to find the best parameters ensuring a high detection of events. 
Five principal parameters affect generally the detection capacity of the software: 

 Event Detection algorithm (LPCF or MVNN): used in the first prediction step of 
future value of water parameter. 

 History window: defines the number, in units of time steps, of previous data used to 
estimate the value at the next time step.  

 Event threshold: determines the threshold probability of Event (P (event)) to 
generate an alarm. 

 Outlier threshold: measured in unit of standard deviation, and indicates the limit to 
be exceeded to identify an outlier. 

 BED window: determines the number of time steps for the binomial distribution. 

     The S::CAN sensor installed in Polytech’Lille is chosen to identify the appropriate 
parameters that adjust the configuration file. Ten parameters were measured: UV254, 
Turbidity ISO, Turbidity EPA, TOC, Color, Temperature1 (from i::scan), Conductivity, 
Temperature2 (from Condu::lyser), pH and free chlorine. The collected data cover the period 
from August 1, 2016 till October 10, 2016. During this period, about 29 events were detected 
in water signals. The time step selected for Canary running is 1 minute (same that 
measurement interval of S::CAN sensor). The aim of the sensitivity analysis conducted is to 
select adequate values for the five parameters cited above.  
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5.2  ROC curve analysis 

Before explaining the concept of Receiver Operating Characteristics (ROC) curve, it is 
important to define the basic outcomes of this analysis, as follows:    

 True Positive (TP): A real event is detected. The sensors detected an event and the 
method reported it. 

 False Negative (FN): An actual event is not detected. The method does not identify 
a real event. 

 False Positive (FP): Generation of false alarm, while there is no real event. 
 True Negative (TN): There is no real event and the method does not generate an 

alarm. 

     The sensitivity and the specificity are calculated as follows: 

Sensitivityൌ
TP

TP	FN
ൌ	TPR	ሺTrue	Positive	Rateሻ.           (3) 

Specificityൌ
TN

TN	FP	
ൌTNR	ሺTrue	Negative	Rateሻ.            (4) 

     By definition, the ROC curve is a technique for visualizing, organizing and selecting 
classifiers based on their performance [15]. In fact, it is two-dimensional graphs where TPR 
is plotted in function of (1-TNR) = FPR (False Positive Rate). The main objective is to ensure 
a correct detection with minimum of false alarms by making a tradeoff between increasing 
the sensitivity and decreasing the specificity. This can be represented by the point (0, 1) in 
the ROC curve where both sensitivity and specificity reach 100%. The best performance of 
the detection algorithm occurs when the result is closest to this point (0, 1) in the graph. The 
ROC curve analysis is used in this study to select the appropriate configuration file for  
the water quality monitoring. 

5.3  Selection of event detection algorithm 

For each of the two types of algorithms (LPCF and MVNN), the precision and the accuracy 
are calculated in terms of TP, FP, TN and FN as follows: 

Precision	ሺPPVሻൌ
TP

TPFP
	.	                                                   (5) 

Accuracy	ሺACCሻ	ൌ
TPTN

TPFNFPTN
	.                                           (6) 

     In fact, for the two algorithms, we determine the precision and accuracy for five cases of 
history window from 0.5 days (720 time steps) till 3 days (4320 time steps). However, other 
parameters are fixed as follows: outlier threshold 0.85, event threshold 0.99 and BED window 
200. Fig. 5(a) shows that a better precision is obtained for the case of LPCF algorithm. The 
precision in LPCF case is between 62% and 85%, while for the MVNN case, the precision is 
below 49%. In addition, Fig. 5(b) indicates different values of accuracy evaluated for the five 
history window for each algorithm. It is clear that the LPCF method is more accurate (75%), 
but the accuracy in MVNN case is between 40 and 60%. From this result, we choose 
obviously the LPCF algorithm.  
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(a) 

(b) 

Figure 5:  Comparison of detection algorithm. (a) Precision; (b) Accuracy. 

