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Abstract 

Urban resilience to floods can be defined as a city’s capacity to avoid damage 
through the implementation of structural and non-structural measures, to reduce 
damage in the case of a flood that exceeds a desired threshold, to recover quickly 
to the same or an equivalent state, and to adapt to an uncertain future. To build 
flood resilience, planners need to identify and analyse risk, to understand the 
impacts of flooding, and how they cope with these impacts by means of 
innovative and adaptable strategies and measures. The number of possible 
retrofitting scenarios to cope with flooding problems in an urban watershed 
could be greatly increased by the combination of several stormwater 
management practices. Therefore, the present study aims to develop an expert 
system in the form of a Bayesian Decision Network (BDN) able to evaluate the 
efficiency of some possible urban flood retrofitting scenario by examining all 
significant water management variables and their inherent uncertainty. The 
methodology was applied to an urbanized area of the city of Palermo (Italy).  
Keywords: Bayesian Decision Networks, urban resilience, urban flooding, urban 
drainage modelling, flooding damage. 

1 Introduction 

Urban flooding can cause significant disruptions in cities, especially to housing, 
to industrial and commercial activities, to urban transportation, to public 
strategic facilities and to energy and water supply, leading to considerable 
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impacts on people, on economy and on the environment. These impacts may be 
exacerbated by climate and socio-economic changes [1]. 
     The Directive 2007/60/EC [2] prescribes that a preliminary flood risk 
assessment should be undertaken to provide an assessment of potential flood 
risks based on available or readily derivable information, such as records and 
studies on long term developments, in particular impacts of climate change on 
the occurrence of floods. On the basis of a preliminary flood risk assessment, 
those areas for which potential significant flood risks exist or might be 
considered likely to occur should be identified. For these areas, flood hazard 
maps and flood risk maps should be prepared; and on the basis of these maps, 
flood risk management plans including appropriate measures for the 
management of flood risks should be established, focusing on the reduction of 
potential adverse consequences of flooding and on the reduction of the likelihood 
of flooding. 
     In the past, flood risk management plans were usually based on the classical 
philosophy to cope with flooding by massive pipe network re-design campaigns 
improving the drainage capability of the system (building bigger pipes, 
improving surface collection system, etc.). Whilst this approach is successful in 
eliminating local flooding problems, the increased volumes and peak flows 
resulting from urbanization often cause downstream flooding problems together 
with pollution and erosion of natural receiving water bodies. Moreover, this 
approach is usually unpractical and anti-economical when dealing with large and 
complex drainage systems or with the older networks in strongly urbanized 
areas, such as the centre of some ancient municipalities. In such situations, sewer 
systems are often surcharged by stormwater and flooding occurs even with 
frequent rainfalls.  
     An alternative framework for urban flood hazard management could be the 
“urban resilience to floods”. Resilience is a concept that has emerged as a way to 
understand how systems prepare for, respond to, and recover from shocks [3]. 
Although there are many different concepts of resilience, most authors are in 
agreement that a flood resilient city will have low flood consequences if and 
when flooding occurs [1]. Flood resilience is considered an important objective 
in flood risk management and a desirable attribute for cities [4]. However, 
several challenges remain for transforming the concept of resilience into an 
operational tool that can be used for policy and management purposes. If cities 
are to become more resilient to flooding, innovative and adaptable strategies and 
measures are needed. According to this concept, planners should identify and 
analyse risk, to understand the impacts of flooding, and how they cope with these 
impacts by means of innovative and adaptable strategies and measures. Many 
stormwater retrofit practices have been suggested along with other available 
watershed restoration strategies. Namely, stormwater retrofits consist of a series 
of structural practices, such as infiltration and storage ones, designed to reduce 
the peak flow of runoff, mitigate erosive flows, reduce pollutants in runoff, and 
promote conditions for improved aquatic habitat. The number of possible 
retrofitting scenarios for a given watershed could be greatly increased by the 
combination of several stormwater management practices. Different mitigation 
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measures can interact in complex scenarios that mix the effect of two or more 
techniques. However, each solution can have advantages and disadvantages.  
     The analysis of urban planning is a preliminary mean to choose the scenarios 
achievable and different procedures could be used to test all the management 
options and choose the best among them. These procedures help to choose that 
scenario which maximizes cost-to-benefit ratio. A first step of this kind of 
analysis is usually based on the evaluation of the expected damage in the 
watershed related to a given flooding event by means of combining the flood 
depth-damage curves and the output of urban flood models [5, 6]. The 
application of advanced hydraulic models as diagnostic, design and decision-
making support tools has become a standard practice in hydraulic research and 
application [7, 8]. Although mathematical models have been much improved in 
recent years, like all procedures based on a conceptualized representation of the 
real drainage system behaviour, its predictions are affected by a degree of 
inherent uncertainty [9–12]. Moreover, flooding damage functions are usually 
affected by significant uncertainty intrinsically related to the collected data and 
to the simplified structure of the adopted functional laws [6, 13]. As results flood 
damage evaluation is generally affected by a high level of uncertainty due to the 
accumulation of several uncertainty sources (e.g., intrinsic model uncertainty, 
uncertainty due to damage appraisal, etc.).  
     The previous considerations confirm the need of including uncertainty 
estimation in the process in order to identify the optimal flood mitigation 
solutions in terms of an integrated cost-benefit analysis. To this aim, the present 
study intends to develop an expert system in the form of a Bayesian Decision 
Network (BDN) able to examine all significant water management variables and 
their inherent uncertainty and to evaluate the efficiency of retrofitting scenarios 
in the reduction of flooding damage. The described methodology was applied to 
a highly urbanized area of the city of Palermo (Italy). A mathematical model, 
simulating the runoff formation and surface flooding propagation was adopted 
and calibrated to analyse the sewer system behaviour with respect to surface 
flooding generation and related damage. 

