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Abstract 

performance of a constructed wetland wastewater treatment plant (CWWTP). 
The model  assesses the Biochemical Oxygen Demand (BOD) concentration at 
outlet of a treatment plant. Training of ANN models was based on experimental 
results of a pilot plant study in India. The data used in this work were obtained 
under  various hydraulic and BOD loading. Regular records of BOD were made 
at inlet, and outlet levels through various stages of the treatment process for over 
18 months. The ANN-based models were found to provide an efficient and a 
robust tool in predicting CWWTP performance. 
Keywords: neural networks, constructed wetland, model studies, prediction, 
optimization, biochemical oxygen demand. 

1 Introduction 

The proper operation and management of constructed wetland wastewater 
treatment plants (CWWTP) is receiving attention because of the rising concern 
about environmental issues and growing importance of sustainable and natural 
wastewater treatment techniques. Improper design and operation of a CWWTP 
may cause serious environmental and public health implications, as its effluent 
may contaminate receiving water body, causing severe aquatic pollution and 
spread various water born diseases. For proper design and assessment of quality 
of non-conventional wastewater treatment and thereafter to conserve the 
receiving water bodies, reliable prediction of effluent from Constructed Wetland 
(CW) is essential. A better control can be achieved by developing a 
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mathematical tool for predicting the plant performance based on past 
observations of certain key parameters. However, modeling a CWWT is a 
difficult task due to the complexity of the treatment processes. The complex 
physical, biological and chemical processes involved in constructed wetland 
treatment process exhibit non-linear behaviors, which are difficult to describe by 
linear mathematical models. This paper presents predictive models based on the 
concept of neural networks (NN).  
     Artificial intelligence concepts have been successfully used in a range of 
engineering, environmental, and financial problems [1, 2]. The NN-based model 
that was applied to a pilot plant study of CW in India have performed 
consistently well in the face of varying accuracy and size of input data. Using 
these models, the planner and decision maker can easily make assessment of the 
expected plant effluent. 

2 Constructed wetland pilot plant and experimental set up 

Wetlands are considered as low-cost alternatives for treating municipal, 
industrial, and agricultural effluents. Constructed wetlands (CW) are preferred 
because of low maintenance, shock loading absorbance capacity and less energy 
consumption [3]. They may be classified as surface flow marshes, vegetated 
subsurface flow beds, submerged aquatic beds, and floating leaved aquatics [4] 
This new developing technology may offer a low cost and low maintenance 
alternative for treatment of domestic wastewater which is especially suitable for 
developing countries [5, 6].  
     The scheme of the units designed in New Delhi is presented in Fig. 1. 
 

 
 

Figure 1: Pilot plant scheme. 
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     Construction was completed in August 2001. The initial sampling started 
after eight months i.e. April –2002 giving sufficient time for full growth of reeds 
since wetlands typically require a few months for vegetation and bio-film 
establishment according to [7]. Sizing of the wetland units was done by using 
basic relationship for plug flow reactor for the BOD loading as recommended 
by [8]: 

( )0ln lndQ C Ct
A

K
−

=  (1)

where A  is the plane area of the wetland unit, (m2), K  is the specific removal 
rate constant for given constituent at 200C, (d-1), dQ  is the average flow rate of 
wastewater (m3 d-1), 0C is the average BOD5 of the influent (mg/l) and tC  is the 
average BOD5 of the effluent (mg/l). Each unit has length = 6.6 m, width = 
5.3 m. and depth = 0.6m. 
     Two parallel Subsurface Horizontal Flow Constructed wet land units A and B 
with same filler material were used in this study. The inlet zone (first 100 cm) of 
unit B has coarse sand  filler matrix. Both were planted with Phragmites 
australis. Different hydraulic loading starting from 34 l/m2/d to 200l/m2/d were 
used in the experiments. The BOD loading of the pilot plant was  varied from 
45 mg/l to 1580 mg/l, so that it can be tested for wide range of conditions. The 
flow meters were provided before the inlet zone to record the average flow rate 
and total quantity of waste-water feeded in each bed. All precautions were taken 
for equal distribution of wastewater in each of the CW beds. Five different 
triplicate samples including three intermediate were collected for set of 
parameters. Intermediate samples were collected from different ports at 
downstream distance of 3.15 m, 4.15 m and 5.15 m respectively. Acrylic sheets 
of 45 cm height were embedded up to 30 cm in the soil filter at inlet zone to 
avoid any over flow condition in CWs.  
     Wastewater influent and effluent from the CW units were monitored and 
recorded after giving at least 15 days of acclimatization period to the CW. After 
fifteenth day, five daily samples were taken for given hydraulic and organic 
loading and mean values were obtained. In situ measurements for temperature 
and pH were also recorded at the influent, effluent and intermediate sampling 
points. The wastewater samples were not collected simultaneously but after 
giving due consideration of lack time for different hydraulic loading. 
Samples were analyzed for Chemical Oxygen Demand (COD), Biochemical 
Oxygen Demand (BOD), Phosphate (PO4) Faceal Coliform (FC) and Total 
Coliform (TC). All these analyses were conducted in accordance with [9]. In this 
study only BOD values were considered for development of ANN model. 