5.4  Selection of history window 

The selection of the best history window is based on the calculation of the absolute average 
residuals and the corresponding standard deviations. The results of these calculations are 
illustrated in Fig. 6. The accurate predicted values are obtained in case of lowest average 
residual and standard deviation. Fig. 6 shows that from a window size of 2160 (1.5 days), the 
values of residual (Fig. 6(a)) and standard deviation (Fig. 6(b)) reach the minimum and start 
to converge. In a way to reduce the computational time, a choice of 1.5 days as history 
window is considered precise and useful. An exception is observed in Turbidity EPA after 
1.5 days, this can be due to some fluctuations in the signal during the training phase. 
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(a) 

(b) 

Figure 6:  Comparison of history window. (a) Average deviation; (b) Standard deviation. 

 

5.5  Determination of event threshold 

This parameter indicates a maximum acceptable value of probability. When this limit is 
exceeded, an alarm of event is generated. A parametric study was conducted by varying the 
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1.5 day, outlier threshold 0.85, BED window 200). The sensitivity analysis shows close 
results between different event thresholds, so we choose the value 0.99 that minimize the 
FPR with the high precision and accuracy. The sensitivity analysis is detailed in Table 1. 
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Table 1:  Sensitivity analysis for different event threshold. 

Event threshold TPR (%) TNR (%) FPR (%) PPV (%) ACC (%) 
0.99 51.72 92.68 7.32 83.33 75.71 
0.90 48.28 92.68 7.32 82.35 74.29 
0.85 48.28 92.68 7.32 82.35 74.29 
0.75 51.72 92.68 7.32 83.33 75.71 

5.6  Parametric study for outlier threshold and BED window 

The selection of outlier threshold and BED window is done by a parametric analysis, where 
five values for each parameter are taken into consideration. The threshold values, that give 
the better detection of obvious variations in water quality, were chosen. The BED window is 
selected in a way of making tradeoff between the rapid detection of event and the generation 
of false positive alarms. Fig. 7 shows the calculation of average prediction residual using 
LPCF algorithm with 1.5 days as history window and 0.99 as event threshold. The residual 
is minimal (0.108) for the combination of 0.75 as outlier threshold and 50 as BED window.  
     In order to verify the selected parameters, the sensitivity analysis using ROC curve was 
performed by fixing 0.75 for the threshold value and varying the BED window values. To 
increase the probability of detection (TPR) with low value of false alarm (FPR), a BED 
window of 100 is more appropriate. 
     In the same way, the ROC curve analysis is plotted for multiple values of outlier threshold 
for both BED window 50 and 100. The results are shown in Fig. 8. A high sensitivity with 
an accepted probability of false events is obtained with a combination of an outlier threshold 
of 0.75 and a BED window of 100.  
 

 
 

Figure 7:  Average prediction residual in function of outlier threshold and BED window. 
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Figure 8:  ROC curve for multiple outlier thresholds for a BED window of 50 and 100. 

5.7  Application of selected parameters 

The adjusted configuration file, obtained from the training phase, is applied to test the data 
from October 10, 2016 till November 1, 2016. During this period, ten events were observed 
in the water signals. Using Canary as event detection algorithm, with the selected parameters, 
7 real events have been successfully detected, with 30% as false alarm rate. An example of 
results is given in Fig. 9, which shows the probability of event detection for the period from 
October 10, till October 17, 2016 according to LPCF. 

6  CONCLUSION 
The real-time monitoring of water quality constitutes a great challenge for a safe water supply 
to users. The use of smart technology allows water companies to conduct an on-line effective 
control of the water quality and to develop an early warning strategy for the safety of the 
water supply. This paper has presented the application of this technology in the Scientific 
Campus of the University of Lille. Two on-line water quality sensors (S::CAN and EventLab) 
were installed in two sections of the campus. The use of these sensors showed some events 
in water quality, which were correlated with water flow due to consumption, in particular in 
the morning.   
 

 

 

Figure 9:  Probability of event for the week of October 10, 2016. 
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     A sensitivity study of event detection algorithm was conducted using Canary software. 
Analysis led to an appropriate selection of parameters, which is based on increasing the 
probability of detection and reducing the generation of false alarms.  
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