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Abstract  

The anoxic-aerobic wastewater treatment process increases wastewater treatment 
efficiency and decreases the aeration basin. In this study, raw data obtained from 
two anoxic-aerobic biological reactors (AABR) used for the treatment of 
different loads of petroleum refinery wastewater (PRW) were used for 
developing a mathematical model that could simulate the process trend. The data 
consists of 160 entries and was gathered over approximately 180 days from two 
AABR reactors that were continuously operated in parallel. Two configurations 
of artificial neural networks were compared and different numbers of neurons 
were tested for an optimum model that could represent the process behaviour 
under different loads. The tangent sigmoid transfer function (Tansig) at the 
hidden layer and a linear transfer function (Purelin) at the output layer with 9 
hidden neurons were selected as the best optimum model. From the simulation 
model, the highest removal efficiency was observed as 96%, which was recorded 
for chemical oxygen demand (COD) influent concentration of 3150 mg/L. 
Effluent concentration below 100 mg/L was recorded for influent COD 
concentration, which ranged between 150 and 700 mg/L corresponding to the 
removal efficiency in the range of 78–88%. 
Keywords: anoxic, aerobic, biological treatment.  

1 Introduction 

The petroleum refineries discharge large amounts of petroleum refinery 
wastewater (PRW) with hazardous constituents [1] that are difficult to degrade. 
High concentrations of phenol, oil and grease, and ammonia were observed in 
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water and sediment at the point of effluent discharge due to accumulation over 
long period of time [2]. These toxic products are with potentially serious 
consequences on the receiving environment and ecosystem [3]. Treatment of 
refinery wastewater is normally complex, costly and involved processes to 
remove organic compounds and other hazardous substances. The treatment 
includes in-plant source control, pretreatment, and end-of-pipe treatment [4]. 
     Anoxic condition degrades recalcitrant compounds and the volatile organic 
compounds (VOCs) as well as the compounds that could be stripped during 
aeration [5]. Researchers have found that benzene, toluene, ethylbenzene and 
xylene (BTEX) in addition to other compounds can be biodegraded using nitrate 
as electron acceptor in anoxic condition [6]. Complete removal of BTEX in 
anoxic-microaerobic-aerobic condition could be achieved [7]. Under anoxic 
condition 1050 mg/l of phenol at 6 hr cycle length (6.4 kg COD/m3·d) could be 
removed up to 80% [8]. A wide range of toxic organic compounds found in 
petroleum refinery wastewater have been found to serve as growth substrates for 
aerobic bacteria [9]. Almost all petroleum hydrocarbons are biodegradable under 
aerobic conditions, but in many cases when dissolved hydrocarbon is greater 
than 2 to 4 mg/L, biodegradation may be incomplete [10], and volatilization due 
to aeration will occur [7]. Aerobic sequencing batch reactor (SBR) treated a 
synthetic wastewater with a 1300 mg/L phenol concentration; the 4-hr cycle SBR 
operation achieved 97% removal efficiency [11]. Artificial neural networks 
(ANN) is a modeling tool used to simulate complex relationships through a large 
number of highly interconnected processing elements (neurons); and has been 
used in application of artificial intelligence in engineering, pattern recognition 
and analysis [12]. Chemical oxygen demand (COD) removal was modeled using 
ANN in a treatment for the prediction and simulation of degradation. Tan 
sigmoid activation function was used for the input and hidden layers, while the 
linear activation function was used in the output with 14 neurons, predicted the 
actual experimental results with correlation coefficient (R2) of 0.997 [13]. Using 
the same mentioned configuration ANN has being used to simulate full working 
wastewater treatment plant using data for ten months resulted in R2 values 
ranged from 0.63 to 0.81 for biochemical oxygen demand (BOD), and from 0.45 
to 0.65 for suspended solids (SS) [12]. As petroleum refineries discharge 
requires advanced multiple treatments; improving treatment system performance 
in terms of better effluent quality, cost effectiveness, and to cope with the current 
development of technology, the search for alternative treatment methods is 
required [14]. The goal of this study was to develop a performance simulation 
mathematical model for the anoxic-aerobic biological reactor (AABR) using 
artificial neural network (ANN). 

