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Abstract 

An analytical solution is worked out for predicting transient seepage into a 
network of parallely spaced ditch drains in a homogeneous and anisotropic soil 
overlying an impervious barrier and receiving water from a uniformly ponded 
field. The distance between the adjacent drains is assumed to be the same and the 
level of water in all the ditches are all considered as equal in the analysis. In 
order that only two-dimensional flow prevails in the flow spaces in between the 
drains, it is further assumed in the mathematical procedure that the field is of 
infinite extent. The correctness of the develop model is established by 
performing a MODFLOW check on it for a considered ditch drainage situation. 
The study shows that the rate of water entry at the surface of a soil from a 
uniformly ponded field to the ditch drains is of a relatively better uniformity at 
early times of a simulation and that this uniformity gets progressively reduced 
with the passage of time, particularly for situations where the anisotropy ratio (it 
is a quotient between the horizontal and vertical saturated hydraulic 
conductivities of a soil) of the soil is low. Further, the transient state duration of 
a ponded ditch drainage scenario may be considerable if the drains are being laid 
in a soil having low directional conductivity values and a high anisotropy ratio, 
more so if the drains are being installed relatively deeper into the ground. The 
solution provided here is important as it can be successfully employed for 
designing a network of ditch drains for cleaning a salt affected soil and also in 
reclaiming a water-stagnated area. 
Keywords: analytical solution, ponded field, equally spaced ditch drains, 
saturated directional conductivity, specific storage, anisotropy ratio, uniform 
depth of ponding. 
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1 Introduction 

For sustainable irrigated agriculture, it is essential that the salt carried by the 
irrigation water be not allowed to accumulate in the root zone beyond the 
tolerance capacity of crops and also to prevent waterlogging from being 
developed in the irrigated fields for crops sensitive to waterlogging. Agricultural 
productivity of vast tracts of agricultural land has been reported by many [1–3] 
to be adversely affected by the twin problems of waterlogging and salinity. An 
usual method of leaching a salt affected soil is to subject the surface of the soil 
with a ponding head of good quality irrigation water so that the water is forced 
through the saline soil and in the process take away a portion of the salt present 
in the root zone of plants, the salt enriched water is then being collected and are 
drained by an array of drains being installed in the field for the purpose [2]. In 
order that better design of drainage networks for leaching a salt affected soil can 
be achieved, several drainage theories have been formulated by many [4–10] in 
the past. Most of these solutions, however, are for the steady state situation and 
thus not applicable to study the transient dynamics associated with a ponded 
ditch drainage scenario. Barua and Alam [11] provided a comprehensive 
analytical solution to the ditch drainage problem considering unequal water level 
heights in between adjacent drains as well as a variable depth of ponding over 
the surface of the soil. However, because of the general nature of this solution, it 
is somewhat demanding on its computational requirements and as such there lies 
a necessity of developing a relatively simple solution to the problem. Of course, 
in the process, the general nature of the problem will be compromised a bit but 
since, in many a leaching situations, the water levels of the adjacent ditches are 
mostly kept equal and also since a uniform ponding field rather a variable one is 
generally being provided in the field, a relatively simple solution to the problem 
based on these assumptions may still prove to be quite useful for actual field 
applications. In this study, an effort is being made towards realizing this 
objective.  

2 Mathematical analysis 

Figure 1 shows the flow problem considered for study. An array of equally 
spaced ditch drains of spacing Sa and semi-spacing Sha 

are draining water from a 
ponded field having a uniform depth of ponding δ0 over it, the ponding depth 
being maintained with the help of side bunds of width εa running alongside the 
drains. It is assumed that there exists a horizontal impervious barrier at a depth of 
h below the surface of the soil and also that the drains are being dug all the way 
up to this barrier. The soil is assumed to be fully saturated, homogeneous and 
anisotropic and the saturated conductivities of the soil in the horizontal and 
vertical directions are denoted as Kx and Ky, 

respectively. The ditches are 
considered to have the same water level depth of H1 at all times, the depth being 
measured from the origin O, as can be seen in the figure. In the analysis to 
follow, we assume that the ponding field to be imposed instantaneously into the 
drainage system and also the water in the ditches to be lowered instantaneously  
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Figure 1: Geometry of a fully penetrating ditch drainage system with equal 
water level heights in between adjacent drains and subjected to a 
uniform depth of ponding at the surface of the soil. 

into a depth of H1, the water table being initially assumed to be standing up to 
the surface of the soil. Because of symmetry, we consider only half of the flow 
domain of fig. 1 for analysis. For mathematical convenience, we measure the x-
axis to the right of the origin O as positive and the y-axis positive vertically 
downward of O. Calling the hydraulic head and time variables as   and t, 

respectively, the initial and boundary conditions of the flow problem for the 
domain OABKJO of fig. 1 can be expressed as  
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     The solution of the problem requires that suitable hydraulic head function for 
the flow domain must be worked out so that the continuity equation 
corresponding to transient groundwater flow in a homogeneous and anisotropic 
aquifer 
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be satisfied along with the initial and boundary conditions as specified above. In 
eqn. (1), sS  is the specific storage of the soil (the other symbols have already 

been defined). Applying the transformation  
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to eqn. (1), we get the governing equation as 
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where  
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     Using the separation of variable method [12], a solution of eqn. (3) can be 
expressed as  
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where 
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pC  and mnA  are any constants, m, n and p are summation indices and M and N 

are any natural numbers. 
     An inspection of eqn. (5) shows that this equation fits boundary conditions 
III, IV and V directly. To get the constants ,pC  we apply boundary conditions 

