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Abstract 

Reservoirs (which are created by the artificial barrage of watercourses) gradually 
lose the capacity to store water resources owing to the progressive accumulation 
of solid particles, which are transported by the watercourses, on the bed. In 
conditions characterized by a flood with a high capacity for transporting large 
quantities of solid material, turbidity currents could occur; in these situations and 
in the presence of a steep bed slope, the turbidity currents can reach the bottom 
outlets. In this paper a model for the simulation of the turbidity currents is 
proposed; the model is based on the numerical integration of the two phase flow 
motion equations. These equations are integrated on a three-dimensional 
generalised curvilinear grid and are directly expressed in contravariant 
formulation. The numerical procedure adopted is based on a fractional step 
method and the proposed numerical scheme is conservative and fourth order 
accurate. The numerical model is validated by comparison between the 
numerical results and experimental data and is applied to the reservoir of Pieve 
di Cadore (Italy), in order to verify the possibility of the production of turbidity 
currents and the possibility of using the bottom outlet to discharge downstream 
the solid material that reaches the reservoir during flood events.  
Keywords: two phase flow, turbidity current, contravariant form, reservoir. 

1 Introduction 

Reservoirs (which are created by the artificial barrage of watercourses) gradually 
lose the capacity to store water resources owing to the progressive accumulation 
of solid particles, which are transported by the watercourses, on the bed (the 
silting process). In this paper the possibility of using the bottom outlets to avoid 
or reduce the solid particle sedimentation (which occurs during flood events) is 
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evaluated. Most of the solid particles that accumulate in the reservoirs are 
transported by the tributary during floods. In conditions characterized by a flood 
with a high capacity for transporting large quantities of solid material, turbidity 
currents could occur; in these situations, and in the presence of a steep bed slope, 
the turbidity currents can reach the bottom outlets. The well timed opening of the 
bottom outlets can permit the discharge downstream of most of the solid material 
that is transported by the currents during the flooding. In order to verify the 
possibility of using the bottom outlets for the optimal control of the silting 
process in the reservoir, it is necessary to verify the possibility that the turbidity 
currents occur in the reservoir. 
     In this paper a model for the simulation of the turbidity currents is proposed; 
the model is based on the numerical integration of the two phase flow motion 
equations. These equations are integrated on a three-dimensional generalised 
curvilinear grid and are directly expressed in contravariant formulation. The 
numerical model is validated by the comparison between the numerical results 
and experimental data of Hosseini et al. [1] and is applied to the reservoir of 
Pieve di Cadore (Italy), in order to verify the possibility of the production of 
turbidity currents and the possibility of using the bottom outlet to discharge 
downstream the solid material that reaches the reservoir during flooding.  

2 Contravariant formulation of the two-phase flow  
motion equations 

The simulation of the turbidity currents in an artificial reservoir requires the 
numerical integration of motion equations of a two phase flow with a mutual 
interaction between the phases. In the formalization of the above mentioned 
equations, some hypotheses can be adopted to simplify the representation of the 
physical phenomena: a) there is a thermal and dynamic equilibrium between the 
phases; b) the solid phase can be considered as a homogeneous fluid, so that the 
mass and momentum conservation principles are valid for it; c) the solid 
particles are spherical in shape with diameter “d”. 
     Let s  be the microscopic density of the single particle; s the macroscopic 

density of the solid phase; sa     the volume fraction of the solid phase;   

the microscopic density of the fluid phase; f  the macroscopic density of the 

fluid phase. The physical domain (in which the turbidity currents generally 
occur) are characterised by a high level of morphological complexity. In this 
paper the definition of a computational domain (which represents the geometry 
of the reservoir) is realised by a generalised curvilinear grid. The two phase flow 
motion equations are written directly in the contravariant formulation in a 
curvilinear coordinate system. In order to introduce the notation to be used, we 

consider a transformation   1 2 3, ,l lx x     from the Cartesian coordinates x


 

to the curvilinear coordinates 


 (note that superscripts indicate components and 

not powers in the present notation). Let ( )
l

lg x   
 

 be the covariant base 
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vectors and  ( )l lg grad 


 the contravariant base vectors. The metric tensor 

and its inverse are defined by ( ) ( )lm l mg g g 
 

 and 
( ) ( )l mlmg g g 
 

( , 1,3l m  ). 

