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ABSTRACT 
Wastewater treatment is a significant environmental challenge. It is also an economic challenge for all 
operators, who face more and more demanding national and supranational regulations. Optimizing 
wastewater treatment processes requires physical, biological and chemical models with various degrees 
of complexity. From an operational perspective, programmable logic controllers are generally used. 
Those controllers follow strategies implemented by technicians with various degrees of expertise. This 
may lead to over- or under-aeration, which can be very costly. Commonly used strategies are mostly 
based on business rules and expert guidelines, which do not necessarily consider specific operating 
conditions. In this study, focused on the aeration process, a machine learning approach is applied to 
predict the daily operating time of aerators. Two types of models, according to the data considered, 
have been evaluated. The first model considers only the operation data as explanatory variables 
(pollutant concentrations and inflow), while the second model includes exogenous weather data 
(temperature, hygrometry, rainfall depth). The best model reaches a mean error less than 1%. 
Keywords:  machine learning, wastewater treatment, aeration process, model verification. 

1  INTRODUCTION 
This study is part of a project aiming to optimize wastewater treatment processes. It is based 
on machine learning techniques. This article covers the aeration process, which consists in 
bringing oxygen to micro-organisms (bacteria) while brewing water to reach 
homogenisation. The whole process is based on heterotrophic bacteria, which consume 
organic carbon for their anabolism and catabolism. This biological procedure, called 
nitrification, ends up producing nitrate (NO3). A second phase in anaerobic environment 
reduces nitrate into dinitrogen (N2). To optimize the process, it is recommended to go through 
several aerobic and anaerobic phases [1]. Aerators bring the oxygen to the pool; they are 
activated and deactivated several times in a day to alternate between phases. The control of 
this process is, in some cases, performed by technicians responsible for pump management, 
often without any specific guidelines. This practice leads to over-aeration or under-aeration 
problems, depending on the technician experience. This article aims to propose a machine 
learning algorithm to predict the daily aeration time. The goals are to harmonize the aerator 
operation, to minimize unnecessary fluctuations and to understand, through machine 
learning, how daily operational decisions are made. Expected benefits include, firstly, to 
avoid extreme aeration time and, secondly, to reduce energy consumption while meeting 
operational quality standards. To achieve this goal, statistic and machine learning-based 
approaches have been applied using both operation and weather data. The following sections 
describe the experimental site, the data, the modelling approaches and the preliminary results 
of this study. 

2  DATA AND EXPERIMENTAL SITE 
The data used in this investigation concern an experimental site located in the south east of 
France. With less than 50,000 population equivalent, it can be considered as a small or 
medium-size plant. For confidential reasons, the name and the exact location will not be 
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disclosed. Collected data are composed of a three-year historical record of operation and 
weather data. The list of parameters and data quantity are given in Table 1. Fig. 1 presents 
the observed aeration time over the period, expressed as a fraction of the observed mean  
time. The behaviour seems to follow some seasonal trends, but the behaviour looks otherwise 
quite erratic. This observation is the source of one of the objectives: to smooth the aeration 
process operation. 

Table 1:  List of variables and data quantity. 

 Variable Number of values 

Operational data 

Inflow (m3/day) 1,096 
BOD5 (kg/day 72 
COD (kg/day) 156 
Nitrogen (kg/day) 70 
TSS (total suspended solid) (kg/day) 156 
Phosphorus (kg/day) 72 

Weather data 
Rainfall depth (mm/day) 1,096 
Temperature (°C) 1,096 
Sunshine duration (h/day) 1,096 

 

 

Figure 1:    Observed aeration time between 1 January 2016 and 31 December 2017 (left) and 
data distribution (right). 

     Before training models, a pre-processing step was carried out. Aquadvanced wastewater 
plant is a software tool developed by Suez Smart Solution to help wastewater plant manager 
in their daily operations. Aquadvanced extracts data from a database supplied by several 
sensors or users. Some of these data were erroneous and some corrections were needed. For 
example, two values were set to 0 for the nitrogen inflow. Automatic outlier detection and 
data imputation are among our future objectives. At that time, we were not able to reconstruct 
these data and they were simply ignored.  
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3  MODELLING AND RESULTS 

3.1  Modelling 

Many regression models have been trained. A not exhaustive list is presented hereafter: 

 Constant: the mean value of the available observations is taken as prediction value. 
 Full regression: Linear regression using all the data of available variables. 
 Restrained regression: Linear regression using only variables with significant p-

values. 
 Quadratic restrained regression: Quadratic regression using variables from the 

restrained regression. 
 Principal component analysis (PCA) regression: Linear regression using the 

principal components (95% of explained variance). 
 Multi-model regression: Linear regressions over separated clusters identified by 

using the k-means algorithm. 
 Boosted trees: Aggregation of weak learners (regression trees). 

