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ABSTRACT 
Weather generators reproduce artificial climate time series that are commonly used for hydrological 
modeling and climate adaptation studies. To examine the representativeness of a stochastically 
generated climate time series, a novel stochastic method is suggested where these time series are 
projected in two spaces (the Climate Statistics Space – CSS; and the Risk and Performance Indicators 
Space – RPIS). A visual inspection as well as the Mahalanobis distance are used to assess the two 
spaces relative position and their proximity to the points representing the observations. The dimensions 
of the CSS are a subset of climate statistics, while the dimensions of the RPIS are a set of risk and 
performance indicators calculated using streamflow time series. A rainfall-runoff model is used to 
convert all climate time series from the CSS into streamflow time series in the RPIS. Three stochastic 
weather generators were used in this study: The Weather Generator École de Technologie Supérieure 
(WeaGETS), the Multisite Stochastic Weather Generator (MulGETS) using two different generation 
algorithms, and a k-nearest neighbour weather generator. Each generator was used to construct 
precipitation, maximum and minimum temperatures time series representing the historical period. The 
suggested approach was tested on a 41-years-long climate and flow time series from South Nation 
watershed in Eastern Ontario, Canada. The MulGETS model was able to perform well where the point 
representing the observations was centered inside the cloud of points representing the synthetic time 
series in some CSS.  
Keywords: stochastic hydrology, hydrological modeling, weather generators assessment, risk and 

performance indicators. 

1  INTRODUCTION 
In climate change studies, stochastic weather generators are sometimes used to evaluate the 
risk and performance profile of water resources systems. They are used to generate high-
resolution synthetic climate sequences that are used in many hydrological applications to 
calculate streamflow rates and to evaluate alternative designs and policies [1], [2]. Stochastic 
weather generators attempt to generate daily time series of atmospheric variables having the 
statistical characteristics of historical climate data. Weather generators typically used as 
inputs into more complex hydrological, environmental, ecological or agricultural impact 
studies. Despite the fact that several approaches and techniques have become more 
sophisticated, the accuracy of reproduced climates has not always been adequately justified.  
     Historically, since the eighties of the past century, a number of weather generators (WGs) 
has been put forward to serve the climate, agricultural and hydrological aspects and more 
recently in climate change impact assessment (for example, Forsythe et al. [3]). Fowler et 
al. [4] criticized WGs for poor modelling of inter-annual variability in monthly means and 
for being strictly localized; thus, they may not be useful in other climates. In contrast, 
Wilby and Fowler [5] indicated that WGs could be practical and useful for some 
applications, such as the count of wet spells and monthly precipitation for hydrological 
applications in developing countries. 
     While a generally accepted approach to evaluate WGs in hydrology field is lacking, the 
current research is proposing a stochastic technique to examine WGs. The framework 
proposed by Brown et al. [6] was adopted in which a climate state represented by a time 
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series Xt is summarized by a subset of climate statistics 𝒱𝒱T calculated over period T (T= 41 
years in observed and synthetic data) that are relevant to the problem under investigation 
(e.g., the mean standard variation of precipitation and temperature). 𝒱𝒱T is calculated for 
observations time series and stochastically generated time series. A climate state will yield a 
level of risk and performance that is measured by a set of risk/performance indicators𝒱𝒱𝑇𝑇 is 
obtained by feeding an impact model with time series Xt.  This leads to all time series being 
represented by a point in one of two spaces called the Climate Statistics Space (CSS) and the 
Risk and Performance Indicators Space (RPIS). The dimensions of the CSS are a subset of 
climate statistics (e.g., mean, standard deviation), while the dimensions of the RPIS are a set 
of risk and performance indicators calculated using streamflow time series (e.g., flood risk, 
generated hydropower). Each climate time series, either observed or generated is projected 
in the CSS. ASWAT (Soil and Water Assessment Tool) rainfall runoff model is used to 
convert climatic time series (either observed or generated) into streamflow time series. The 
streamflow time series (either observed or generated) are projected in the RPIS space. A 
visual inspection as well as the Mahalanobis distance is used to assess their relative position 
and their proximity to the points representing the observations, and rank the performance of 
competing weather generators. The current research is an attempt to generate criteria that can 
be used to assess some available weather generators on the test case and developing a 
recommendation on which ones should be used for risk discovery. 