2 Materials and methods 

2.1 Bayesian Decision Network 

Bayesian Networks (BN) are powerful interactive algorithms for decision 
making capable of describing and taking into account the inherent uncertainty in 
system knowledge [14]. In literature several applications of BNs have been 
proposed to find optimal decisions, control systems, or plans with regard to 
environmental problems and integrated water management issues [15–17]. 
     A BN can be intended as a graphical model that combines elements of graph 
theory and probability theory. The analysed system is conceptualized by a 
directed acyclic graph (DAG), a graph without cycles, in which the nodes 
represent system variables, the arcs signify the existence of direct causal 
influences between the linked variables, and the strengths of these influences are 
expressed by forward conditional probabilities. In a BN, either dependent (i.e., 
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related) nodes and independent (i.e., unrelated) nodes can be depicted and each 
node or variable may take one of a number of possible states or values.  
     BNs are a robust method to deal with uncertainty [17]. Namely, BNs are 
particularly useful for assessing risk and uncertainty and providing a framework 
for analysing cause and effect relationships in natural systems. Uncertainty is 
managed by adopting the Bayesian probability theory which is known to have a 
strong theoretical basis and to provide a unified approach compared to statistical 
and deterministic theories. According to Bayesian Rules, all possible values of 
each variable are defined in a BN through a probability distribution, called 
“marginal” distribution when expressed unconditionally, and the relationships 
between variables are explicitly expressed as conditional probability 
distributions [18]. Therefore, a BN can be easily updated as new knowledge 
about a system becomes available [19] and can be used for “reverse” inference 
(estimating the state of parent nodes given the state of child nodes). In this way, 
the state of the entire system can be estimated given changes in any part of it 
[15]. Moreover, an additional feature of BNs is their ability to combine both 
quantitative and qualitative data [20]. In a BN, marginal and conditional 
probability distributions between variables can be estimated from either observed 
data, results from model simulations, or even expert judgment and other 
subjective information sources. This property is functional in those situations, 
like urban flooding analysis, where either the availability or reliability of the 
quantitative data are limited. To implement a reliable decision support tool 
considering effects of several stormwater retrofitting management options in a 
urban catchment, a particular BN was adopted in the present study: the Bayesian 
Decision Networks (BDN). The primary distinguishing features of a BDN are 
the inclusion of decision nodes (management option) and utility nodes 
(representing the utility related to a state variable in terms of cost-benefit). While 
state variable nodes are defined with a probability distribution across states, a 
decision node can only exist in one state at a time, representing a decision made 
between multiple choices. Each decision node contains a set of states that 
represent mutually exclusive management alternatives. Finally, a utility node 
provides a simple mean for estimating expected values of different outcomes: it 
is always a child node, and holds the benefits (or costs) that result from each 
state of its parent node. Figure 1 shows a conceptual framework for the BDN 
employed in the present study to identify the most suitable flood retrofitting 
scenario in the city centre of Palermo. 
 