3 Neural network modelling 

During several last decades neural networks have been successfully applied for 
prediction and pattern recognition tasks. Their potential is especially high for the 
systems with complex non-linear behavior, when the laws governing the system 
are not known or poorly understood. Artificial neural networks are superior to 
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other computational formalisms in the case of noisy and ill-defined data, 
massively parallel computation, collective effects and signal dynamics [10]. 
     There is a wide variety of wastewater treatment problems, where neural 
networks have been applied successfully, including modelling of the 
physicochemical water treatment process [11], prediction of wastewater 
treatment plant performance [12], photocatalytic treatment of waste waters [8] 
etc.  
     The performance of the network strongly depends on the choice of process 
variables. The data available is also of great importance, especially in terms of 
representing the domain of experiment. Another important point is data 
preprocessing. Usually, the range of model variables varies and, therefore, some 
data preprocessing technique should be utilized. 
     The most widely applied NN for modeling of steady-state systems are of 
feed-forward type. In such networks, the signal propagates in one direction via 
weighted connections between neurons of different layers (Fig. 2). The network 
model includes three layers of neurons: input, hidden and output layer. The 
neurons of input layer do not perform any calculations; they just store the input 
variables and propagate them to neurons of hidden layer. Each neuron of hidden 
and output layers (Fig. 3) calculates the weighted sum of inputs plus bias as 
follows:  

∑
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1
, θ  (2)

 
 
 

 

Figure 2: Structure of feed-forward artificial neural network. 
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Figure 3: Scheme of hidden and output layer neurons. 

     The output of a neuron is generated by its activation function. The typical 
choice is sigmoidal function (equation (3)) or hyperbolic tangent (equation. (4)):  

( )iu
i ey β−+= 1/1  (3)

( ) ( )iuiuiuiu
i eeeey ββββ −− +−= /  (4)

where β  is the slope of a function, iu  is the weighted sum of inputs to the 
neuron. The outputs of hidden layer neurons are propagated as inputs to neurons 
of output layer. The network output, or more generally a series of outputs, 
represents the response calculated by the network given input.  
Neural networks are trained by changing the weights in order to reach the 
convergence between response values iy  and experimental responses id . There 
are several algorithms, rigorously proven and heuristic, which can be adopted for 
training of feed-forward networks [13]. In the present study, back-propagation 
algorithm, which is the generalization of steepest descent method, was chosen.  
     For a given data set, back-propagation algorithm may proceed in two modes: 
sequential mode and batch mode. The sequential mode is also known as on-line 
or stochastic mode. In this mode weight adaptation is performed after the 
presentation of each input-output training pair. The cost function, which value 
should be minimized, is calculated for each training pair as follows: 