2  STUDY AREA, CLIMATE DATA AND MATERIALS 

2.1  Study area 

The study area is the South Nation watershed located in Eastern Ontario, Canada, spanning 
between 75°43´ W – 74°22´ W longitude and 44°40´ N – 45°38´ N latitude as shown in Fig. 
1. Its drainage area is approximately 4000 km2 used mostly for agriculture. The area is 
drained by the South Nation River that runs northeast from Brockville for 175 km towards 
Plantagenet. The South Nation watershed is relatively flat where the river has a low 
topographic gradient of 80 m between its headwaters and the confluence with the Ottawa 
River. Hence, The South Nation watershed is poorly drained which consequently maximizes 
the flooding risk and boosts the erosion of riverbanks and of topsoil on agricultural lands. 

2.2  Climate data 

Meteorological data were obtained from four gauges over a period of 41 years (Jan. 1971–
Dec. 2011) to represent the South Nation watershed as shown in Fig. 1. These stations include 
St. Albert, Russell, Morrisburg and South Mountains. The area, in average, received 
approximately 985 mm of precipitation annually and its annual mean maximum and 
minimum temperatures are 11.5 and 1.2 degrees Celsius, respectively (Environment Canada 
[7]). 

2.3  Weather generators 

2.3.1  Comparison of WGs 
In general, weather generators are designed to deal with records of a single station [8]. Such 
models are not powerful to capture the spatial attributes of the watershed stations by 
producing time series for each station independently. Alternatively, multi-site based 
generators have been introduced to fill such need. Baigorria and Jones [9] classify multi-site 
weather generators based on their structure and mathematical algorithms into three  
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Figure 1:  The map of the South Nation watershed. 

classifications: parametric (such as Wilks [10]), non- parametric (such as Wilby et al. [11], 
and hybrid (such as Fowler et al. [4], Palutikof et al. [12]). A multi-site weather generator is 
recommended (Chen et al. [13]) for relatively large watersheds, whereas stations of small 
watersheds can be integrated into single station using some graphical techniques such as 
Thiessen Polygon or by simply using a sole representative station.  
     It is highly recommended to make a multi-comparison study of variety of available 
weather generators that apply different methodologies and techniques. The suggested 
approach was conducted on three weather generators: MulGETS, WeaGETS and k-nearest 
neighbour resampling approaches.  
     A considerable amount of literature has been published on the best-fit probability 
distribution function of precipitation. The gamma distribution function has been intensely 
preferred to wet-day daily precipitation (e.g., Thom [14]; Buishand [15]; Geng et al. [16]; 
Sen and Eljadid, [17]). Moreover, other distributions have been recommended such 
as exponential (e.g., Woolhiser and Roldan [18], Wilks [10]), Weibull (e.g. Burgueño et al. 
[19]) and the Pearson Type-III (P3) distribution to be applied to the full record of 
daily precipitation data (Hanson and Vogel [20]).  

2.3.2  WeaGETS and MulGETS 
The Matlab-based WeaGETS (Chen et al. [21]) is an extension to WGEN model (Richardson 
and Wright [22]) and provides three orders of Markov chains to precisely account for wet 
and dry spells and a smoothing scheme to modify the precipitation parameters for generating 
precipitation occurrence. For precipitation quantities, two distributions are provided: Gamma 
(WG) and Exponential (WE). It uses a first-order linear autoregressive model to synthetically 
generate maximum and minimum temperatures. WeaGETS is suitable for small watersheds 
where a single station can be used to represent the entire watershed [21]. In spite of that, there 
is a need to use multi-site WG for large basins. Mehrotra et al. [23] indicated that Multi-site 
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weather generators are preferable in many applications and that hydrological simulations 
require precipitation data to be spatially correlated. Thus, the new version introduced by Chen 
et al. [13] provided a weather generator that take into account the spatial attributes of the 
climate data. Chen et al. [21] developed a multisite, multivariate weather generator so-called 
the Multi-site weather Generator of École de Technologie Supérieure (MulGETS) to simulate 
daily precipitation and temperature. The same model used in its counterparts WeaGETS is 
applied to reproduce precipitation and temperature in MulGETS. It follows the precipitation 
algorithm as described in detail in Brissette et al. [24]. However, MulGETS constructs 
random values that are spatially correlated but temporally independent [21]. MulGETS offers 
the option of using a multi-gamma distribution (a combination of several gamma 
distributions), and a multi- exponential distribution, to simulate daily precipitation amounts.  
     Precipitation sequences were being produced in the MulGETS and WeaGETS models 
using two different distributions: one-parameter exponential and two-parameter gamma. The 
probability density function (pdf) of exponential distribution is: 