 

Figure 1:   BDN model employed. 

FLOOD RETROFITTING 
SCENARIOS: 
S0‐S1‐S2‐S3

ANNUALISED 
COSTS

FLOOD 
DAMAGE

FLOOD DEPTHRAINFALL  EVENT

DECISION NODE

STATE VARIABLE

UTILITY NODE

344  Urban Water II

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 139, © 2014 WIT Press



 

     This framework represents a five-nodes network including two state nodes 
(variables that describe the condition of the system) as well as a decision node 
(set of mutually exclusive watershed retrofitting management options) and two 
utility nodes (outcomes quantifiable in either economic or other terms that can be 
used to assess the success or failure of a decision). As shown in Figure 1, the 
decision node, Flood Retrofitting Scenarios (FRS), signifies several mutually 
exclusive flood management scenarios. It has two child nodes: the state variable 
Flood Depths (FD), representing the efficiency of the considered FRS state to 
mitigate flooding problems in the urban watershed for a given rainfall event and 
the utility node Annualized Costs (AC) expressing the implementation costs for 
the FRS state. The state variable Rainfall Event (RE) is included as another 
cause of FD while Flooding Damages (FDa) are the outcomes. By balancing AC 
and FDa the BDN model allows to identify the most suitable solution in terms 
cost-benefits. 

2.2 The mathematical model and related uncertainty 

The described BDN was applied to the oldest part of Palermo city (Italy), that is 
strongly urbanised and with a very old combined drainage system. The 
catchment receives wastewater and stormwater also from upstream less 
urbanized watersheds (Figure 2); local surface flooding due to the system 
insufficiency often occurs even for high-frequency rainfalls. Due to the system’s 
surcharge, during 1993-2008, several parts of the watershed (circles in Figure 2) 
were affected by more than 30 flooding events for which by querying fire 
brigades and insurance companies an accurate database about flooded area, water 
depth and volume, duration and damaged properties have been implemented [6].  
 

 

Figure 2: The “Centro Storico” catchment, with flooded areas. 
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     Inside the analysed area is located the Parco d’Orléans rain gauge, operational 
since 1993 with a temporal resolution of 1 minute. To simulate the urban 
drainage-system behaviour, in the present study, a numerical model based on the 
SWMM software and adopting a dual drainage approach [8] was adopted. 
Calibration was carried out on flood levels and volumes measured by Municipal 
Fire Brigades during ten of the recorded rainfall events [6].  
     In order to evaluate the uncertainty related to model parameters a Bayesian 
Monte Carlo analysis (BMC) was carried out. According to all Bayesian 
approaches, model parameters were treated as stochastic variables associated to 
probability distributions: uniform distributions were selected as prior probability 
distributions for all parameters because no information was available at the 
beginning of the study. To guarantee a consistent analysis that avoids any 
subjectivity, parameter variation ranges were assumed as the intervals that 
strictly include the calibrated values. The BMC analysis was based on the 
analysis of 1000 random parameter sets. Details about the uncertainty analysis 
carried out can be found in Fontanazza et al. [11]. 