IIa and IIb in the transformed space to eqn. (5) – the resultant expressions at 
0X turn out to be  

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 171, © 2013 WIT Press

326  Water Resources Management VII



 
 

 

,)sin( 0
1

yyNC p

P

p
p 



 ,0 1Hy    

 

,)sin( 10
1

HyNC p

P

p
p 



 .0 hy    

     By allowing P  in the above equations to go to infinity, the constants pC  can 

then be evaluated by carrying out a Fourier series expansion in the range 
;0 hy   thus, pC  can be expressed as  
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     Simplifying the above integrals, we get 
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     There still remain the constants mnA  of eqn. (5) to be evaluated. To get these 

constants, we next apply the initial condition I to it in the horizontally 
transformed space; the ensuing relation works out to be  
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Letting NM  and  in the above expression, the constants mnA  can then be 

evaluated by carrying out a Fourier expansion in the domain hSX 0  and 

;0 hy   the resultant expression for ,mnA  thus, can be expressed as 
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     Naming the first and the second integrals of eqn. (14) as 1I
 

and ,2I

respectively, we get eqn (14) in a compact form as  
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     Thus, all the constants of eqn. (5) are now being determined and the problem 
is hence solved.  
     We would like to mention here that Barua and Alam [11] solved the flow 
problem of fig. 1 by considering a variable ponding field over the surface of the 
soil and unequal water level heights in the adjacent ditch drains. This solution is 
somewhat complex as, due to non-symmetry of flow in the flow space in 
between the drains, the entire flow domain OABCDHKJO was required to be 
considered in their analysis, running three different Fourier series to 
accommodate the boundaries at the ditch faces as well as on the surface of the 
soil. The solution provided here, however, as can be seen, is developed by 
considering only one half (because of symmetry of flow in the considered flow 
space) of the flow domain and is, hence, relatively much simpler than the one 
provided by Barua and Alam [11]. Further, it is important to note that these two 
solutions are totally independent of one another and the one obtained here cannot 
be reduced from Barua and Alam’s solution [11] as the flow domains, as 
mentioned before, over which these solutions are being developed are not the 
same.  
     Discharge per unit length of a ditch from one side, ,shalfQ  can be calculated 

by applying the Darcy’s law on the desired side; thus, we have  
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where yx KK  is the equivalent conductivity of the medium [15]. Solving the 

above integral, we have 
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     Similarly, the discharge per unit length obtained from the surface of the soil 
from a strip extending up to a distance of X from the origin O of fig. 1, ,topXQ

can be determined by applying now the Darcy’s law on the considered portion of 
the flow domain; the pertinent expression may be expressed as  
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     To obtain the top discharge per unit length of the ditches, ,topQ  in between 

the adjacent ditches from half of the flow domain, we need to simply take 

hSX   in the above equation. By dividing eqn. (22) by the total discharge per 

unit length of the ditches )2( topQ  the fraction of the discharge taking )( f
topXQ  

place from a zone extending to a distance X from the origin O, can also be 
calculated. Further, time integrals of the discharge expressions can be carried out 
to estimate the volume of water entering through the sides of a ditch )( stotV

 
as 

well as through the top surface )( topV  of the flow domain in between the ditches 

per unit length within any desired time interval t; performing these integrals, we 
get the expressions for these quantities as  
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and 
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respectively. The expressions derived above for the hydraulic head function, side 
and top discharges can be made to reduce to the steady state situation by simply 
taking the limit t  in these equations; this will make the exponential terms 
to go away in these expressions, leaving behind all the terms independent of .t  
Once the steady state hydraulic head function is being evaluated, the steady state 
stream function can then be next evaluated by applying the following relation 
[13] to it in the transformed computational space 
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where  is the stream function.  

     Taking the zero streamline to pass through )0,( in the horizontally 

transformed space ),0)0,( (i.e.,   an expression for the stream function for 

the flow domain OABKJO of fig. 1 can be expressed as 
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     Further, the stream function above can be easily normalized as under  
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where n  is the normalized stream function.  

