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Abstract 

Better water consumption decisions benefit from detailed use information. Easily 
installed non-intrusive vibration sensors provide a “no-fuss” retrofit solution for 
detecting the operation of water consuming appliances. The sensors measure 
pipe vibration, which are revealed to be a rich source of information for 
identifying loads. Vibration is processed to extract power spectral density based 
features which are classified with a clustering algorithm trained during install. 
The results can be used to track load operating schedule from the vibration data 
collected from as little as one pipe in a home. Mechanics governing the observed 
signals, and signal processing to extract operating information, are discussed in 
this paper. Field data from three different homes demonstrates the accuracy of 
this approach. 
Keywords:  pipe vibration, smart water meter, consumption tracking, water 
utility monitoring, load classification, accelerometers, pattern matching, 
supervised learning, machine learning. 

1 Introduction 

The value of information feedback to consumers has been demonstrated by 
Darby [1] and others. Detailed resource use tracking can find waste (Stern [2]). 
Utility bills often contain very coarse consumption information. A resource 
constrained future will demand effective and actionable information at the lowest 
acquisition cost. A low-sensor count system, the nonintrusive load monitor for 
water (WaterNilm) can provide water consumption information. Pipe vibration 
signatures indicate the operation of water-consuming load(s). Data sets from 
three field sites demonstrate WaterNilm’s potential in domestic and commercial 
environments. Pipe vibration sensors can be low cost and require no specialist 
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labor for installation, simplifying the requirements for retrofit of existing home 
pipe networks. WaterNilm does not use pipe vibration to infer flow rate 
information. Where flow rate information is desired, a new approach to 
piggybacking magnetic sensors on the home’s water meter, described in Schantz 
et al. [3], has demonstrated high resolution flow rate sensing. Flow rate 
information is not required for WaterNilm’s functionality, but provides a 
complementary capability. 

1.1 Similar work 

Tracking of water consumption for conservation efforts has been a subject of 
considerable research. Early studies employed direct sensing methods, such as 
temperature sensors and inline flow meters (Weihl and Kempton [4]). A method 
to determine water use by fixture category using flow measurements from an 
inline flow meter called “flow trace analysis,” introduced in Dziegielewski et al. 
[5], has become popular for large studies. The technique uses an assumption of 
consistent operation of the target fixtures. The method has challenges dealing 
with multiple simultaneous flows and variability in some loads. Flow trace 
analysis also cannot distinguish which of many identical fixtures is operating. 
     Investigators have explored the use of one or more microphones to identify 
loads acoustically [6]. These methods are susceptible to background acoustic 
noise. Another single sensor approach to both load disaggregation and flow rate 
estimation is HydroSense (Froehlich et al. [7]). This approach uses a pressure 
sensor, usually installed at a garden hose tap, to record and classify transient 
pressure signals during valve turn on and turn off events. The method relies on 
consistent valve operation and the unique characteristics of the propagation path 
between the valve and sensor to impart identifying information into the pressure 
transient signal. The method works best for automatically activated valves. 
Manual valves or valves that open to different flow rates create challenges for 
the pressure transient technique. Events occurring during flow to another fixture 
are adversely affected, creating challenges in identifying overlapping loads. In 
addition, only the opening and closing events provide classifiable information, 
precluding the correct handling of simultaneous events. 
     WaterNilm’s use of quasi-steady-state pipe vibration signatures provides a 
continual source of fixture identity during flow, and can correctly classify 
manually operated and variable flow valves and valves in combination. Because 
WaterNilm does not rely on transient events, simultaneous events do not present 
a problem. The clamp-on sensors do not require a wet connection to the water 
supply or the sacrifice of a dedicated garden hose tap in a home. This removes 
sanitation and leakage concerns of pressure sensor based methods. 

