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Abstract 

PREPARED, Enabling Change, is an EU-funded Collaborative Project under the 
Seventh Framework Programme (FP7). The project aims to gather urban utilities 
in Europe and worldwide to develop an advanced strategy in meeting the 
upcoming challenges for water supply and wastewater treatment brought by 
climate change. This work aims to increase technological capacity and improve 
performance of traditional water supply and wastewater treatment systems via 
better use of sensors. For newly developed multivariate sensors, calibration 
procedures are quite different from manufacturer to manufacturer. Manual 
operation during calibration and verification is commonly practised in this field 
due to complexity of the calibration procedure and occurrence of unpredictable 
events. In addition, many of the sensor manufacturers have not developed 
detailed instructions for sensor calibration. Therefore, a calibration and 
verification protocol is needed to guide and unify practice in this area where 
diversified practice is commonly observed. In this work, a unified protocol for 
sensor calibration and verification was developed and applied. Two sensor 
products, an optical sensor and an electronic nose sensor, are discussed as 
examples for calibration procedures, regression methods and verification 
methods of calibration in the application of wastewater treatment plant 
monitoring. 
Keywords: PREPARED, multivariate sensors, calibration protocol, verification 
protocol, local calibration, global calibration, UV-vis spectrophotometer, 
electronic nose, Partial Least Squares (PLS) regression, Principle Component 
Analysis (PCA). 
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1 Introduction 

On-line measurements of wastewater parameters in wastewater treatment plants 
(WWTPs) and in sewer systems can provide crucial information for plant 
operation and environment management. Some examples of continuous 
monitoring using ultraviolet visible (UV-vis) absorption and electronic nose 
sensors have demonstrated the feasibility of these techniques in the WWTP 
application; however, general failures to apply them in WWTPs are mainly 
because they need to have constant contact with wastewater or polluted air, 
resulting in instrument errors, frequent cleaning and recalibration [1].  
     For newly developed multivariate sensors, calibration procedures are quite 
different from manufacturer to manufacturer. Frequently, there are neither 
published calibration protocols nor available adequate standards or certified 
materials. Many of the sensor manufacturers have not developed detailed 
instructions for sensor calibration. Although automatic calibration is typically 
implemented for those sensors, manual operation during calibration and 
verification is commonly practiced in this field due to complexity of calibration 
procedure and occurrence of unpredictable events. Therefore, a calibration and 
verification protocol is needed to guide and unify practice in this area where 
diversified practice is commonly observed. 
     PREPARED, Enabling Change, is a EU-funded Collaborative Project under 
the Seventh Framework Programme (FP7). The project aims to gather urban 
utilities in Europe and worldwide to develop an advanced strategy in meeting the 
upcoming challenges for water supply and sanitation brought by climate change. 
In Work Area 3 of the project, the project team contributes to increased 
technological capacity and improved performance of traditional water supply and 
sanitation systems via better use of sensors and models. The objective of this 
study was to define a unified protocol for sensor calibration and verification. 
Two types of sensors, UV-vis spectrophotometers and electronic noses are 
discussed as examples in this article.  