The Jacobian of the transformation is given by  det lmg g . The 

transformation relationship between the fluid phase velocity vector, v


, in the 

Cartesian coordinate system and its contravariant components, lu , in the 

curvilinear coordinate system are given by  
( )llu g v 
 

 and ( )
l

lv u g
 

 [2].  

     The same relationship also applies to other vectors. In the following equations 
a comma with an index in a subscript denotes covariant differentiation. The 
covariant derivative is defined as ,l l m l n

m mnu u u      where l
mn  is the 

Cristoffel symbol that is given by 
( )

( )

ll m
mn ng g    

 
[3]. 

     For the fluid phase the mass and the momentum balance equations in 
contravariant form are: 

(1 )
(1 ) , 0l

l

a
a u

t
       

    (1) 

(1 )
(1 ) , (1 ) ,

l
l m l lm l

m m p

a u
a u u a f T F

t
           

    (2) 

where lf  and lmT  are the contravariant components (in the curvilinear 

coordinate system) of the external body forces and the stress tensor, respectively. 
The covariant derivative of a second order tensor is given by 

  , 1lm lm mn l
m m mnT g gT T     . l

pF  is the contravariant component (in 

the curvilinear coordinate system) of the force per unit volume resulting from the 
interaction between the two phases, which is given by  

 2

18
,fl l l lm

p s f mF a u u ag p
d


                         (3) 

where f and fp are, respectively, the viscosity and the pressure of the fluid 

phase and l
su  is the contravariant component (in the curvilinear coordinate 

system) of the solid phase velocity. The first term on the right-hand side of Eq. 
(3) is the viscous resistance force according to Stokes’ law, while the second 
term is due to the pressure gradient, in the fluid surrounding the particle, caused 
by the acceleration of the fluid.  
     The contravariant form of the equations for the solid phase are: 

  , 0ls
s s l

a
a u

t





 




       (4) 

, ,
l

l m l lm ls
s s s s m s s m p

au
au u a f T F

t
  


     

               (5) 
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where lm
sT  is the contravariant component of the tensor that takes into account 

the effects of the field interactions between two or more particles (the effect of 
individual particles being given by the drag force l

pF ). When the analysis is 

restricted to diluted suspension, Equation (5) can be simplified: since lm
sT  is 

inversely proportional to the ratio of the distance between particles to their 
diameter (and is therefore small for diluted suspensions), it can be neglected; 
furthermore, the volume fraction a  can be neglected in the continuity equation 
and in the material derivative of the velocity in the momentum balance equation 
of the fluid phase. With these assumptions the equations for the two-phase flow 
become: 

, 0l
lu               (6) 

, (1 ) ,
l

l m l lm l
m m p

u
u u a f T F

t
  

    


              (7) 

  , 0ls
s s l

a
a u

t





 


         (8) 

,
l

l m l ls
s s s s m s p

au
au u a f F

t
  


    

          (9) 

     The two sets of equations, (6)-(7) and (8)-(9), are coupled through the 
momentum interchange term l

pF  and the volume fraction a .  

     In order to evaluate the different level of coupling between the sets of 
equations, generally the loading ratio of the flow, s    , and the Stokes 

number, p fSk   , are introduced; p  is the particle translational relaxation 

time and f  is the characteristic time of fluid flow. The relaxation time can be 

expressed as  2 18p s f dd f    , where the coefficient   2 31 1 6 Red pf    is 

the drag coefficient, which is a function of the particle Reynolds number 
Re p s f

d v v  
 

 ( d and sv


are the diameter and the velocity vector of the 

solid particle, respectively). The value of Sk  indicates how rapidly the particle is 
able to follow the fluid velocity variations: the rapidity of these variations may 
be represented by the characteristic time of the flow field, f L U  , where L  

and U are, respectively, the flow field characteristic length and the flow 
characteristic velocity. The Stokes number Sk  is proportional to the translational 
nonequilibrium of the particles. A small value of Sk  means a small difference 
between particle and fluid velocities but a large coupling effect.  
     The loading ratio   multiplies the effects of the Stokes number on the 