2 Pipe vibration sources and transmission 

The geometry of the pipe network affects the signals available for pipe vibration 
monitoring. Exploiting the vibro-acoustic behavior that occurs in pipe networks 
can aid in classification algorithm design, feature selection, sensor placement, 
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and set realistic expectations for identification accuracy. Intra-building water 
supply networks often consist of segments of metal pipes connected by bends 
and tee junctions. The pipes are suspended by intermittent pipe supports of many 
types. The geometric configuration of the pipe network including factors such as 
internal pipe wall burs, solder beads, or pipe deposits influence fluid flow and 
pipe vibration response. Sources of fluid generated vibration include the random 
fluctuating pressure field produced by turbulent and separated flow, and the 
formation and collapse of vapor bubbles during cavitation. There are also 
external sources of vibration from operating appliances and building occupants. 

2.1 Fluid generated vibration 

Water flow in household pipe networks is controlled by flow control valves in 
the home’s water fixtures or appliances. The majority of flow rates serving 
domestic water loads are high enough to achieve turbulence within the pipe 
network. Single family homes often have pipe diameters small enough to begin 
turbulent transition by 0.5 GPM flow rates, while even low flow versions of 
common fixtures like shower heads draw 1.5 GPM at design pressure. Turbulent 
flow in a pipe creates a broadband fluctuating pressure field against the inner 
wall of the pipe (Norton and Karczub [8]). The spectral characteristics of 
turbulent pressure fluctuations have been modeled by a number of researchers 
using semi-empirical methods (see Hwang et al. [9] for a review). The models 
show spectral energy peaks in the 100 Hz to 1 kHz range, when applied to 
domestic pipe sizes. The spectrum remains strong out to the 250 Hz to 2.5 kHz 
range, before decreasing with the first power of frequency. 
     Regions of separated flow can also generate significant vibration. If more 
than one branch is flowing in normal pipe network, there will be at least one tee 
junction with splitting flow. In general, an incompressible fluid will experience a 
sharp velocity change within the junction during splitting flow accompanied by 
high turbulence intensity and flow separation (Vasava [10]). The magnitude of 
the velocity change is dependent on the proportion of flow in each exit branch 
and port diameter, with equal flow in each branch causing the most turbulence. 
The vibration at tee junctions with splitting flow is energetic and can 
significantly influence vibration signatures during multi load operation. 
     Cavitation may also occur in home plumbing. Cavitation noise occurs from 
the impulse like formation and collapse of vapor bubbles which form in low 
pressure regions of the flow, creating a broadband vibration source. Cavitation 
typically occurs in the contraction portions of faucets and other valves where the 
local pressure falls below the vapor pressure of the fluid. Cavitation generated 
noise is an unreliable source of indentifying information because its intensity and 
peak frequency changes dramatically over the possible settings of a valve. The 
spectral peak of cavitation noise is dependent on bubble collapse time scale. The 
literature reports experimental spectral peaks above 1.5 kHz to 10 kHz (Brennen 
[11]). Because minimum pressures are reduced as a valve is opened, bubbles are 
smaller and collapse contains higher frequency content. Cavitation noise in 
homes is likely to lie on the high end of the range seen in the literature, and can 
therefore be removed by low pass filtering. 
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2.2 Transmission and propagation 