3 Methodology application and results analysis 

3.1 Decision node: flood retrofitting scenarios (FRS) 

Due to the frequent flooding problems affecting the analysed watershed, some 
stormwater retrofitting measures have been proposed to improve the system 
performance. According to the specific local context, the presence of a dense 
urbanization and a considerable vehicle traffic, alternatives such as drainage 
wells, infiltration trenches or pervious pavements were rejected because 
requiring numerous building sites distributed all over the catchment. Centralised 
measures aimed to reduce the runoff peak flow, such as the diversion of 
stormwaters arriving from upstream watersheds and the construction of 
underground storage units were preferred. Three different flood retrofitting 
scenarios were analysed and compared with the actual scenario (Scenario 0 - no 
retrofitting measure) to identify the most suitable solution (Figure 3).  
     Scenario 1 simulates the diversion of most of stormwater volumes arriving 
from the upstream watersheds; the diverted volumes are sent to a neighbouring 
existing channel 3300 mm in size (marked conduit in figure 3a). Scenario 2 
proposes the construction of three storage units (A, B and C in Figure 3b), and 
the change of slope and cross section for some conduits connected to these 
storage units, in order to allow gravity operation mode. The storage unit A 
receives part of stormwater volumes arriving from the upstream watersheds and 
has a volume of 4,000 m ; the storage units B and C have a volume of 15.000 m  3 3

and 5,000 m , respectively, and are located in 3 the downstream area of the urban 
watershed to improve the hydraulic performance of the zones where the most 
critical surface flooding has been observed. Scenario 3 can be intended as a 
synthesis of the previous two simulating both the diversion of the upstream water 
volumes by a 3300 mm diameter conduit and the construction of the storage 
units B and C. Each proposed FRS was implemented in the hydraulic model of 
the urban drainage system. 
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Figure 3: Schematic view of the three proposed retrofitting scenarios (FRS). 

3.2 Utility node: Annualised costs (AC) 

In order to assess the AC related to each proposed FRS, an economic analysis 
based on the Whole Life Costing method was performed. WLC provided a 
framework for the calculation of both capital and long-term maintenance costs, 
annualized over 50 years, associated with each individual flood retrofitting 
scenario. As a result an Annualized cost of M€ 0.472, M€ 0.394 and M€ 0.765 
was applied respectively to Scenario 1, 2 and 3 if the related state was YES, on 
the contrary a cost of 0 was assessed to the NO state. 

3.3 Variable state: rainfall events (RE) 

The analysis of 2340 historical rainfall events, recorded during 1994 and 2008 at 
the Parco d’Orléans rain gauge, drove the selection of 1370 statistically 
independent rainfall events with a minimum inter event time of 7 hours. Those 
events were used as input for the hydraulic model of the drainage system. 

4 Results analysis 

4.1 Flooding conditional probability distributions: RE - FRS → FD 

Each proposed FRS was simulated for all 1370 RE. Then, for each identified 
flooded location, the simulated FD was statistically processed obtaining the 
flooding frequency curves (conditional probability distributions) with the related 
uncertainty boundaries (5th and 95th quantiles). The analysis of Figure 4 