2 Calibration and regression methods 

All sensors shall be calibrated periodically. Calibration allows a) verifying that 
the sensor works; b) verifying that the sensor has no offset, sensitivity and 
linearity errors (This is expected for an ideal sensor. There are no perfect 
sensors, however, only real sensors affected by imperfections. In this case, 
calibration allows estimating, quantifying and correcting these errors, and 
estimating the resulting uncertainties in measurements.); c) adjusting the sensor 
in order to reduce the observed errors below a level specified as the maximum 
acceptable level of error by the user (according to use of the measurement results 
e.g. for monitoring, real time control, etc.) and d) determining a calibration 
function to correct the residual errors of the sensor and to estimate uncertainties. 
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     For a given sensor, the principle of calibration consists to observe the sensor 
outputs y (i.e. measured values, preferably at the end of the measurement chain 
as recorded in data loggers or SCADA systems) delivered when the sensor is 
submitted to known input values x, and to establish the corresponding calibration 
function y = f(x). For simple sensors, x and y are scalars (e.g. water level sensors, 
turbidimeters). For more complex sensors, x and y may be vectors, matrix, etc. 
(e.g. UV-visible spectrophotometers, electronic nose). The principle does not 
change, but the determination of the calibration function f may be more 
complicated and requires sophisticated mathematical tools. 
     In practice, independently from the numerical and statistical methods to be 
applied, a calibration is basically carried out as follows: a) choice of Nx standards 
or certified materials to evenly cover the sensor range of measurement; b) for 
each xi standard value, repeated readings of outputs values yik, with k = 1 to Ny. 
The repeated measurements yik are necessary to estimate properly uncertainties in 
sensors outputs from the observed standard deviation of the yik values. If only 
one single value yi is measured, uncertainties in sensor measurements cannot be 
evaluated; c) determination of calibration function and related variables 
(uncertainties, etc.). For verification, the protocol is similar except for the 3rd 
step. If all measured values yik are within a specified interval around the previous 
calibration function, then the verification is accepted and the sensor is used with 
the previous calibration function. If some measured values yik are outside the 
specified interval, then the verification is rejected. A new calibration function 
shall be established. The specified interval is defined by the user according to 
his/her needs. 
     In order to establish multilinear or polynomial calibration functions, 
regression methods are used. Conventionally, two regression methods can be 
used: ordinary least square (OLS) regression method that is the most frequently 
used method and Williamson least square (WLS) regression method that may be 
applied in cases where uncertainties in both X and Y values have to be accounted 
for. But in cases of multivariate calibration functions, ordinary and Williamson 
regressions are no longer applicable. Other methods have to be used, like e.g. 
PLS (Partial Least Squares) regression methods.  
     PLS generalizes and fuses the principal component analysis (PCA) and the 
multiple regression methods [2]. It is especially useful in cases where the number 
of variables is comparable to or greater than the number of observations and/or 
where there are other factors leading to correlations between variables [3]. The 
aim of PLS is to predict a variable Y from a variable matrix X and to describe 
their common structure. The interest of PLS is that it detects the components of 
the matrix X that are also pertinent to explain Y. PLS decomposes both X and Y 
as a product of a common set of orthogonal factors and a set of specific loadings. 
With the notations of Abdi [2], the independent variables are decomposed 
according to eq. 1, where T is the score matrix and P the loading matrix. The 
columns of T are the latent vectors. When the number of columns is equal to the 
rank h of the matrix X, the latent vectors perform an exact decomposition of X. If  
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all the latent vectors are used, this regression is equivalent to a principal 
component regression. The matrix P is composed of the direction vectors of the 
principal axes. 

 
tTPX   (1) 

 
tTBCŶ   (2) 

     Likewise, the dependent variables matrix is estimated according to eq. 2, 
where B is a diagonal matrix with the regression weights as diagonal elements 
and C the matrix with the weights estimated for Y. 
     The objective is to obtain, for each latent vector, a pair of vectors t = Xw and 
u = Yc, with a maximisation of ttu. When the first latent vector is found, its effect 
is removed from both X and Y and the procedure is re-iterated until the desired 
number of latent vectors is reached [2]. 
     In PLS, the step in which latent variables are determined is a central point in 
the estimation of the model structure, because the estimation of parameters 
strongly depends on the obtained latent vectors. There are many methods, with 
various levels of efficiency, to choose the number of latent vectors. One of these 
method calculates the explained variance percentage for X and Y simultaneously, 
for each number of latent vectors, starting with one latent vector and finishing 
with the highest possible number, which is equal to the number of independent 
variables measured. The number of latent vectors is chosen when adding an 
additional vector increases the percentage of explained variance for X and Y by 
only a small amount. Cross validation is another method, used to identify, among 
a given number of candidates, the parameters of the model minimizing the error 
of prediction. The basic idea consists to separate the initial data set in two sub-
sets. The prediction model is then constructed with the first sub-set (calibration) 
and the second one is used to test the quality of the predictions (verification) [4]. 
     Artificial neural network (ANN) is also commonly used for data analysis for 
electronic noses. ANN methods are very powerful and are inspired by the way 
the mammalian brain processes information. The non-linear character of these 
methods makes them interesting especially for the electronic nose technology. 

3 Calibration and verification procedures 

3.1 A unified calibration and verification protocol 

A unified calibration protocol and a unified verification protocol that are evolved 
from a protocol developed by the Arizona Department of Health Services [5] are 
presented in Tables 1 and 2.  
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Table 1:  The procedure of a unified calibration protocol. 