∑
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where ( )i i ie y d= −  is the error between actual and desired outputs respectively. 
In the batch mode, which is utilized in this study, weights are updated after the 
presentation of all training pairs that constitute an epoch. For a particular epoch, 
the cost function is defined as the average squared error of equation (5), 
calculated for all training pairs: 
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     The objective of the learning process is to adjust the free parameters (weights, 
biases) of the network to minimize E. In the process of learning, the adjustments 
of the weights are calculated for each training pair according to delta rule [14]:  

ji
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Ew
,

, ∂
∂

−=∆ η  (7)

where η  is the learning-rate parameter, E is calculated by equation (5). The 
arithmetic mean of individual adjustments over the learning set gives estimate of 
the change that would minimize the cost function E and the weights are updated 
as follows: 
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For the neurons of output layer, the adjustments of weights are calculated in a 
straightforward manner: 
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If neuron j  is located in the hidden layer z  of the network, there is no specified 
desired response for that neuron. Therefore, the error for such neuron is 
determined with the help of error signals of neurons of output layer. Taking into 
account: 
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     Adjustments of weights of neurons of hidden layer can be calculated in the 
following way: 
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     During the learning process, not only weights and biases are varied, but also 
the number of neurons of hidden layer, learning-rate parameter (η ) and even the 
structure of the network itself (some connections can be eliminated). Generally, 
the number of neurons of hidden layer should be reduced to prevent network 
from over-fitting. On the other hand, elimination of too many neurons leads to 
reducing the performance of the network. Moreover, convergence of the solution 
is extremely sensitive to the adequate choice of η  [13].  
     In general, back-propagation algorithm cannot be shown to converge. 
Therefore, the typical stopping criteria are the number of iterations or the 
sufficiently small gradient values [13]. 

4 Experimental results 

NN model adopted contains three layers (input, hidden and output layers) as 
illustrated in Fig. 2.  The aim of the learning procedure was to predict outBOD  as 
a function of input variables. Six input variables were chosen: 
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1) inBOD , influent contamination (mg/l); 
2) HL :, hydraulic Loading (l/m2/d); 
3) OL :, organic loading (g/ m2/d); 
4) t : temperature (0C); 
5) v : velocity of the stream (m/s); 
6) d : distance from the CWWTP influent (m). 

The output variable (response) is the level of outBOD  after treatment. Therefore, 
the output layer of the neural network includes one neuron.  
     The distribution of the data pairs ( ) ( )( ), , , , , ,in outBOD HL OL t v d BOD  into the 
learning set (LS) and test set (TS) was based on the experimental design and 
dataset properties. The LS and TS are comprised of 78 and 17 input-output pairs, 
respectively.  
     The convergence criterion utilized was the cost function, defined by equation 
(6). Since the determination of the adequate number of neurons ( )m  in hidden 
layer is important to prevent network from over-fitting, a number of learning 
procedures were performed in order to find the optimal combination of m  and 
number of learning procedure epochs ( )NE . The number of neurons in the 
hidden layer varied between 6 and 14 and the number of epochs ranged from 500 
to 1500. The values of cost function decreased as m  increased from 6 to 12 for 
both data sets (LS and TS). For 12m >  E  calculated for TS increased (the 
network became over-fitted). According to the results, m  was chosen to be 12 
and 800NE = . When the cost function reached its minimum value, the weights 
of the network were fixed. 
     Fig. 4 shows a comparison of calculated and experimental values of outBOD  
for both sets. The agreement between actual and predicted values is adequate for 
both LS and TS ( 2 0,997R =  for LS and 2 0,995R =  for TS).   
 

 

Figure 4: Comparison of calculated and experimental values of BODout. 
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     Given fixed values of , , , ,HL OL t v d , Figs. 5, 6 and 7 respectively show 

outBOD  as a function of distance from the influent of CW for three initial values 
of inBOD  ( 45inBOD = , 156inBOD = , 784inBOD = ). The approximation is 
accurate; therefore, the neural network model is able to describe adequately the 
process kinetics under different conditions (initial values of input variables). 
 

 
 

Figure 5: outBOD  for inBOD = 45. 

 
 

Figure 6: outBOD  for inBOD = 156. 

5 Conclusions 

The neural network was adopted for prediction of constructed wetland 
contamination treatment performance for given hydraulic and BOD loading.  The 
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NN model adequately describes the behavior of complex CWWTP within the 
range of different experimental conditions. Thus, if experimental data for a given 
system are available and cover the whole domain of interest, a simplified 
mathematical model of the wastewater treatment process may be obtained by 
utilizing feed-forward neural networks. Simulations based on the neural 
networks can then be performed to estimate the behavior of the system under 
different conditions. 

 

 

Figure 7: outBOD  for inBOD = 784. 

     This new developing technology may offer a low cost and maintenance to 
domestic wastewater treatment, which is especially suitable for developing 
countries. 
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