#S

#S

#S

#S

#S

#S

#S

#S

#S

#S

#S
#S

#S

#S

#S

#S
#S

#S

#S

#S
#S#S#S

#S
#S

#S#S
#S

#S#S

#S

#S

#S
#S#S

#S

#S

#S

#S

#S

#S

#S

#S

#S

#S
#S

#S
#S

#S

#S
#S

#S

#S

#S
#S

#S
#S

#S

#S

#S

#S#S
#S

#S

#S#S

#S#S

#S

#S

#S
#S

#S#S#S
#S#S#S#S#S

#S

#S

#S

#S

#S

#S
#S

#S

#S
#S

#S

#S

#S

#S
#S

#S

#S
#S

#S

#S
#S

#S#S#S

#S

#S#S

#S#S

#S#S#S#S
#S

#S
#S

#S
#S#S#S

#S

#S
#S#S

#S

#S

#S#S
#S

#S#S

#S
#S

#S
#S

#S

#S
#S

#S
#S#S#S

#S#S#S#S#S#S
#S

#S

#S

#S

#S

#S
#S

#S

#S
#S

#S#S

#S

#S
#S
#S#S

#S
#S

#S
#S #S

#S

#S
#S

#S
#S

#S #S
#S

#S #S
#S

#S

#S

#S

#S
#S
#S

#S
#S

#S

#S

#S
#S

#S
#S

#S

#S
#S

#S
#S

#S
#S#S

#S
#S

#S

#S#S
#S

#S
#S

#S
#S

#S
#S#S

#S#S

#S

#S#S

#S

#S

#S

#S

#S
#S

#S#S
#S

#S#S
#S

#S
#S#S#S

#S#S
#S

#S
#S

#S
#S#S#S

#S
#S

#S#S#S
#S

#S
#S#S#S

#S

#S
#S

#S

#S
#S

#S#S

#S

#S

#S#S
#S#S

#S
#S

#S

#S

#S#S#S#S
#S

#S
#S

#S
#S

#S
#S

#S

#S

#S

#S
#S

#S#S
#S

#S

#S

#S
#S

#S

#S
#S

#S

#S#S
#S

#S

#S

#S
#S
#S

#S#S
#S

#S
#S

#S

#S #S
#S

#S#S#S

#S

#S

#S

#S

#S

#S

#S
#S
#S

#S
#S

#S

#S

#S
#S

#S

#S

#S

#S
#S
#S

#S

#S
#S

#S

#S
#S

#S
#S

#S

#S#S

#S#S
#S

#S
#S

#S

#S

#S

#S#S

#S

#S

#S#S
#S

#S
#S#S

#S
#S

#S

#S
#S#S#S#S

#S

#S#S

#S
#S

#S

#S

#S

#S
#S#S

#S
#S#S

#S#S

#S
#S

#S

#S
#S

#S

#S

#S
#S

#S
#S

#S
#S

#S
#S #S

#S#S
#S

#S

#S

#S
#S#S

#S

#S

#S

#S
#S
#S

#S
#S

#S
#S

#S#S
#S

#S

#S#S
#S

#S

#S#S

#S
#S

#S
#S
#S

#S

#S

#S
#S

#S#S#S
#S

#S#S#S#S
#S

#S#S#S
#S

#S

#S

#S#S

#S

#S

#S

#S
#S

#S
#S

#S#S
#S#S

#S#S#S#S
#S

#S#S
#S

#S
#S

#S#S

#S

#S

#S

#S#S

#S
#S

#S#S
#S#S

#S#S#S #S

#S

#S

#S

#S

#S#S
#S

#S#S#S#S
#S

#S
#S

#S

#S#S
#S#S#S #S#S

#S

#S

#S

#S#S

#S

#S

#S

#S #S

#S

#S

SCENARIO 2
#S

#S

#S

#S

#S

#S

#S

#S

#S

#S

#S
#S

#S

#S

#S

#S
#S

#S

#S

#S
#S#S#S

#S
#S

#S#S
#S

#S#S

#S

#S

#S
#S#S

#S

#S

#S

#S

#S

#S

#S

#S

#S

#S
#S

#S
#S

#S

#S
#S

#S

#S

#S
#S

#S
#S

#S

#S

#S

#S#S
#S

#S

#S#S

#S#S

#S

#S

#S
#S

#S#S#S
#S#S#S#S#S

#S

#S

#S

#S

#S

#S
#S

#S

#S
#S

#S

#S

#S

#S
#S

#S

#S
#S

#S

#S
#S

#S#S#S

#S

#S#S

#S#S

#S#S#S#S
#S

#S
#S

#S
#S#S#S

#S

#S
#S#S

#S

#S

#S#S
#S

#S#S

#S
#S

#S
#S

#S

#S
#S

#S
#S#S#S

#S#S#S#S#S#S
#S

#S

#S

#S

#S

#S
#S

#S

#S
#S

#S#S

#S

#S
#S
#S#S

#S
#S

#S
#S #S

#S

#S
#S

#S
#S

#S #S
#S

#S #S
#S

#S

#S

#S

#S
#S
#S

#S
#S

#S

#S

#S
#S

#S
#S

#S

#S
#S

#S
#S

#S
#S#S

#S
#S

#S

#S#S
#S

#S
#S

#S
#S

#S
#S#S

#S#S

#S

#S#S

#S

#S

#S

#S

#S
#S

#S#S
#S

#S#S
#S

#S
#S#S#S

#S#S
#S

#S
#S

#S
#S#S#S

#S
#S

#S#S#S
#S

#S
#S#S#S

#S

#S