Step Description 
1 The details of calibration procedures, including calculations, 

integrations, acceptance criteria, and associated statistics shall be 
included or referenced in the operating procedure. 

2 An appropriate calibration model shall be selected for the calibration. 
This is applicably a priori for well-known laboratory instruments. For 
some field sensors, the best model can be chosen a posteriori based on 
calibration results and according to variance analysis criteria. 

3 The minimum number of references (standards or surrogate tools when 
standard or certified values are not available) selected to establish 
calibration shall be more than the power of the calibration model, e.g. 
for a quadratic calibration model, the minimum shall be 5. As the most 
appropriate model is not always known a priori, the selected standards 
shall cover the full range of measurement of the sensor. 

4 A blank or background sample shall be included in the standards.  
5 The selected algorithm or regression technique shall be described 

mathematically, and shall provide equations, coefficients, or other 
parameters necessary to characterise the calibration function uniquely. 

6 Acceptability criteria shall be established for calibration purposes. A 
simple criterion, for laboratory linear instruments, is the correlation 
coefficient of the regression model. Another criterion is the Fisher 
exact test, which helps to decide, among various calibration functions, 
which one performs better. The Fisher exact test approach is better in 
some cases, e.g. in the case when turbidity values have to be converted 
into equivalent total suspended solids (TSS) concentrations. 

7 For both univariate and multivariate standards, eliminating standard 
responses (outliers) from calibration is allowed, only under the 
following conditions: a) the minimum number of standard points are 
maintained; b) the retained concentration standards shall cover the 
desired concentration range; c) the retained highest concentration 
standard defines the upper limit of the concentration range without 
having to dilute; d) an eliminated standard from calibration shall be 
adequately documented for cause, statistical evaluation and corrective 
action. 

8 Once samples have been quantified using a finalised calibration 
function, calibration personnel shall not change the calibration model 
or the calibration function without performing another calibration. This 
is especially important for on-line continuous measurements. 

9 Laboratories shall perform another calibration under the following 
conditions: a) after instruments have undergone non-routine 
maintenance; b) when repeated use or other conditions change their 
expected behaviour; or c) when the calibration cannot be verified. 

10 Calibration personnel shall retain all the raw data necessary to 
reconstruct instrument calibration. 
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Table 2:  The procedure of a unified calibration verification protocol. 

Step Description 
1 The established calibration shall be verified with a reference method(s) 

prior to analysis of any samples. Samples for the reference method(s) 
shall be made or taken from the same source as the standards used for 
calibration unless the verification method allows use of a second 
source.  

2 Standard operating procedures shall document the process for 
calibration verification, calculations and any additional statistics.  

3 The number of calibration verification standards (or surrogate tools) to 
be analysed shall be based on the selected calibration model, algorithm 
or regression methods, and the number of standards used during 
calibration. The minimum number of the calibration verification 
standards shall be: a) when an instrument is tuned with one calibration 
standard, using a universally accepted scientific law or scale, then at 
least one calibration verification standard shall be analyzed at any 
concentration; b) when two calibration standards are used, at least one 
calibration verification standard shall be analyzed at a concentration in 
between the two standard concentrations; c) at least one verification 
standard shall be analysed when using average of responses or a linear 
regression analysis. The verification standard concentration may vary 
within the calibration range; d) at least two verification standards shall 
be analysed when using a quadratic regression. At least one 
verification standard concentration should be near the point of 
inflection; e) at least three verification standards shall be analysed 
when using a cubic regression. The concentration of two of the 
verification standards should be near the points of inflection. 

4 Unless otherwise required by regulation, method, or program, 
calibration personnel shall establish acceptance criteria for the 
calibration verification. For on-line sensors, different values may be 
chosen, according to both the sensor uncertainties and the maximum 
level of error. For example, the acceptance may be obtained if the 
concentration of the standard is measured within +/- three times the 
standard uncertainty of the sensor in the range of the standard 
concentration.  