The vibratory forces acting on a pipe segment are influenced by both locally 
generated vibration sources and traveling waves propagating throughout the pipe 
network. These waves can travel in the fluid and pipe wall material. Pressure 
wave propagation in circular metal pipes is a key mechanism of information 
transfer. Metal pipes in home plumbing are well approximated as a waveguide. 
Only acoustic modes that satisfy boundary conditions at the centerline and the 
walls will propagate. The majority of the acoustic energy generated at flow 
discontinuities occurs via the higher order modes in the region of the source 
(Norton and Karczub [8]). For the turbulence dominated frequency range and 
pipe diameters found in home pipe networks, only the lowest order longitudinal 
axisymmetric mode i.e. plane wave mode, may propagate. Because higher order 
modes dissipate strongly with distance, they do not serve as a useful source of 
identifying information.  
     Pipe walls are not perfectly rigid, however, and many forms of coupling allow 
internal pressure waves to cause wall vibration. This means vibration sensors 
should be placed outside of the dissipation region of higher order modes near 
major flow disturbances. The slowest dissipating higher order mode will 
dissipate approximately 100 dB every 3 pipe diameters assuming rigid pipe. This 
mode has the lowest cut-on frequency i.e. frequency above which the mode is 
non-dissipative, at ~33 kHz in a 1 inch pipe. Cut-on frequency is inversely 
proportional to pipe diameter. Loss mechanisms like viscosity, acoustic 
radiation, and turbulence in the flow will also affect the propagation of all 
pressure waves. The losses depend on the details but are estimated to be 15 dB of 
attenuation every 1000 pipe diameters, according to White and Sawley [12] for 
industrial steel piping. 
     Wiggert and Tijsseling [13] identify three forms of coupling between fluid 
and pipe structure: poison coupling, friction coupling, and junction coupling. 
Poison coupling has minor effect outside of high pressure fluid transients like 
water hammer capable of stretching the pipe walls. Friction coupling concerns 
the transfer of momentum between the fluid and structure through flow friction. 
For plane waves the primary vibration coupling mechanism is junction (or 
geometric) coupling. An example is a plane wave incident on a 90 degree elbow 
in the pipe. As long as this elbow is free to translate, coupling will occur, 
allowing information contained in the internal acoustic pressure field to be 
transformed into externally measurable pipe vibrations. Selecting a sensor 
location on a pipe span bordered by a strong source of junction coupling like an 
elbow fitting is recommended, provided t-junctions are avoided due to strong 
vibration during splitting flow. 
     The copper pipe sizes typically usually used in homes have wall thicknesses 
greater than 10% of the pipe radii, and their cross section is not deformed in the 
low frequency region. This permits use of a quasi one-dimensional beam model 
to describe their vibration (Jong [14]). Jong also states that the distribution of 
energy between the vibration modes and between the fluid and structure depend 
strongly on the boundary conditions of the pipe. This dependence provides the 
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mathematical basis for the reason why piping system layout and support 
geometry affects the vibro-acoustic energy flow in the pipe network, and is 
responsible for the identifying information in the pipe vibration signature. 

3 Feature generation and clustering 

The supervised learning approach requires that vibration signatures be learned in 
a commissioning step during system installation. During normal operation pipe 
vibration time series is recorded and processed to extract identifying features for 
classification to identify the responsible flow configuration. 

3.1 Signal processing chain 

We chose a low cost MEMS accelerometer (part number ADXL 203) for its 
bandwidth, low noise, high sensitivity, and analog output. The sensor is rated to 
2.5 kHz bandwidth, with a resonance in the silicon mass at 5.5 kHz, which is 
followed by a drop in sensitivity. The accelerometer was sampled at rates 
between 12 kHz and 16 kHz to take advantage of the sensor’s sensitivity roll-off 
and avoid the need for anti-aliasing filters. Digital low pass filtering was 
employed to attenuate the cavitation dominated frequencies above 2 kHz. 
 

 

Figure 1: Block diagram of algorithm for vibration signature classification. 

     Pipe vibration signals can be modeled as a stochastic input modified primarily 
by the modal characteristics of the actively flowing branches of the pipe 
network. The intensity of the vibration input will vary with flow rate, but the 
modal properties of the pipe segments will remain relatively fixed. This makes 
frequency domain processing highly attractive, and power spectral density (PSD) 
estimates were chosen as classification features. A PSD is calculated for each 
segment of the vibration time series. Segment duration is a tunable parameter 
and 0.75 seconds was chosen as a default, as it was observed to perform well in 
cross validation. Log PSDs values are estimated with the Welch method and then 
the vector of values is normalized to unit length. The frequency bin width of the 
PSD estimate is another tunable parameter, and heuristically should be small 
enough to distinguish between the identifying modes in the pipe network without 
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resulting in excessive estimate variance. The vibration signal processing chain is 
shown schematically in figure 1. 