#S

#S

#S
#S

#S#S

#S

#S

#S#S
#S#S

#S
#S

#S

#S

#S#S#S#S
#S

#S
#S

#S
#S

#S
#S

#S

#S

#S

#S
#S

#S#S
#S

#S

#S

#S
#S

#S

#S
#S

#S

#S#S
#S

#S

#S

#S
#S
#S

#S#S
#S

#S
#S

#S

#S #S
#S
#S#S#S

#S

#S

#S

#S

#S

#S

#S
#S
#S

#S
#S

#S

#S

#S
#S

#S

#S

#S

#S
#S
#S

#S

#S
#S

#S

#S
#S

#S
#S

#S

#S#S

#S#S
#S

#S
#S

#S

#S

#S

#S#S

#S

#S

#S#S
#S

#S
#S#S

#S
#S

#S

#S
#S#S#S#S

#S

#S#S

#S
#S

#S

#S

#S

#S
#S#S

#S
#S#S

#S#S

#S
#S

#S

#S
#S

#S

#S

#S
#S

#S
#S

#S
#S

#S
#S #S

#S#S
#S

#S

#S

#S
#S#S

#S

#S

#S

#S
#S
#S

#S
#S

#S
#S

#S#S
#S

#S

#S#S
#S

#S

#S#S

#S
#S

#S
#S
#S

#S

#S

#S
#S

#S#S#S
#S

#S#S#S#S
#S

#S#S#S
#S

#S

#S

#S#S

#S

#S

#S

#S
#S

#S
#S

#S#S
#S#S

#S#S#S#S
#S

#S#S
#S

#S
#S

#S#S

#S

#S

#S

#S#S

#S
#S

#S#S
#S#S

#S#S#S #S

#S

#S

#S

#S

#S#S
#S

#S#S#S#S
#S

#S
#S

#S

#S#S
#S#S#S #S#S

#S

#S

#S

#S#S

#S

#S

#S

#S #S

#S

#S

SCENARIO 1

#S

#S

#S

#S

#S

#S

#S

#S

#S

#S

#S
#S

#S

#S

#S

#S
#S

#S

#S

#S
#S#S#S

#S
#S

#S#S
#S

#S#S

#S

#S

#S
#S#S

#S

#S
#S

#S

#S

#S

#S

#S

#S

#S
#S

#S
#S

#S
#S

#S

#S

#S

#S
#S

#S
#S

#S
#S

#S

#S#S
#S

#S

#S#S

#S#S

#S

#S

#S
#S

#S#S#S
#S#S#S#S#S

#S

#S

#S

#S

#S

#S
#S

#S

#S
#S

#S

#S

#S

#S
#S

#S

#S
#S

#S

#S
#S#S#S#S

#S

#S#S

#S#S

#S#S#S#S
#S#S

#S
#S

#S
#S#S

#S

#S

#S#S

#S

#S

#S#S
#S

#S#S

#S
#S

#S

#S
#S

#S
#S

#S
#S#S#S

#S#S#S#S#S#S
#S

#S

#S

#S

#S

#S
#S

#S

#S#S

#S#S

#S

#S

#S
#S#S

#S
#S

#S
#S #S

#S

#S
#S

#S
#S

#S #S
#S

#S
#S

#S
#S

#S

#S

#S
#S
#S

#S
#S

#S

#S

#S
#S

#S
#S

#S

#S
#S

#S
#S

#S
#S#S

#S
#S

#S

#S
#S

#S

#S
#S

#S
#S

#S
#S#S#S#S

#S

#S#S

#S

#S

#S

#S

#S
#S

#S
#S
#S

#S#S
#S

#S#S#S#S
#S#S#S

#S
#S

#S
#S#S#S

#S
#S

#S#S#S
#S

#S
#S#S#S

#S

#S
#S

#S

#S
#S

#S#S

#S

#S

#S#S
#S#S

#S
#S

#S

#S

#S#S#S#S
#S

#S
#S

#S
#S

#S
#S

#S

#S

#S
#S

#S
#S

#S#S

#S

#S

#S
#S

#S

#S
#S

#S

#S#S
#S

#S

#S

#S
#S
#S

#S#S
#S

#S
#S

#S

#S #S#S
#S#S#S

#S

#S

#S

#S

#S

#S

#S
#S
#S

#S
#S

#S

#S

#S
#S

#S

#S

#S

#S
#S
#S

#S

#S
#S

#S

#S
#S

#S
#S

#S

#S#S

#S
#S

#S

#S
#S

#S

#S
#S

#S#S

#S

#S

#S#S
#S

#S
#S

#S
#S

#S

#S

#S

#S#S#S#S

#S

#S#S

#S
#S#S

#S

#S
#S

#S#S
#S

#S#S

#S#S

#S
#S

#S

#S

#S
#S

#S

#S
#S

#S
#S

#S
#S

#S#S #S

#S#S
#S

#S

#S

#S
#S#S

#S

#S

#S

#S
#S
#S

#S
#S

#S
#S

#S#S
#S

#S

#S#S
#S
#S

#S#S

#S
#S

#S
#S
#S

#S

#S

#S
#S

#S#S#S
#S#S#S#S#S

#S
#S
#S#S

#S

#S

#S

#S#S

#S

#S

#S

#S
#S

#S
#S

#S#S
#S#S

#S#S#S#S#S
#S#S

#S

#S
#S

#S#S

#S

#S

#S

#S#S

#S
#S

#S#S
#S#S

#S#S#S #S

#S

#S

#S

#S

#S#S
#S

#S#S#S#S
#S

#S
#S

#S

#S#S