5 When the calibration verification is outside the acceptance criteria, the 
laboratory may re-analyse the calibration verification that failed. If the 
results of the re-analysed calibration verification are outside acceptance 
criteria again, the laboratory shall take corrective action. If two 
consecutive calibration verifications are within criteria after the 
corrective action, the laboratory may proceed with the analysis. If the 
two consecutive continuing calibration verifications are outside the 
criteria, the laboratory shall perform another calibration. 
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3.2 An example for optical sensor calibration and verification 

The submersible Spectro::lyser spectrophotometer from S::CAN (www.s-can.at) 
is a probe that utilises the UV-visible range (220-720 nm) for simultaneous 
measurement of multiple parameters. The probe is a 2-beam (one measuring 
beam and one reference beam), 256 pixel, UV-Vis spectrophotometer, with a 
Xenon lamp as a light source. All of the controller electronics are included in the 
probe, along with a data logger and a water level meter. The measurement 
principle is as follows: substances contained in the medium to be measured 
reduce the intensity of a light beam when it goes through this medium. The light 
intensity is measured by a detector over a range of wavelengths. Each molecule 
of a dissolved substance absorbs radiation at a certain and known wavelength. 
The concentration of the substance determines the strength of the sample 
absorption. A single measurement typically takes 45 seconds and the 
measurement results are recorded and displayed in real-time. 
     The global calibration is a software tool which allows the instrument to give 
relatively good values for the parameters of concern in one type of water 
medium. For each type of water medium, for example wastewater, the global 
calibration provides an average of calibration based on hundreds data points 
from multiple WWTPs. No samples need to be analysed for implementation of 
the global calibration since it is purely software controlled.  
     Due to different compositions of matrix of concern at a specific site, a local 
calibration may be required to improve trueness, precision and long term 
stability. For local calibrations, samples with known concentrations have to be 
used, and the calibration software (ana::lyte) is used to enhance the accuracy of 
the probe. 

3.2.1 Global calibration of Spectro::lyser spectrophotometer 
The method and procedure used in the global calibration is presented by 
Langergraber et al. [6]. Fig. 1 shows a schematic step-wise calibration procedure 
used for Spectro::lyser calibration in a wastewater application. As the first step, 
the spectral plausibility is validated to exclude wrong spectra. The most 
important wavelengths are identified automatically, usually 5 to 10 wavelengths 
selected. Then calibration is done with turbidity compensated spectra (at infra-
red 880 nm). The turbidity compensation has two tasks: measurement of 
turbidity/suspended solids and baseline compensation for measurement of 
dissolved substances. A recursive procedure includes detection and elimination 
of outliers, model building, multivariate calibration with PLS, and multiple cross 
validation. To perform PLS, the spectra and the reference measurements have to 
be normalised.  
     A leave-one-out cross validation (LOOCV) strategy is used for the calibration 
verification [7]. After the model is built using the training set and PLS, a test set 
is used to validate the robustness of the model. The model can be improved by 
integrating more principal components into the model. Up to a certain point, the 
model becomes “over sensitised” by integrating one more principal component, 
which is when the best model is obtained. 
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Figure 1: A step-wise procedure for Spetro::lyser sensor global 
calibration [6]. 

3.2.2 Local calibration of Spectro::lyser spectrophotometer 
A local calibration is a correction of the global calibration. In case a specific PLS 
is necessary, the user should either contact the manufacturer or do his/her own 
PLS calibration. An example is given in Torres and Bertrand-Krajewski [8] for 
urban stormwater, where various calibration methods are compared. The local 
calibration is based on grab samples analysed for the parameters of concern and 
can be performed without demounting the sensor (in this case, it is very 
important that the grab sample has the same characteristics as the water 
measured by the sensor, e.g. by taking the grab sample at the same location and 
time as the sensor measurement). Before performing a local calibration, the 
following checks have to be made: a) the correct global calibration result has 
been downloaded to the probe; b) a reference analytical method is available and 
proven for the matrix of concern; c) the probe has been well maintained and is 
ready for local calibration; and d) the ana::lyte software has been correctly 
configured and the measurement plausibility has been checked.  
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     In a local calibration procedure [9], a reading of the matrix of concern is 
executed and results are stored in the calibration database, along with a sample 
ID and the sampling time. Simultaneously, a grab sample from the same 
sampling location shall be taken for the reference measurement. Once the 
reference results are available, the results are linked with the data stored in the 
calibration database based on the sample IDs and the sampling times. As soon as 
all the data have been input in the database, a local calibration can be carried out. 
The local calibration can be carried out either automatically or manually. First, a 
parameter (e.g. nitrate) and a calibration type (linear or non-linear) are set. Then 
the local calibration is carried out according to the same principle used in the 
global calibration (Fig. 1). The result of the local calibration is a new recovery 
curve (Fig. 2). If there is any data set that falls out of the 95% confidence interval 
(the yellow lines in Fig. 2), the data set is labelled as an outlier and excluded in 
the next round of calibration. For the non-linear calibration type, the local 
calibration can be done only in the manual mode. When the non-linear option is 
selected, the desired order (power) of a calibration model can be entered. The 
number of available samples must be taken into account when making the 
selection: the number of calibration points must always exceed the order (power) 
of the calibration model. When a satisfied local calibration is obtained, it is saved 
and activated in the probe.  
 

