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Abstract 

In this paper a new analytical solution for soil-water two-dimensional movement 
to an orthogonal mesh of parallel drains is presented, as an extended case of the 
one-dimensional flow problem of the same nature. An equation is provided that 
gives the profile of the water surface as well as the volume that has passed 
through the drains at a given time. A simplified form of the equation is 
presented, which provides very good results for time values higher than a certain 
level. Non-dimensional profiles of the piezometric surface are given for various 
values of time and space parameters. The water volume versus time derived from 
the respective equation accords well with the volume derived from surface 
profile integration.  
Keywords: two-dimensional drainage, mathematical model, water profiles, 
drained volume. 

1 Introduction 

The flow of the subsurface water towards drains and ditches and the 
quantification of the respective drained volume as a function of time in cases of 
intense phenomena have considerable interest for land reclamation. 
     The problem reduces to the determination of the position of the watertable at 
the central point between successive drains as function of time. The purpose is to 
determine if a certain depth and a certain drain spacing satisfy design criteria, in 
relation to the lowering of the watertable after an intense irrigation or flood. 
     In the case of variable flow, Dumm [1] used a differential equation derived 
from the application of the continuity principle to describe the lowering of the 
watertable after its abrupt increase to a certain level over the drains. The solution 
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describes the lowering of an initially horizontal watertable, as a function of time, 
space, drain spacing and soil properties. The analytical solution of an analogous 
equation of the one-dimensional problem in heat transfer was provided by 
Carlslaw and Jeager [2], and Luikov [3]. 
     Many researchers gave similar solutions to the problem (Ritzema [4], 
McWhorter and Duke [5]). Freeze [6] developed a finite-difference model for the 
solution of the variable saturated-unsaturated flow. Dou et al. [7] presented a 
model of unstable flow in a confined aquifer, with results that converge to those 
of the analytical solution of Theis. An analytical solution for the total subsurface 
drained quantity in heavy soils was provided by Stibinger [8]. Numerical 
solutions of the two-dimensional variable free-surface flow to drains with finite 
difference schemes were provided by Todsen [9]. The case of the two-
dimensional drainage and more specifically of the lowering of the watertable was 
solved numerically with finite elements by Lagace et al. [10], and analytically for 
problems of stable drainage by Tzimopoulos and Sakellariou-Makrantonaki [11].  
     In the present article the two-dimensional case of this problem is approached 
analytically. Initially the full analytical solution of the problem is presented, 
which is followed by the simplification of the model, using only one of the terms 
of the numerical series of the full model. The precision of the results of the 
simplified model is examined as for the level of the water at the central point of 
the drain grid, as well as for the drained volume through time.  

2 The general model 

2.1 The geometry 

A simple equation is presented here for the lowering of the watertable as well as 
for the remaining water volume, where a non-dimensional function is utilized, 
depending on x, y and time, as described below. The geometry under study is 
shown in figure 1. Initially, the phreatic surface is considered horizontal. The 
height of the aquifer is H1 and the impermeable stratum is at a vertical distance 
Ha under the drains. The distance between drains is 2R1 in the x-direction and 
2R2 in the y-direction. The aquifer is considered unconfined, homogeneous and 
isotropic. The origin of the axes x and y is considered at the middle point of the 
drain spacing and the z-axis is considered positive upwards. 
     The following assumptions are taken into account: 

 The Dupuit assumption. The impervious subsoil is considered close to the 
drains, in order for this assumption to be valid. 

 The unsaturated flow from the aeration zone to the saturated zone is 
negligible. 

 There is no flow from rain or irrigation from the soil surface. 
 The flow is horizontal, two-dimensional and symmetric.  

     With these assumptions, the time-dependent movement of the water towards 
the drains can be described by the well-known Boussinesq equation (Bear [12]): 
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with H(x, y, t) = the height in m of the watertable from the impermeable stratum 
at the point (x, y) at time moment t, K the saturated hydraulic conductivity, S the 
storativity of the aquifer, t the time after the beginning of the drainage, and 

2/)( 1 aHHH  . 

  

 

Figure 1: The geometry of the drainage problem. 

2.2 Initial and limit conditions and variable normalization 

It is considered that the initial shape of the aquifer at time point t=0 (just before 
drainage) is at level H(x, y, 0)=H1. 
     As far as the limit conditions are concerned, for x = ±R1 it is: H (±R1, y, t) = 
Ha and for y = ±R2 it is: H (x, ±R2, t) = Ha   
     By introducing the normalizing function: 
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the initial flow condition for t=0 becomes:   f(x, y, t) = 1 

and the limit conditions:    for x = ±R1 it is: f (±R1, y, t) = 0  

     and for y = ±R2 : f (x, ±R2, t) = 0 
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     For the case of this normalized solution, it is proven that: 













HH

HtyH

HH

HtxH

HH

HH
tyftxftyxf












111

21
),(),(

),(),(),,(    (4) 

     The above mentioned solution is analogous to the assumption of 
independence employed in probability theory, which reduces a joint probability 
density function to the product of its separate marginal density function and also 
analogous to the non-interactive fuzzy sets (Ross [13]). 
     Thus, eqn (4) consists of a solution of eqn (1). 