#S#S#S #S#S

#S

#S

#S

#S#S

#S

#S

#S

#S #S

#S

#S

SCENARIO 3

N

EW

S
Diversion trunk

Upstream wateshed

Pipe

#S Manhole

Storage unit

0 1 2 km

C

B

A

B

C

a) b)

c)

Scenario	1

Scenario	3

Scenario	2

Storage	unit

Manhole

Pipe

Upstream	watershed

Diversion	trunk

2	Km10

Urban Water II  347

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 139, © 2014 WIT Press



representing the response of the largest flooded area in the upstream part of the 
catchment (location 1 in Figure 2) allows the following considerations: 

 the introduction of a new sewer pipe able to divert the most of upstream 
stormwater volumes (Scenario 1) reduces flood frequency; the effect is 
more relevant on frequent flooding and it is progressively less important 
with the increase of flooding return period due to the reduction both of 
the system efficiency to intercept upstream runoff and of the hydraulic 
capacity of the new sewer pipe; 

 uncertainty is also reduced in Scenario 1 because the most of the 
upstream volume is diverted to the new sewer pipe and accordingly the 
uncertainty in runoff estimation is transferred to the sewer pipe model; 

 the introduction of storage tanks in the system (Scenario 2) has a 
smaller impact on flooding in location 1 especially for higher return 
periods; uncertainty linked to flooding depth is slightly reduced with 
respect to Scenario 0 especially for more frequent flooding; 

 location 1 shows the same response with regard to Scenario 1 and 3 thus 
confirming that the floods in this location are mainly due to local 
surcharging of the sewer system caused by upstream stormwater runoff. 

     The analysis of flooding frequency related to location 5 in the downstream 
part of the system (Figure 5), allows the following considerations: 

 flooding depths and frequencies are marginally affected by the 
introduction of the new sewer pipe upstream (Scenario 1); this is mainly 
due to the fact that flooding downstream is mainly due to local system 
failures and to runoff generated in the central part of the watershed; 

 uncertainty in Scenario 1 is slightly reduced by the introduction of the 
new pipe because it is mainly due to the uncertainties in the estimation 
of local runoff; 

 the introduction of local storage tanks (Scenarios 2 and 3) has a major 
impact on flooding that is almost eliminated in the analysed location for 
return periods lower than 10 years; uncertainty is highly reduced 
because flooding depth absolute values are much lower than in Scenario 
0 and the proximity of flooding to mitigation measures transfers the 
uncertainty on the storage tanks filling process. 