f (x) = λe–λx,  (1) 

where x is the daily precipitation amount and its parameter λ equals 1/mean. The multi-
exponential distribution combines several exponential distributions, which each has its own 
parameter. The probability density distribution (pdf) of gamma is given by: 

f(x)= (x β⁄ )α-1  ex p[-x β⁄  ]
β Γ(α) , (2) 

where α and β are the shape and scale parameters respectively, and Г(α) denotes the gamma 
function calculated at α. The two parameters (𝛼𝛼 and 𝛽𝛽) required in order to use the  
gamma distribution are directly linked to the mean (𝜇𝜇) and the standard deviation (𝜎𝜎). They 
are defined as follows: 

μ = α / β (3) 
σ = √ α / β (4) 

     Chen et al. [21] indicated that exponential distribution is easier to calculate but has less 
performance compared to the gamma distribution. Hence, gamma distribution is commonly 
utilized to generate daily precipitation quantity. 

2.3.3  K-nearest neighbour 
Two approaches that presumably are capable of generating realistic precipitation and 
temperature sequences were implemented in the analysis. Precipitation sequences were 
generated applying the model initiated by Goyal et al. [25] that uses the k-nearest neighbor 
method coupled with gamma kernel perturbation. The later seemingly allows producing 
values that are not covered in the historical data. For maximum and minimum temperatures, 
with no underlying probability distribution assumptions, Sharif and Burn [26] method was 
implemented to generate temperature sequences. 

2.4  The hydrological model SWAT  

The Soil and Water Assessment Tool (SWAT) is a semi-distributed, watershed-scale 
hydrologic model used broadly to address water quality and quantity issues since established 
in the early 1990s [27]. Hydrologists, conservationists and policy makers have extensively 
used SWAT to predict such issues and their environmental impacts (e.g., Neitsch et al. [27], 
Srinivasan and Arnold [28], White and Chaubey [29], Tuppad et al. [30], Arnold et al. [31]). 
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The main physically based inputs that govern transformation of precipitation to runoff in 
SWAT are weather information [31]. SWAT’s comprehensive physical-process 
parameterizations strengthen its capability to provide sufficient information for adequate 
watershed management decisions. To deal with spatial variations in a watershed of interest, 
a watershed is divided into a number of hydrologic response units (HRUs) within sub-basins. 
Beside land cover and soil type, each HRU has its own features such as weather, groundwater, 
plant growth, land-use, and soil type [27]. A total of 31 sub-basins were constituted in this 
watershed to adequately simulate aerial distribution of hydrological processes. Precipitation 
and temperature data of the four selected stations representing the watershed beside 
streamflow data were used. 
     By assuming, initially, a reasonably large parameter uncertainty, the SUFI-2 (sequential 
uncertainty fitting ver. 2) optimization algorithm that follows an inverse modelling procedure 
(Abbaspour et al. [32]) was implemented for parameterizations to capture the narrowest 
prediction uncertainty range. The optimal goal is to maximize P-factor to 100% (0.63) and 
minimize D-factor to zero (for detailed explanation see Abbaspour et al. [32]). While 25 
parameters were implemented, a sample of 5 parameters bounds beside the best fitted values 
within prediction uncertainty band are provided in Table 2.  