     It is to be noted that all the expressions related to the volume, discharge and 
stream functions will reduce to infinity in the event of the condition 00   and 

.0a  This is because, in such a situation, in all these expressions, there will 

occur an term 




P

p
php NSNh

1
0 ,/)tanh()/2(   an infinite series which diverges 

since 1tanh(  hpp SNLim and .)/1(
1






P

p
pN  

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 171, © 2013 WIT Press

330  Water Resources Management VII



 
 

3 Discussion  

Figure 2 shows the comparison of hydraulic heads as obtained from our 
developed model for a flow situation of fig. 1 at different times with 
corresponding predictions obtained from MODFLOW [14]. As may be observed, 
our predictions are found to be matching very closely with the corresponding 
numerically generated values, thereby verifying that the proposed model has 
been correctly developed. The figure also shows that most of the head gets 
dissipated around regions in close proximity to the drains, suggesting that, for a 
uniformly ponded ditch drainage setting, the majority of flow to the drains is 
taking place from locations lying closer to the drains and that at regions away 
from the drains, the flow activity is relatively much less.  

 

 

Figure 2: Comparison of hydraulic head contours as obtained from the 
proposed solution for a flow situation of fig. 1 as shown with the 
corresponding MODFLOW generated contours at a few time 
intervals when εa=0.1 m and the soil parameters are taken as 
Ss=0.001 m-1 and Kx/Ky=1/1 (Kx=0.2 m/day, Ky=0.2 m/day).  

     From fig. 3 we see that considerable time may be required for a ponded ditch 
drainage system to reach steady state, chiefly for situations where drains are 
being installed relatively deeper in heavy soils having a high anisotropy ratio. 
The transient state duration has also been observed to be dependent on the 
spacing between the adjacent drains; among other factors remaining constant, an 
increase in the ditch spacing increases and a decrease in the ditch spacing 
decreases this duration. It can further be observed in this figure that both 

/ 2topQ Kh  and /shalfQ Kh  ratios approach to a steady value of 0.742 at large 

times, a figure which matches very closely to the corresponding figures of 0.743 
and 0.742 obtained from Fukuda [5] and Youngs’ [7] steady state theories. This 
also serves as an additional check on the rightness of the developed model.  

 

Impervious layer
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Figure 3: Variation of Qtop/Kh and Qshaft/Kh ratios with time when the 
variables of the problem are taken as h=H1 values (i.e., ditches are 
running empty), Sa=100 m (theoretically infinite), δ0=0, Ss=100 m-1 
and (a) Kx/Ky =25/1 (Kx =0.0254 m/day, Ky =0.001016 m/day) and 
(b) Kx/Ky =1/1 (Kx=0.0254 m/day, Ky=0.0254 m/day).  

     It is also interesting to observe in fig. 4 that the uniformity of the top 
discharge function is fairly uniform just at the start of the simulation for the 
considered ditch drainage situation and that this uniformity gets progressively 
reduced with the increase of time. Further, the anisotropy ratio of a soil also 
seems to play an important role in having a control on this uniformity – 
assuming other factors to remain the same, increasing the anisotropy ratio (by 
keeping the horizontal hydraulic conductivity as constant and decreasing the 
vertical conductivity) strengthens and decreasing the anisotropy ratio weakens 
this uniformity. It can also be observed that the transient state duration for a 
ponded drainage situation may be quite low in case of soil with high hydraulic 
conductivity. It should be noted that this very low value of the transient state 
duration for the flow situations of fig. 4 is mainly due to the high value of 
hydraulic conductivity of 9.5 m/day considered in the example, a value which 
approximately falls in the range of coarse gravel sand in the conductivity 
classifications based on soil texture [16].  
     The solution provided here can also be used to estimate the upper limit of fall 
of water of a waterlogged soil if soil and drainage parameters of a flow situation 
are known. For example, the volume of water drained per unit length of the 
ditches in between two adjacent ditches in 2 hours when h = 1.0 m, H1 = 1.0 m, 
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Figure 4: Variation of top discharge function with distance at the surface of 
the soil at a few time intervals when the flow parameters of the 
problem are taken as h=1 m, H1=0.5 m, δ0 =0.2 m, Sa=10 m, 
Ss=0.001 m-1, εa=0.05 m and Kx/Ky=10/1 (Kx=9.5 m/day, 
Ky = 0.95 m/day).  

m, 20aS m, 05.0a m, 1.00  -1m 001.0sS  and m/day 1 yx KK  is 

0.13164 m3; thus, at the end of 2 hours, the upper limit of fall of water at the 
surface will be about 6.6 mm ).20/100013164.0(   This is an upper limit since, 

in reality, with the fall of water level at the surface of the soil with time, the 
ponding head at the surface will no longer be a constant one but will reduce with 
the advance of time.  

4 Conclusions 

An analytical solution has been derived for studying transient dynamics of flow 
into a network of fully penetrating ditch drains receiving water from a ponded 
field of uniform depth. The validity of the developed solution has been tested by 
performing a MODFLOW check on the solution for a specific flow configuration 
of the ditch drainage problem. The study shows that the transient duration of a 
ponded ditch drainage situation may last for a considerable period of time for 
drains in heavy soils, particularly if the anisotropy ratio of the soils is high and 
the spacing between the adjacent drains as well the depth of the drains are 
relatively large. Apart from throwing light on the hydraulics of a ponded ditch 
drainage system in the transient zone, the solution provided here is also 
important in the sense that it can be utilized to design ditch drains for reclaiming 
saline and waterlogged areas.  
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