momentum equations, increasing the coupling of the fluid with the particle field. 
For very small values of    the fluid phase is independent of the solid phase and 

only a one way coupling occurs between the two equation systems. The value of 
the Stokes number indicates whether it is appropriate to consider the particles to 
be in equilibrium with the fluid flow. For 110Sk   the flow is only slightly out 
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of equilibrium, which allows us to assume that the particle velocity field is a 
superimposing of the fluid field and the particle settling velocity. For 110Sk   
the nonequilibrium effects become significant and imply a large relaxation time 
between the particles and the fluid. For a large value of the loading factor   a 

two-way coupling occurs between the two equation systems and they must be 
solved simultaneously. The effect of the particles on the fluid flow field cannot 
be neglected anymore. In the case of turbidity currents small values of Sk  give 
us the possibility to consider that the particles are in equilibrium with the fluid 
flow. Consequently the particle velocity field can be assumed as a superimposing 
of the fluid flow field and the particle settling velocity. On the other hand, the 
large values of   indicate that the effects of the particles on the fluid field 

cannot be neglected. Thus for the turbidity currents the hypothesis of the 
“linearization” can be introduced: the particle velocity field is simply obtained as 
a superimposing of the flow field and the particle settling velocity, and the 
particle volume fraction is calculated by solving the particle concentration 
equation.  
     For a two phase turbulent flow the independent variables lu , p , a  are split 

into a mean and a fluctuating part, 'l l lu u u  , 'p p p  , 'a a a  , in order 

to take into account the effects of turbulence. The linearised model can be 
deduced as a particular case of the system (6)-(9) by assuming sedw  for the 

settling velocity of the particles in a quiescent surrounding fluid. Let us indicate 
with sw


 the vector whose components in the Cartesian coordinate system are 

 0,0, sedw . The contravariant counterpart in the curvilinear coordinate system of 

sw


 is given by ( )l l
sw g w 

 
. With this assumption the equations for the 

turbulent two phase flow are: 
, 0l
lu         (10) 

1
, (1 ) , ,

l
l m l ml lm

m m R m

u
u u Ra f g p T

t 


    


              (11) 

   , , , 0l l l
l l l

a
au a w b

t


   


          (12) 

where lm
RT  are the contravariant components of the turbulent stress tensor, 

' 'l lb u a  and   1sR    . lm
RT  and lb can be related to the kinetic energy of 

turbulence, ' 'l lk u u , and to the mean dissipation rate per unit mass of fluid 
due to the turbulence,  . 

3 The numerical scheme  

Equations (10), (11) and (12) are integrated, in the computational domain, on a 
“staggered” grid, where the velocity components are calculated at different 
points with respect to those where the volume fraction a  is calculated. In this 
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paper, following the methodology of Morinishi et al. [4] and Vasilyev [5], in the 
staggered grid the differential terms are approximated by means of a 
conservative fourth-order accurate numerical scheme. The generic point of the 
curvilinear grid is identified by the coordinates 1 2 3

ijk ijk ijk, ,   . By considering that 

in the computational domain the spatial step is constant and equal to one, the 
finite difference operator with stencil   acting on a generic function   with 

respect to 1 , can be defined as: 

1 2 3

1 2 3 1 2 3

1

2 2

ijk ijk ijk

ijk ijk ijk ijk ijk ijk

, ,

( / , , ) ( / , , )


   

          
 

  
 .   (13) 

     We also define an interpolation operator with stencil   acting on   in the 
1  direction as 

1

1 2 3

1 2 3 1 2 32 2

2
ijk ijk ijk

ijk ijk ijk ijk ijk ijk

, ,

( / , , ) ( / , , )

  

         


  
     (14) 

     The combination of the discrete operator defined by Eq. (13), with different 
values of  , can be used to make a higher order approximation of the first 

derivative of   with respect to 1 . The combination of the discrete operator 

defined by Eq. (14), with different values of  , can be used to make a higher 
order approximation of the function value of  . In this paper the fourth order 

accurate approximation of the firs derivative of   with respect to 1 is obtained 

by means of Eq. (13), once with  equal to 1 and once with  equal to 3, and 
combining the resulting discrete operators as follows:  