3.2 Subclustering for variable flow valves 

The performance of the features as described can be poor against large flow rate 
changes. The classification algorithms rely on clustering of feature vectors in a 
feature space and the ability to distinguish clear boundaries between clusters. 
Assigning the feature vectors associated with the full flow range of a variable 
flow valve to a single cluster during training leads to diffuse clusters and 
difficulty in determining effective classification boundaries. For this reason, the 
training step may employ sub clustering to divide the often diffuse clusters of 
these valves into multiple sub clusters. This improves compactness and generally 
results in better classification boundaries. The k-means algorithm is used for this 
purpose. The number of sub-clusters chosen for each variable valve is a tune-
able parameter. Results exploring this choice are presented in section 4.3. 

3.3 Segment classification 

Many classification algorithms exist (Bishop [15]). Discriminant analysis was 
chosen, employing MATLAB’s statistics toolbox functions, [16]. Both linear and 
quadratic discriminate analyses were tested. To reduce the training time required 
to generate the covariance matrices, the naive Bayes assumption of independent 
features is used to generate a diagonal covariance matrix. The classifier tags each 
vibration segment with the most similar flow configuration from the training set.  

4 Field tests and identification accuracy 

Field tests were performed at three single family residences to gather data for 
cross validation. The sites are denoted H1, H2, and H3. Each site had access to 
the point of water pipe ingress and metering, located close to the floor, followed 
by a vertical pipe segment rising to the basement ceiling. Pipe vibration was 
recorded at two locations and all corresponding flow configurations were 
documented. Accelerometer one (A1) was always installed downstream of the 
water meter on the vertical pipe, prior to the first t-junction. Accelerometer two 
(A2) was installed on the vertical output pipe of the home’s hot water heater. The 
sensors were mounted with a pipe clamp and plastic mounting block. 
Photographs of installed sensors are shown in figure 2(a)–(c). Horizontal axes, 
i.e. normal to the pipe direction, of the accelerometers were sampled. At H3, 
flow rate was monitored by a prototype magnetic sensor attached to the home’s 
water meter, described in Schantz et al. [3]. A laptop with USB data acquisition 
box recorded all signals. 

4.1 Site 1 results and training length requirements 

The objective of the H1 test was to gather proof of principle data. A gas furnace 
was operating intermittently the vicinity of A2, but data was gathered while the 
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(a) (b) 

(c) 

Figure 2: (a) A1 installed on vertical pipe above water meter. (b) A2 installed 
on hot water heater output. (c) Accelerometer mounting detail. 
Sensors used modified ADXL 203 evaluation board and plastic 
carrier block secured with pipe clamp. 

disturbance was not active. Ten or more seconds of steady state flow 
(discounting transients from valve actuation) were recorded for the nineteen flow 
configurations described in table 1. One fixture tested was kitchen faucet with 
side sprayer accessory. The fixture was tested at the hard stop settings bounding 
the left-right motion of the control lever, with and without the sprayer diverter 
active, accounting for four “single valve” flow configurations. Another complex 
fixture was the home’s bathtub tap and shower head diverter. The H1 data set 
includes a range of flow rates and mixture ratio settings for the bathtub tap. The 
shower head was always recorded at the fully hot valve setting. 
     H1 data allows exploration of the tradeoff between training data length and 
identification accuracy. A practical method must not require excessive time  
 
 

Table 1:     H1 Data load description. 
 

Type: Count Description 
Binary Valve 3 Washing machine, Toilet 1st fl., Toilet 2nd fl. 
Throttling Valve 6 2nd fl. H. and C. sinks, 1st fl. H. and C. sink, 

Base. H. and C. sink 
Kitchen Faucet 4 H. tap, C. tap, H. sprayer, C. sprayer. 
Mixed hot and cold  2 Bathtub tap, shower head.  
2 concurrent loads 4 Shower+(1st fl. Toilet, 2nd fl. Toilet, 2nd fl. C. 

sink, C. kitchen tap) 
3 concurrent loads 2 Shower + Toilets, Shower + 2nd fl. C. sink + 2nd 

fl. Toilet. 
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commitment during commissioning. The fourteen bolded flow configurations in 
table 1 were recorded for 20 seconds or greater and were selected to investigate 
training length duration. PSD estimate segment length was set to 0.75 seconds. 
The average misclassification rates (MCR) vs. training data duration of linear 
discriminate analysis (LDA) and quadratic discriminate analysis (QDA) is 
plotted in Fig 4. The MCR is generated from the average of 100 trials using 
randomly selected data of the given duration from the total available signal 
associated each flow configuration. The results show that training data length 
does not need to be excessive, approximately 10 seconds provides good 
accuracy. 
 