2.3 Analytical solution for the profile of the free surface 

For the one-dimensional case, it is proven [2, 3, 11] that: 
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where: 
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which leads to the relationship: 
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Correspondingly for the y-direction: 
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and the total solution for the two-dimensional problem becomes: 
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     This solution satisfies the initial and the limit conditions of the problem.   

2.4 The drained volume 

The volume between the impermeable stratum and the free surface is given by: 
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     The volume of the water that has passed through the drains at a given time 
moment is then: 
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where ΔH=H1-Hα. 
     For t=0, it is Vout=0, and for time t which tends to infinity it is Vout=4R1R2ΔH. 

2.5 Results of the general model 

A program was developed in FORTRAN for the calculation of the three-
dimensional profile of the free water surface. This program allows the input of 
the space parameters R1 and λ=R1/R2, as well as of the non-dimensional 
parameter 
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where α was defined by eq (2). The parameters R1 and R2 are, as mentioned 
before, the spacings of the drains in the directions x and y respectively. 

     The program calculates the ratio: from eqn (9), as a function of 
12R

x
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12R

y
 , which are non-dimensional space parameters and results to the head 

H(ξ, η, F0) (figure 2). The parameters ξ and η are varied from 0.01 to 1 with a 
step of 0.01. 
     As appears in figure 2, the profiles present instabilities at the lower values of 
the time parameter F0 (at these time values the drainage influences mainly the 
area close to the drains, resulting in values of the non-dimensional head around 
unity). In figures 2 and 3, the profiles for F0 =0.01 and F0 =0.1 are shown for λ=1 
and 2, in two and three dimensions respectively, λ being the ratio of the drain 
spacing in the two directions: λ=R1/R2. 

3 The simplified model 

The maximum value of the head of the watertable occurs at the central point of 
the grid, that is, at point (x, y) = (0, 0). This head is given by: 
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Figure 2: Non-dimensional profiles for values of the time parameter F0=10-2 
and 10-1 and for λ=1 and 2. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Three-dimensional profiles for two time-points and two 
geometries. 

F0=0.01 

F0=0.1 

F0=0.01 

F0=0.1 

λ=2

λ=1
F0=0.01 

F0=0.01 
F0=0.1 

F0=0.1 

Water Resources Management V  297

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2009 WIT PressWIT Transactions on Ecology and the Environment, Vol 125,



 

     It is easily shown that the terms of the series of this equation after the third 
one, are practically zero. In a simplified version of the mathematical model, we 
used only the first term from each series. This simplified model results for the 
head at the central point to: 
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     Eqn (15) provides the water head as a function of the drain spacings in the x- 
and y-directions. In figure 4, this head is shown as it is derived from the general 
model, as well as from the simplified one. For high values of the time parameter 
F0, the results of the two models coincide. For low values of this parameter, that 
is for F0<0.3, the simplified model overestimates the water head. 
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Figure 4: Normalized head derived from the general and from the simplified 
model. 

     The drained water volume as a function of time in the general model was 
proven above to be:  
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     The values of this volume as determined by this analytical expression are 
compared in figure 5 with the ones that were derived from the numerical 
integration of the surfaces described in the previous paragraph: 
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     In the simplified model, that is, considering only the first term of the 
summations, in the case of a square drain network, the drained volume at a given 
time moment t, is given by the simplification of eqn (16): 
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     The drained volume, as estimated by the simplified model, is also shown in 
figure 5 and presents a very good agreement with the one of the general model 
for F0>0.1. As in the case of the head, the simplified model diverts from the 
general one for time values near the beginning of the drainage, though it 
converges with the general model for high time values. 
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Figure 5: Non-dimensional drained volume versus time parameter F0.  

     For a better estimation of the number of terms that are necessary in the 
summation series of the model, it was checked after how many terms the sum  
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converges to its final value, as a function of the parameter F0. As seen in figure 
6, in which the x-axis is the number of terms, for F0>0.25, there is no need for 
terms higher than the second one, and thus, the simplified model provides results 
that coincide with those of the general. This means that for time values after the 
first hours of the intensive phenomenon of flood or irrigation, the simplified 
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model described here by eqns (15) and (18), gives excellent results. Of course, as 
derived from figure 6, one needs about 6 terms in eqns (9) and (11) of the 
general model in order to be accurate, in cases where the first time period is of 
major interest. 
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Figure 6: The value of the summation of the general model.  

4 Conclusion 

The simplified mathematical model that was presented in the present paper for 
the free surface of the water and for the drained volume in the case of the two-
dimensional drainage after heavy rain or irrigation, showed very good results in 
comparison with those of a general model for the same drainage case that has 
been presented in this paper. 
     The simplified model provides results that practically coincide with those of 
the general, for time values higher than the initial 20% of the total drainage time. 
Given that the knowledge of the water profile for times after the first hours that 
follow an intensive rain or irrigation is important for many issues of drainage, it 
is believed that such a model would help in the estimation of the water head and 
volume. 
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