1 2 3 1 2 3 1 2 3

31
1 1 1

1 3

1 2 3 1 2 3

1 2 3 1 2 3

9 1

8 8

1 2 1 29

8 1

3 2 3 21

8 3

ijk ijk ijk ijk ijk ijk ijk ijk ijk, , , , , ,

ijk ijk ijk ijk ijk ijk

ijk ijk ijk ijk ijk ijk

( / , , ) ( / , , )

( / , , ) ( / , , )

        

  
    

       

       

  

   
  
 
   

   
 

        (15) 

4 Results and discussion 

The validation of the proposed numerical model is performed by comparing the 
numerical results with the experimental data produced by Hosseini et al. [1]. 
     In particular, Fig. 1(a) shows the velocity and concentration fields that are 
produced by the numerical simulation (Simulation 1) in a domain representing 
the rectangular tank (whose dimensions are 12m, 1,5m and 0,75m) used by (...) 
to produce the experimental data.  
     The above-mentioned velocity and concentration fields (shown in Fig. 1) 
were obtained by assuming the solid particle specific gravity 2.65s   , and a 
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solid particle diameter 0.02d mm ; the bottom slope, the inflow concentration, 

the liquid flow rate and velocity were assumed to be, respectively, equal to 3%, 
0.005 3kg dm , 8 l min  and 13 cm sec ; Fig. 1(b) shows the detail of the 

velocity and concentration field obtained at an instant of the simulation 
corresponding to about 275 seconds from the moment at which water and solid 
material were released into the tank of fresh water. 
 

 

 

Figure 1: Numerical simulation of the turbidity current inside the 
computational domain that reproduces the laboratory apparatus: a) 
vertical section of the velocity and concentration fields obtained by 
means of the proposed simulation model; b) detail of the velocity 
and concentration fields. Simulation 1. 

     Fig 2(a) shows the comparison between the mean downstream velocity values 
produced by the numerical simulation and the corresponding values obtained by 
experimental data, while Fig. 2(b) shows the mean concentration profile obtained 
by the numerical simulation and the profile obtained by experimental data [1] 
(both are relative to the case shown in Fig. 1). The velocity maximum (Um ), as 
the characteristic velocity, and the height of the velocity maximum ( Hm ) and 
the depth-averaged thickness of the current ( H ), as length scales, were used to 
obtain the non-dimensional form of the velocity profiles [6]; Cm  is the mean 
concentration at the height of the velocity maximum.  
     Figs 3(a) and 3(b) show the comparison between the mean velocity and the 
mean concentration profiles produced by the numerical simulation (Simulation 
2) and those obtained from the experimental data; in this case the bottom slope is 
equal to 3%, the inflow concentration is equal to 0.01 3kg dm , the inflow liquid 

flow rate and velocity are, respectively, equal to 12 l min  and 20 cm sec . In 
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Figure 2: Comparison between the numerical simulation and the 
experimental data: a) dimensionless velocity profiles; b) 
dimensionless concentration profiles. Simulation 1. 

 
 

 

Figure 3: Comparison between the numerical simulation and the 
experimental data: a) dimensionless velocity profiles; b) 
dimensionless concentration profiles. Simulation 2. 

 
 

 

Figure 4: Comparison between the numerical simulation and the 
experimental data: a) dimensionless velocity profiles; b) 
dimensionless concentration profiles. Simulation 3. 
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Figs 4(a) and 4(b) compare the mean velocity and the mean concentration 
profiles obtained by the numerical simulation (Simulation 3) and those obtained 
from the experimental data; in this case the bottom slope is equal to 2%, the 
inflow concentration, the inflow liquid flow rate and the inflow liquid velocity 
are, respectively, 0.005 3kg dm , 10 l min  and 16 cm sec . From the figures the 

agreement between the numerical results and the experimental data can clearly 
be seen.  
 