2 Methodology 

2.1 Materials and method 

The wastewater for this study was collected from a local petroleum refinery 
facility that discharges its treated effluent to the sea. The refinery processes 
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Malaysian light, sweet crude oil and also includes a condensate splitter unit for 
naphtha condensates. The PRW was pretreated in anaerobic reactor before post 
treated in the AABR. The AABR configuration set up is illustrated in the 
following Figure 1. 

 

 

Figure 1: Schematic diagram of the AABR. 

2.2 ANN procedure 

A feed-forward backpropagation network type was selected as optimal 
generalization was targeted from this tool, and Levenberg–Marquardt 
backpropagation algorithm (TRAINLM) was used as training function as it is 
usually able to have smaller mean square error (MSE) compared to other 
backpropagation algorithms [13] and has been proved to be the fastest and most 
robust [12]. Batch gradient descent with momentum backpropagation algorithms 
(LEARNGDM) was used in this study as adaption learning function. The 
number of neurons has to be determined as it is related to the converging 
performance of the output error function during the training process. Increasing 
the number of neurons usually results in a better learning performance, as too 
few number of neurons limit the ability of the neural network to model the 
process, but too many number of neurons may result in losing the generalization 
and learning the noise present in the database used in training [15]. 
     Neural Network in MATLAB (R2009a) software was used with feed-forward 
backpropagation neural network three layers. There are several activation 
functions in MATLAB, but few of them were preferable and used in wastewater 
treatment modeling with low error level [16], namely, sigmoid (hyperbolic 
tangent and logarithmic) [12] and linear (Purelin) [17]. Two configurations were 
compared to each other, the first, with log sigmoid transfer function (Logsig) at 
hidden layer and a linear transfer function (Purelin) at output layer. The second, 
with tangent sigmoid transfer function (Tansig) at hidden layer and a linear 
transfer function (Purelin) at output layer. The linear activation function 
(Purelin) was used for both configurations for the output neuron since it is 
appropriate for continuous valued targets [12]. The set of data obtained from the 
impact of different organic loads was used in the modeling. The data covered 
approximately 180 days and with 160 entries for input and output. Half of the 
data were used to train the model and the other half was used for validation. The 
data were organized by selecting the single entries in term of order as training set 
and even entries in term of order as validation set. Normalization of input data 
was performed by dividing all the input data with the maximum input; this 
resulted in the data to be in the range of 0 to 1. Target data were normalized by 
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dividing all the output data with the maximum output; this resulted in the data to 
be in the range between 0 and 1. Neurons were tested and varied the number of 
neurons in the range from 5 up to 35 neurons. The random initialization produces 
different results; hence, for better initialization of the model, the model was run 
100 times at every neuron tested. The optimum number of neurons of the 
training set was determined based on: minimum root mean square error (RMSE), 
maximum variance accounted for (VAF), maximum correlation coefficient (R2) 
and minimum mean absolute percentage error (MAPE). 

3 Result and discussions 

The AABR was modeled using artificial neural networks software. Logsig-
Purelin transfer function was compared to Tansig-Purelin transfer function to 
define the optimum model. The selected model was then used to predict the 
reactor performance. 