 

Figure 2: Screen display of ana::lyte for local calibration curve obtained for 
nitrate in milliQ water using a 10 mm path length [10]. 

3.3 An example for electronic nose calibration and verification 

The EOS Ambiente (EOS507D) manufactured by SACMI (www.sacmi.it) is an 
electronic nose system based on gas sensors made of metal oxide semiconductors 
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(MOS) [11]. The system contains 6 sensors with different metal oxide coatings, 
specifically selected to interact with environmental odorous substances, such as 
sulphur, ammonia, aromatic compounds. The output of the electronic nose 
system is reported as UE (EOS unit) that can be correlated to the standard 
measurement unit for odour concentration (Odour Unit, OU, European norm EN 
13725 [12]). Classification of data clusters is done by PCA (the training process) 
and then the signals in each class (typically associated with a specific chemical) 
are correlated to a corresponding olfactometric reference using the linear 
regression function (the recognition process).  
     A periodical calibration is required since MOS sensor signals drift with time. 
The automatic calibration is a multiple-step process using clean air generated 
inside the system and an internal gas reference. Calibration should also be 
carried out if the humidity (DPWork, humidity at the dew point) changes. Only 
local calibration shall be done for the sensor. 
     A schematic calibration and verification procedure for EOS507D is shown in 
Fig. 3. Prior to recognizing different odours or substances, the EOS system has 
to be trained with the specific odours or substances. In substance training, the 
system automatically changes concentrations of a specific substance to help 
recognition of its odour. At the end of the training process, the system stores a  
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Figure 3: Schematic diagram for the EOS507D sensor calibration and 
verification procedure. 
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set of UE pattern correlated with the substance ID and its concentrations. This 
stored information is named classification model. Samples with fixed 
concentrations are used in category training. Its output is also stored in the 
classification model. For applications in specific environments where maximum 
odour limitations apply, the system is then trained by a threshold training process 
(air training). The stored information is named threshold model. 
     Once training is completed, the system is set in recognition mode. In this 
mode, the system measures the new substances submitted or the environment air 
continuously and generates output as recognized substance IDs and 
concentrations. If OU data are used in the training process, the outputs are in the 
unit of OUs. By submitting to the system the same samples used during training 
or new samples of the same substances, one can validate the models and/or 
verify the robustness of the models. 
     Three electronic noses from SACMI were used for continuous monitoring of 
odours emission from a WWTP in North Italy in a research project [13]. The 
results of the study show the critical importance of creation of a suitable training 
data set for the models, which can maximize the capacity of the electronic noses 
to the continuous monitoring, and also the opportunity of applying successfully 
calibrated electronic noses for continuous monitoring of odours at WTTPs. 

4 Discussion 

The indisputable advantage of an on-line sensor can capture variations of matrix 
of concern at high frequency. However, uncertainty grows rapidly if systematic 
errors (biases), due to e.g. sensor drift or improper calibration, are allowed to 
occur. Even relatively small systematic errors may have dramatic effects on the 
final results from the sensor [14]. Therefore, one cannot overlook the critical 
importance of calibration and verification of data obtained from a continuously 
monitoring sensor.  
     Systematic errors in sensors may be very difficult to detect and remove. 
Sensor calibration is a way to identify, quantify and remove systematic errors. 
However, sensor calibration only qualifies the sensor itself, and frequently, non-
instrumental errors create larger errors than the instrument errors [15]. Non-
instrumental errors may include: in situ conditions of use, operator errors, 
different matrix, ignored offsets, wrong programming and settings, interferences 
and influential factors like temperature, pressure, humidity, etc. This is why the 
location and the conditions of use of the sensors should be accounted for as 
much as possible during the calibration and calibration verification procedures. 
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