     As a general conclusion, with regard to the hydraulic performance of the 
drainage system, only Scenario 3 was able to efficiently reduce flooding both 
upstream and downstream. Moreover, uncertainty in flooding frequencies after 
the application of mitigation scenarios is dependent both on the absolute 
reduction of flooding depth and on the distance between flooding location and 
mitigation measure. This behaviour is due to the local runoff component that 
introduces uncertainty on the path between the retrofitting measure and the 
flooding location. In order to have an efficient decision tool for selecting the best 
mitigation scenario, an economic analysis is needed. 

4.2 Damage conditional probability distribution: UFD → FD 

To build the conditional probability distribution of the expected flood damage 
(FDa) were applied the depth-damage curves estimated in a previous study for 
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Figure 4: Frequency distributions of flooding depth estimated for each FRS 
in an upstream location (circle 1 in Figure 2) of the catchment. 

 
 

 

Figure 5: Frequency distributions of flood depth estimated for each FRS in a 
downstream location (circle 5 in figure 2) of the watershed. 
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the same watershed (Figure 6). Red lines, in figure 6, represent 5th and 95th 
quantiles of the 25 curves obtained by excluding data derived from one flooding 
location (identified by circles in figure 2) or from one flooding event [6].  
     Figure 7 reports the expected damage frequency distribution at catchment 
scale considering the uncertainty on flooding depth estimation (showed in 
Figures 4 and 5) and in damage estimation (reported in Figure 6).  
     In all FRS, uncertainty in damage estimation is reduced because part of the 
original uncertainty is transferred to the estimation of the diverted flow rate or 
the stored volumes in the tanks. This does not mean that the overall model 
uncertainty is reduced but simply that uncertainty refers to the estimation of 
different variables.  
     Scenario 3 seems the most convenient solution because, independently from 
the return period, the related expected damage is lower than the expected damage 
in Scenario 0 reduced of the related AC of the mitigation measures (M€ 0.765).  
 

 

Figure 6: Depth-damage curves for building furniture a) and vehicles b) [6]. 
 

 

Figure 7: Frequency distributions of expected flooding damage at watershed 
scale for each FRS. 
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Moreover, uncertainty in the estimation of expected damage is reduced if 
Scenario 3 is selected thus making this choice more robust than others. 
     Scenarios 1 and 2 provide interesting results but only for the lower return 
periods: taking into account the additional costs of the mitigation measures (M€ 
0.472 for Scenario 1 and M€ 0.394 for Scenario 2), the impact of high return 
period flooding is larger than the actual condition. Those scenarios are 
characterised by an increasing uncertainty with the event return period. This 
aspect has to be taken into account considering that, provided the mitigation 
costs and the worst case for flooding damage (95th quantile – upper uncertainty 
band), high return period events may generate overall costs higher than the 
expected damage in Scenario 0. 

5 Conclusions 

The present paper applied Bayesian Decision Networks for the estimation of 
urban flooding damage and for the selection of the most appropriate mitigation 
scenario. Bayesian Network in an uncertain context demonstrated to be its 
powerful tool thanks to their ability to analyse the most probable behaviour of 
the system and the uncertainty bands related both to the modelling estimation of 
flooding depth and of the depth – damage curves. The analysis demonstrated that 
different retrofitting scenarios have different impacts on expected damage and on 
related uncertainty so that, in some of the analysed cases, the uncertainty bands 
after the application of retrofittiing measures still contains the measured 
historical damage. This means that damage higher than the historical one for a 
specific return period is still possible even if less probable than in the “do 
nothing” scenario (Scenario 0). The study demonstrated that uncertainty 
estimation is an important component of the decision process especially in cases 
where mitigation scenarios provide comparable average results. 
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