3.1 ANN modelling results 

During testing and validation of data, number of neurons was tested ranging 
from 5 to 35. Table 1 below shows the number of neurons tested and the score 
registered for RMSE, VAF, R2 and MAPE during evaluation of Logsig-Purelin, 
and Tansig-Purelin transfer functions.  
     Although the number of neurons are in the range of 5–35, but from Figure 2 it 
was noted that after neuron 10 and from plotted line representing the R2 from the 
training set is losing similarity with R2 from validation set, indicating over fitting 
and the model will not be able to generalize the pattern of the data that used as 
training set during validation [18]. 
     Thus, the number of neurons was limited to the range between 5–10 neurons, 
and the optimum neuron was selected as shown in Table 1 based on minimum 
RMSE, maximum VAF, maximum R2 and minimum MAPE. Both Logsig-
Purelin and Tansig-Purelin transfer function indicated 9 neurons is the optimum. 
R2 in Tansig-Purelin was slightly higher and all four parameters were closer. 
Thus, tangent sigmoid transfer function (Tansig) at hidden layer and a linear 
transfer function (Purelin) at output layer with 9 neurons is the optimum transfer 
function. Figure 3 showed the measured experimental data and the predicted 
using ANN for eighty entries of data that were used for training. Figure 4 
showed the measured experimental data and the predicted using ANN for eighty 
entries of data that were used for validation. The best selected model shows 
significant prediction of actual experiment based on minimum RMSE, maximum 
VAF, maximum R2 and minimum MAPE; hence, it was then used for simulation. 

3.2 ANN simulation results 

The best model with Tansig-Purelin transfer function and 9 neurons was used to 
simulate random data to find out the optimum efficiency. Figure 5 shows all the 
hundred and sixty data set that was used for both the training and validation, 
used here for simulation. 
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Table 1:  Number of neurons tested and the score for evaluation parameters 
for AABR. 

Neurons 
Logsig-Purelin Tansig-Purelin 

RMSE VAF R2 MAPE RMSE VAF R2 MAPE 

5 0.089 82.935 0.828 16.001 0.088 83.277 0.832 15.248 

6 0.088 83.363 0.833 0.084 84.853 0.848 15.460 

7 0.086 83.941 0.839 15.420 0.087 83.826 0.838 15.541 

8 0.086 84.241 0.842 15.720 0.084 84.851 0.848 15.164 

9 0.083 85.610 0.852 15.107 0.083 85.270 0.853 15.540 

10 0.084 84.904 0.849 15.197 0.083 85.064 0.850 15.076 

 

 
 

 

Figure 2: R2 scores versus number of neurons tested for Logsig-Purelin and 
Tansig-Purelin transfer functions for AABR. 
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Figure 3: AABR measured and predicted normalized data for training set. 

 

Figure 4: AABR measured and predicted normalized data for validation set. 

 

Figure 5: AABR measured and predicted normalized data for actual data 
simulation. 
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     Random data entries ranged from 150 to 4800 mg/L was used as influent to 
simulate the reactor performance; Figure 6 shows the simulated influent and 
effluent concentrations in addition to removal efficiency. Highest removal 
efficiency observed was 96% recorded and was recorded at influent 3150 mg/L, 
while the corresponded effluent concentration was 115 mg/L. Effluent 
concentration below 100 mg/L was recorded for influent concentration ranged 
between 150–700 mg/L corresponding to removal efficiency in the range  
of 78–88%. 

 

 

Figure 6: AABR effluent concentration and removal efficiency versus 
influent concentration using best selected model for Tansig-Purelin 
transfer function. 

4 Conclusions 

Modeling the data obtained from the anoxic-aerobic biological reactor under 
various loads, resulted in a model that used tangent sigmoid transfer function 
(Tansig) at hidden layer and a linear transfer function (Purelin) at output layer 
with 9 neurons as the optimum transfer function. Simulation using the optimum 
model with random data entries ranged between 150 to 4800 mg/L as influent, 
resulted in a pattern that simulate the reactor performance for data that were 
never really experimentally tested in the lab. Lab experiment was showing 
highest removal of 89% and could not define the exact load that can give effluent 
concentration below 100 mg/L; but from the simulation model, 96% removal 
efficiency was recorded for 3150 mg/L, and loads that can give concentration 
below 100 mg/L were defined. 
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