3  METHODOLOGY 

3.1  Assessing the adequacy of a given stochastic weather generator 

SWAT, after being calibrated with observed climate data, is driven with a set of weather 
synthetic time series of precipitation, maximum and minimum temperatures generated by the 
WG under investigation to obtain time series of streamflow that are afterward projected in 
the RPIS along with observed streamflow. The relative position of the points representing 
each time series in the RPIS allows. A good WG would generate points that symmetrically 
spread around the point representing observations; the spread of the points on each dimension 
should represent the variability of the risk indices being calculated given the length of the 
time series and the natural variability of historical streamflow data.  
     In the proposed approach, one thousand samples were represented by their statistics (𝒱𝒱T) 
in the confidant interval figures. The objective is to discover how rarely an observation event 
to occur in the cluster of experiments. In other words, the observation event is tested against 
the normal pattern of weather generators samples using an adoptive threshold.  
     The realism of a stochastically generated climate time series can be assessed using the 
following two criteria: (a) checking if the point representing the observations is centered 
inside the cloud of points representing the synthetic time series in the CSS and the RPIS and  
 
 

Table 1:  Description of some SWAT2012 input parameters. 

Parameter name* Description 
Initial range Fitted 

values Min Max 
r__CN2.mgt Curve number for moisture condition II -0.2 0.2 -0.06 
v__ALPHA_BF.gw Baseflow alpha factor 0.1 0.9 0.70 
v__GW_DELAY.gw Groundwater delay time 1 499 206.65 
v__GWQMN.gw Threshold depth of water in the shallow 

aquifer required for return flow to occur 
(mm H2O).  

1 4900 2499.05 

v__CH_K2.rte Main channel conductivity -0.09 400 40.89 
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(b) checking if proximity with observations in the CSS translates into proximity in the 
risk/performance indicators space. Failure to meet criterion (a) would mean that the weather 
generator is biased toward one zone of the CSS. Failure to meet criterion (b) would mean 
that some important statistical characteristics have been overlooked and are not being 
reproduced by the weather generator.  
     The streamflow attributes or measures of central tendency were used to examine whether 
a weather generator reproduces the measured streamflow distributions well in a monthly 
temporal scale. By examining the distributions of mean against key attributes of datasets 
including variation (standard deviation), skewness (𝛼𝛼3) and kurtosis (𝛼𝛼4) of observed and 
stochastically produced climate, atmospheric variables should be reproduced correctly in a 
distributional sense.  

3.2  Multivariate Gaussian distribution 

Instead of relying on a single estimate, reliability interval estimates are alternatively used 
where ranges of values are reported. Such reliability estimates of a large enough sample set 
then tested against a pre-defined observed value. By running a large enough sample set of 
experiments (i.e. one thousand), a multivariate Gaussian distribution model can be built for 
the summarizing subset of climate statistics. This comprises working out the statistic features 
for each feature of these experiments. Then, based upon a minimum membership probability, 
a new sample (i.e. observations in this case) is tested to check its qualification as a ‘normal’ 
sample within the examined weather generator. The multivariate Gaussian distribution is 
computed as: 

p(x)= 1
 (2π)d 2⁄  |Σ|1 2⁄  exp �- 1

2
 (x-μ)T Σ -1(x-μ)�, (5) 

where the mean, µ, is a d length row vector and the covariance, Σ, is a d by d matrix.  
     A cloud or cluster is formed to represent normally distributed where the mean and 
covariance matrix determine the position and the shape of the cloud.  

3.2.1  Mahalanobis distance 
Mahalanobis distance, called also the generalized squared distances, is a tool frequently used 
in the detection of anomalous, or for discriminant analysis indicating the probability of a 
certain sample, of belonging to a certain group (Huber and Ronchetti [33], Fritsch et al. [34], 
Wang and Zwilling [35]). Mahalanobis distance (MD) is a quadratic distance from a pre-
selected point 𝑥𝑥𝑖𝑖 ∈  ℝP  (an event representing observations) to a location µ (a centre of a 
cloud) governed by a covariance matrix Σ (a shape parameter) that is given by the quantity: 

dm
2(𝑥𝑥𝑖𝑖, μ)= (𝑥𝑥𝑖𝑖-μ)T Σ -1(𝑥𝑥𝑖𝑖-μ) (6) 