 

Figure 3: MCR vs. duration of training data. Durations with 10 segments (7.5 
seconds) or fewer used “leave one out” cross validation. Durations 
of more than 10 segments used 10 fold cross validation. 

4.2 Site 2 results and combination signatures 

H2 is a two story single family home. The objective of H2 testing was to acquire 
a data set containing many simultaneous load flow configurations, and to study 
the effect of external vibration disturbances on pipe vibration. Thirty one flow 
configurations were recorded for 10 seconds or more, described in table 2. 
Additionally, four of these flow configurations were recorded again during the 
operation of a furnace nearby A1. Pipe vibration was also recorded without 
internal flow during furnace operation. Comparison of PSDs show the furnace 
disturbance had negligible effect on vibration at A1 compared to internal pipe 
flow. 
     H2’s data set allows an exploration of the possibility of creating artificial 
vibration signatures for simultaneous valve flow from signatures acquired during 
individual valve training. If a method could be found to achieve this, it would 
reduce the effort required for system commissioning. We determined, however, 
that linear superposition of PSDs will not succeed. This outcome is consistent 
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Table 2:     H2 Data load description. 

Type: Count Description 
Binary valve 2 Base. Toilet, 1st fl. Toilet. 
Throttling valve 6 1st fl. H. & C. sink, Base. H. & C. sink, Front hose 

tap, Rear hose tap 
Kitchen faucet 4 H. tap, C. tap, H. sprayer, C. sprayer. 
Mixed hot and cold 2 Bathtub tap, shower head.  
Load concurrent 
with shower head 

6 Base. Toilet, 1st fl. C. sink, 1st fl. H. sink, 1st fl. 
Toilet, C. kitchen tap, H. kitchen tap 

Load concurrent 
with 1st fl. Toilet 

5 1st fl. C. sink, 1st fl. H. sink, C. kitchen tap, H. 
kitchen tap, Bathtub tap 

Loads concurrent 
with base. C. Sink 

4 Base. Toilet, Bathtub tap, 1st fl. Toilet, 1st fl H. 
sink. 

3 concurrent loads 2 Shower + 1st fl. Toilet + (1st fl. C. sink, or 1st fl. H. 
sink) 

 

(a) 
 

(b) 

Figure 4: (a) PSD of separate and combined flow configurations. 
(b) Silhouette plot. Positive values indicate a point is closer to its 
own cluster. 

with the nonlinear nature of fluid mechanics, especially at t junctions. 
Figure 4(a) shows the PSD of vibration at A1 for two single valve flow 
configurations; cold water flow at a bathroom sink and flow to refill the toilet 
reservoir in the same bathroom. Also shown is a linear combination of the sink 
PSD and toilet PSD, labeled ‘Sum’. The actual PSD recorded with both valves 
flowing simultaneously is labeled ‘Both’. The procedure to record the sample of 
faucet flow and dual valve flow first activated the faucet valve for a period of 
approximately 10 seconds before pressing the flush lever of the toilet. The 
setting of the faucet valve remained constant throughout the test to remove 
operator variability, and the toilet was selected as the partner load for 
repeatability. 
     While the PSDs labeled ‘Sum’ and ‘Both’ seem similar, the silhouette plot in 
figure 4(b), which displays a measure of cluster cohesiveness, shows that the 
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‘Sum’ and ‘Both’ signatures are distinct. Based on these results we determine 
that concurrent load operation must be trained explicitly. Despite the large 
increase in the number of clusters for the classifier to consider, classification 
accuracy remains above 90%. Table 3 shows the general MCR for all 31 flow 
configurations with 10 seconds of recorded vibration or greater, the majority of 
which involve combination load flow.  
 