 

 

 

Figure 5: Numerical simulation of the turbidity current in the Pieve di 
Cadore reservoir: a) vertical section of the velocity and 
concentration fields relative to about 90 minutes from the 
beginning of the arrival of the flood; b) vertical section of the 
velocity and concentration fields relative to about 100 minutes 
from the beginning of the arrival of the flood; c) detail of the 
velocity and concentration fields after about 90 minutes from the 
beginning of the arrival of the flood. Simulation 4. 
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     The simulation model presented in the previous sections was applied to the 
case study of the Pieve di Cadore reservoir, in conditions of a full reservoir and 
liquid and solid inflow discharge in the reservoir that can be associated with 
flood events with a return period of less than ten years. In the simulations carried 
out, conditions were reproduced of the opening of the bottom outlet such as to 
ensure the complete release of the flood through the bottom outlet itself, without 
significant changes of water level in the reservoir.    
     Fig. 5 shows the velocity and concentration fields (Simulation 4) produced by 
a flood characterized by the following values of the principal hydraulics 
quantities: specific gravity and diameter of the solid particles carried by the 
tributary, 2.65s   , and 0.1 mmd  ; average concentration of suspended 

solids over the inlet cross section of the reservoir, 5 g lC  ; flood peak value of 

the tributary, 3100 m sQ  . These values are characteristic of flood events with 

a return period equal to two years. The above figures show that, in such 
conditions, a turbidity current is generated and the present bottom slopes of the 
reservoir are high enough to let the turbidity current reach the bottom outlet.  
 
 

 

 

Figure 6: Numerical simulation of the turbidity current in the Pieve di 
Cadore reservoir: a) vertical section of the velocity and 
concentration fields relative to about 85 minutes from the 
beginning of the arrival of the flood; b) detail of the velocity and 
concentration fields after about 75 minutes from the beginning of 
the arrival of the flood. Simulation 5. 
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     Figs 6 and 7 show the velocity and concentration fields (Simulations 5 and 6, 
respectively) produced by a flood event characterized by a flood peak value 
equal to the maximum value that is able to flow through the bottom outlet when 
the reservoir is full ( 3180m sQ  ) and by an average concentration value of 

suspended solids over the inlet cross-section of the reservoir equal to 15g lC  . 

These values are less than the characteristic ones for flood events with a return 
period of ten years (which are, respectively, 3250m sQ   and 20g lC  ). The 

results shown in Fig 6 were obtained by assuming a diameter of solid particles 
carried by the tributary equal to 0.1 mmd  , while the results shown in Fig 10 

were obtained by assuming a diameter of solid particles equal to 0.3mmd  .  

     From Figs 6 and 7 it can be seen that, in the simulated hydraulic conditions, a 
turbidity current is generated that is able to carry ever coarser solid material to 
the bottom outlets. The results of the numerical simulations show that, in the 
Pieve di Cadore reservoir, for inflow liquid and solid discharge values 
comparable with the flood values with a return period of less than ten years, the 
inlet concentration values in the reservoir are such as to allow the formation of 
turbidity currents. The present bottom slopes of the reservoir are high enough so 
as to let the turbidity current reach the bottom outlet.    

 

 

 

Figure 7: Numerical simulation of the turbidity current in the Pieve di 
Cadore reservoir: a) vertical section of the velocity and 
concentration fields relative to about 100 minutes from the 
beginning of the arrival of the flood; b) detail of the velocity and 
concentration fields after about 87 minutes from the beginning of 
the arrival of the flood. Simulation 6. 
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5 Conclusions 

In this paper a model for the simulation of the turbidity currents is proposed; the 
model is based on the numerical integration of the two phase flow motion 
equations. These equations are integrated on a three-dimensional generalised 
curvilinear grid and are directly expressed in contravariant formulation. The 
numerical model is validated by the comparison between the numerical results 
and experimental data and is applied to the reservoir of Pieve di Cadore (Italy). 
The results of the numerical simulations show that, in the Pieve di Cadore 
reservoir, the inlet liquid and solid discharge with a return period of less than ten 
years produce concentration fields in the reservoir such as to allow the 
formation, near the bottom, of turbidity currents. The present bottom slopes of 
the reservoir are high enough to let the turbidity current reach the bottom outlet. 
It can be concluded that, at the Pieve di Cadore dam, it is possible to use the 
bottom outlets for the optimal control of the silting process in the reservoir.   
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