     Moreover, Mahalanobis distance calculates the distance between two points in a space 
and is denoted by MD. 
     The set of points that satisfied or determined by invariant Mahalanobis distances will form 
an ellipse (bivariate) or ellipsoid (multivariate). The principal axes of an ellipse and their 
lengths are governed by the eigenvectors (Φ) of the covariance vector (Σ), and the 
eigenvalues (Λ) respectively. The smaller MD value the closer a sample to be positioned on 
or close to the mean values (i.e. the focus) of the ellipse and further points in contrast will 
have higher values and consequently more likely to be outliers. However, it is important to 
bear in mind the possibility, especially for high dimensional multivariate, that an ordinary 
sample could be detected as an outlier if one attribute is considerably biased. Yet, defining a 
particular threshold for outlying distances should be done with some cautious as it depends 
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on the application and the type of samples. In theory, the Mahalanobis squared distance 
describes how deviated a point from the group mean in units of standard deviation, thus, 
about 68%, 95%, 99.7% of data are circumscribed within 1, 2 and 3 standard deviations 
around the mean, respectively. Hence, a point of Mahalanobis squared distance of 3 or less 
lies within the boundary of 99% of data. It is well documented that the MD is described by a 
chi-square (χ2) distribution with a degree of freedom (df) equivalent to the number of 
independent variables (Hardin and Rocke [36]). A tested weather generator is called a good-
fit candidate when the reference point of observations (represented by its features) falls 
within a reasonable distance from the investigated data center. Observed data were examined 
as a sample unit to the group of sample units of a weather generator. Assessed with a very 
conservative probability of p < 0.01, a critical value of chi-square (𝛼𝛼) with degrees of freedom 
equal to the number of variables (i.e. df =2) is 13.82.  

4  RESULTS, DISCUSSION AND CONCLUSION 
Based on Liew et al. [37] and Moriasi et al. [38] criterion for discharge data at a monthly 
temporal scale, values of NSE, RSR and PBIAS were found to be 0.792, 0.45 and 3% 
respectively, which indicate a very good model.  
     Mean, standard deviation, skewness and kurtosis of annual Tmax, Tmin and precipitation 
samples generated synthetically were compared to observed ones. Similarly, mean, standard 
deviation, skewness and kurtosis of monthly streamflow simulated by SWAT and fed with 
synthetic climate were compared to observed discharge. Although sitting a clear boundary 
between normal and anomalous behaviors can be controversial, anomaly detection methods 
are applied to examine whether the historical event lies inside of a predefined set of normal 
behaviors. A weather generator must fit a set of criteria. The desired behavior of a training 
set of a tested weather generator is to surround the observed data in both spaces. 
Correspondingly, a weather generator is classified as a good fit for a specific location when 
MD is less than 3. In addition, the reference point is said to be an anomaly event when its 
probability to occur in certain space is very low. The shape of the distribution is determined 
by its skewness and kurtosis, which plays a crucial role in extreme values investigation. The 
mean, on the other side, is important to predict streamflow quantities and standard deviation 
explains the spread about the mean.  

4.1  Climate Statistics Space (CSS) 

The WeaGETS third-order Markov model, which increases the number of parameters, 
without parameter smoothing was selected to adequately generate long dry or wet spells. This 
selection is consistent with previous works (e.g. Wilks [10], Chen et al. [21], Lennartsson et 
al. [39], Allard et al. [40]). Chen et al. [21] stated that generating precipitation quantity using 
the gamma distribution performed reliably better than the exponential distribution. Yet, 
results in Fig. 2-a suggests that the two distributions were comparable in the climate space 
where 𝛼𝛼3 and 𝛼𝛼4 were better reserved by exponential family whereas 𝜎𝜎 was reproduced better 
by gamma family. These findings are partially consistent with Wilks’s work [10] as 
exponential favoured over gamma. Both models, however, were not sufficiently competent 
in the artificially generated temperatures. 
     The k-nearest neighbor approach performed relatively less efficiently, where all observed 
attributes of historical precipitation data were not reproduced as MDs of the three central 
moments were way above the threshold of three. However, despite its inadequacy in 
precipitation, k-nn performed outstandingly in reproducing synthetic temperatures sequences 
by preserving the statistical features of observed data. 
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     A possible explanation for the difference in the performances of the WG might be that be 
attributed to the underlying numerical algorithms and the accuracy of representing the 
complex land–ocean–atmosphere interactions [2]. This also could be a limitation in weather 
generators to produce more efficiently in certain regions or climates depending on the 
weather systems. Fowler et al. [4] criticized WGs for being strictly localized; thus, they may 
not be useful in any climate regime. 