     These models are based on operational data. They are referred to as operational models. 
     Weather data have been used differently. An algorithm that computes a mean weighted 
by the similarity between observations has been implemented. The observations may be 
represented in a p-dimensional space (where p is the number of variables). In this space, we 
can compute a measure of distance between the learning set and the explicative variables. 
With this distance, we are then able to compute similarity. Hereafter, these models will be 
referred as meteorological models. These models could model seasonal trends but not very 
local behaviour. To increase robustness and solve this problem a temporal similarity was 
introduced. A variable representing the elapsed time between observation is added  
to the model to compute this similarity. The resulting new models will be identified as 
historical models. 

3.2  Results and discussion 

The performances of the operational models are presented in Table 2. The normalized mean 
errors are between 9.56% and 7.75%. These errors have been computed by cross validation 
[2]. For the operational models 5 folds were used, while, for meteorological models and 
historical models, a leave-one-out cross validation was applied. 

Table 2:  Performances of operating models. 

Model Observed error
Constant 9.00%
Full regression 9.14%
Restrained regression 8.48%
Quadratic restrained regression 8.09%
PCA regression 9.38%
Multi model regression 9.56%
Boosted trees 7.75%

 
     The most efficient operating model was the boosted regression trees algorithm with a 
normalized mean error of 7.75%. The values for some functional variables were not available 
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daily. Thus, it led us not to include them systematically, in the most complex models. This 
had probably an impact on performances of the functional models. The k-means algorithm 
identified two classes based on the inflow. This result, which was predictable as the inflow 
has a large variance, do not lead to good performances. A possible reason is that the inflow 
might be, for a given wastewater treatment plant (WTP), nearly seen as a constant. 
Consequently, the variation does not have a significant effect on aeration time. 
     Including weather variables, we could use our similarity algorithm with different subsets 
of variables. The most efficient model used less than five variables. Among these variables, 
we find temperature, which is known to have a significant influence on plant operation [3], 
[4]. These meteorological models reached a cross-validation error of 6.69%. Fig. 2 presents 
the results over the year 2017. In this paper, the aeration time is expressed as a fraction of the 
mean time. 
     Finally, addition of a time component variable allows us to further increase the model’s 
performances to a mean error of 0.96% (Fig. 3). The maximal error of 17% was obtained for 
a day where the observed aeration time was 40% under the mean. This anomaly could not be 
imputed to a failure of the aerators, nor to a high variation in other variables at our disposal. 
We have for sure no explanation about this very particular observation. Thus, in nominal 
operation, the performances of this model can be considered as satisfactory. 
 

 

Figure 2:  Result of a meteorological model for 2017. 

 

Figure 3:  Results of a historical model for 2017. 
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4  CONCLUSION AND PERSPECTIVES 
During this study, several statistical and machine learning approaches have been assessed. 
We could evaluate three different kinds of models (operational, meteorological and 
historical) based on various variables. The best model uses weather data, in addition to the 
operational data, to predict the daily aeration time. The achieved prediction error is less than 
1%, which is acceptable for this application. Furthermore, we achieved two other objectives, 
which were: to smooth aeration daily time and to learn how choices are made by operators. 
Indeed, after asking them how they made operational decisions, they answered that they were 
based mainly on weather parameters. This methodology must be experimented on each 
wastewater treatment plant as each plant’s behaviour might not be based on the same 
variable. 
     We may expect that the plant operation is (highly) dependent of non-numeric 
considerations such as distinction between working day or holiday. This assumption will lead 
us to add categorical data in future models. We will, then, must determine a way to compute 
similarities [5], [6] on categorical data, and how to weight this similarity with numerical 
similarity as computed in this study.  
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