Table 3:     Classification performance on H2 data. 

Misclassification rate A1 featuresA2 featuresA1 and A2 features
LDA 0.0945 0.0889 0.0705 
QDA 0.0632 0.0508 0.0384 

4.3 Site 3 challenge case and subclustering 

H3 represents a challenge case. With three full bathrooms (one containing two 
faucets), one half bathroom and two kitchen sinks, H3 contains more water 
fixtures than H1 or H2. Flow rate was also recorded with the non-intrusive 
magnetic water meter monitor. To investigate the effect of flow rate on 
classification accuracy, testing procedure was modified to include more flow rate 
settings of variable flow valves. Variable flow valves were tested with at least 
four flow rates spanning the full range and always included a test at maximum 
opening. The mixed temperature tests of the single lever controlled faucets were 
also measured at four flow settings each. The flow configurations recorded are 
summarized in table 4. 

 

Table 4:     H3 Data load description. 

Type Count Description 
Binary valve 6 Four Toilets and two bidets. 
Throttling valve 10 H. and C. sinks in basement, half bathroom, and 

two full bathrooms.  
Front hose tap, garage hose tap. 

Two kitchen faucets 4 H. tap, C. tap in each faucet. 
Two master faucets 4 H. tap, C. tap in each faucet. 
Two kitchen faucets 2 Middle setting for H. and C. flow in each faucet. 
Two master faucets 2 Middle setting for H. and C. flow in each faucet. 
Mixed hot and cold. 6 Three Shower heads and three bathtub taps. 
Loads concurrent 
with front hose tap 

6 Half bath toilet, Full bath toilet, C. kitchen tap, H. 
kitchen tap, C. kitchen tap, H. kitchen tap 

Loads concurrent  
with master shower 

2 Master toilet, master bidet, hot and cold flow in 
two handle faucet. 

Loads concurrent 
with bathroom 
shower 

4 Bathroom faucet operated cold only, hot only, or 
mixed temperature flow. Bathroom toilet. 
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     The MCRs for the H3 data set, shown in table 5 are higher than H1 and H2. 
This is largely the result of the extensive variation of flow rates recorded at the 
home’s variable flow valves. The subclustering technique described in section 
3.2 is applied to the H3 data set with good results. For cross validation we 
modify the definition of a correct match to include segments classified to any sub 
cluster of the correct parent cluster. The improvement of two and three group 
subclustering is evident. Subclustering may create a cluster with fewer than 10 
seconds of associated data. Such clusters were removed completely before 
calculation of the MCR. One tradeoff of subclustering is increased training time 
of variable flow valves. 

Table 5:     Classification performance on H3 data. 

MCR  No sub-clustering2 group subclustering3 group subclustering
LDA QDA LDA QDA LDA QDA 

A1 features 0.3612 0.3532 0.2264 0.2230 0.1510 0.1667 
A2 features 0.2848 0.2464 0.1596 0.1513 0.1084 0.1211 
A1 and A2 features 0.2282 0.1768 0.1130 0.0821 0.0514 0.0426 
 
     The identifying information in pipe vibration signatures are largely turbulence 
driven. The presence of flow rate information in the H3 data set allows for 
second evaluation of MCR and subclustering performance. The results of table 6 
were computed identically to those in table 5 save for the removal of all 
segments with flow rate below 0.4 gpm, chosen for the beginning of turbulent 
flow in the smallest copper pipe used in the plumbing of H3. Notably, this 
filtering completely removed the two bidet only flow configurations. 
 

Table 6:  Classification performance on H3 data without low flow segments. 

MCR  No subclustering2 group subclustering3 group subclustering

LDA QDA LDA QDA LDA QDA 
A1 features 0.3225 0.3076 0.2091 0.2120 0.1480 0.1623 
A2 features 0.2424 0.2041 0.1220 0.1207 0.0739 0.0878 
A1 and A2 features 0.1815 0.1310 0.0840 0.0588 0.0344 0.0350 
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