4.2  Risk and Performance Indicators Space (RPIS) 

The main objective is to discover how rarely discharge observations to occur in the cluster 
of experiments resulted from feeding SWAT with synthetic data. In other words, the 
historical statistics are tested against the normal pattern of samples based on an adoptive 
threshold. Streamflow data generated in SWAT fed with weather generators time series were 
tested against those resulted from SWAT fed with observed climate as shown in Fig. 2(b). 
MulGETS-Gamma, for the study area, is appealing to be the best weather generator in 
preserving basic statistics of original streamflow with the observation points at Mahalanobis 
distances of 0.85, 0.3 and 0.32 for 𝜎𝜎, 𝛼𝛼3 and 𝛼𝛼4, respectively.  It is followed by MulGETS-
Exponential while the WeaGETS models and the k-nn approach were not capable of 
maintaining the historical statistics and in particular the higher central moments (𝛼𝛼3 and 𝛼𝛼4). 
     In general, weather models that have verified better in the CSS against the observed data 
appeal to some extent to perform sufficiently in the RPIS. Overall, the gamma distribution 
employing MulGETS and WeaGETS to producing streamflow was better fit to observed data 
than exponential distribution. Consequently, more weight can be given in the pilot watershed 
to MulGETS, implementing Gamma, to reproduce precipitation as it was capable of 
preserving the central moments very well where MD of 𝜎𝜎, 𝛼𝛼3 and  𝛼𝛼4  were 0.45, 0.48 and 
1.33, respectively. K-nn can be used to generate synthetic maximum and minmum 
temperature time series.  

5  CONCLUSION 
The adequacy of weather generators to derive risk profile using hydrological risk indicators 
is assessed. A calibrated SWAT hydrological model was fed with climatic time series 
generated stochastically. Beside k-nn approaches, the Matlab-based stochastic weather 
generators MulGETS and WeaGETS were utilized to generate maximum and minimum 
temperatures as well as precipitation intensities and occurrences implementing exponential 
and gamma distributions for the selected watershed. The current study has only 
examined five families of weather generators coupled with a hydrological model while 
involving more models would lead emphatically to definitive implications. Overall, results 
indicated that the multi-site stochastic weather generator (MulGETS) has the best 
performance in the climate statistics space (CSS) followed by its counterpart for single site 
(WeaGETS) then k-nearest neighbour. The leading cause of diversity in weather generators 
outputs is the influence of the underlying assumptions and computational processes. The 
historical statistics of streamflow were found to be falling outside the predefined set of 
normal behaviour of the WeaGETS models and the k-nn approach. However, the MulGETS 
models, gamma followed by exponential, should be considered as good candidates for risk 
discovery in the South Nation watershed. Finally, it is also important to say that there is no 
binary classification of WGs but a WG could be suitable for a specific field or space more 
than others and fails in other fields. In other words, the suggested approach aims to highlight 
the importance to synthesize the CSS and the RPIS rather than one or two statistic tests in 
CSS. The current work appeals to climate product users for a carefully pick of WG based on  
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Figure 2:    Scatter plots of statistics features of weather generators for: (a) Precipitation; and 
(b) Streamflow. 

the relevant CSS and RPIS information. It is also worth looking to verify these results by 
versatile models such as economical, ecological, electricity demand or crop-yield models and 
to analyze their performance as well. 
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