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Abstract 

Big Data opportunities arise from high rate data streams acquired through smart 
sensors and smart meters, which, even for small water utilities, may produce a 
huge amount of data to be stored. This data enables the application of new data 
analytics to infer reliable predictive functionalities, with implications ranging 
from reducing No Revenue Water (NRW) to optimizing the water-energy nexus, 
meeting ever more pressing budgetary constraints. This paper presents the 
approach proposed in the EU-FP7-ICT project ICeWater, combining time series 
clustering, for the identification of typical daily urban water demand patterns, 
and Support Vector Regression for performing a short term forecast. Promising 
results obtained on the Water Distribution Network (WDN) in Milan are 
presented. The approach has been designed to also be applied on smart metering 
data related to individual customers, addressing Big Data analytics issues. 
Keywords:  smart water management, predictive analytics, short-term demand 
forecasting. 

1 Introduction 

Growing demand, aged infrastructures almost at the end of their remaining 
useful life, climate change, decreasing fresh water sources and quality, 
increasingly stringent regulations and budget constraints are requiring a pressing 
need for a more sustainable and efficient management of urban Water 
Distribution Networks (WDN). The key to achieving this improvement is 
“understanding where, when and why we use water” [1]. The adoption of 
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systems able to integrate robust and proven ICT solutions and innovative data 
analytics approaches for the efficient management of the water-energy nexus, 
such as the ICeWater project (co-funded by the European Commission). These 
systems enable the shift from the data-poor, hardware-centric, asset-driven XIX 
century business model to a data-rich, information- and customer-centric 
environment, supported by smart-sensors, smart-metering and on-line monitoring 
systems. 
     From a technological point of view, ICT based solutions, such as Supervisory 
Control And Data Acquisition (SCADA) systems are already widely adopted by 
water utilities in order to monitor and control the hydraulic behavior of the 
WDN. These technological systems are also able to generate warnings and 
alarms according to specified rules and to store data which can be analyzed 
through advanced analytics for enabling a more effective and efficient leakage 
management [2–4]. 
     With respect to individual customers, Automatic Metering Readers (AMR) 
are quite innovative and promising ICT solutions which are gaining recent 
interest in the field of “smart water”. However, AMRs are quite expensive with 
respect to SCADA as their installation involves all the customers of the WDN, 
rather than a few relevant monitoring points. However, the availability of a huge 
amount of high-rate data, related to the consumption of customers, will be the 
best and innovative advantage for performing more accurate customer-
segmentation, “targeted” demand management strategies and individual demand 
forecasting. 
     Big Data opportunities arise from high rate data streams acquired through 
these smart solutions producing, even for small water utilities, a huge amount of 
data which may be analyzed to reduce No Revenue Water (NRW) as well as 
optimizing the water-energy nexus, addressing the pressing issue of the limited 
financial capability at WDNs. 
     Although the developed world has been forged on the supply-side, the 
historical period requires looking to curbing demand as an active, rather than 
reactive, water management strategy [5, 6]. With respect to this, the capability to 
reliably forecast demand is crucial for maintaining a satisfactory level of the 
service while reducing costs for caption, treatment, storage and distribution. 
Moreover, a demand forecast may improve WDN management at very different 
levels according to the time window considered: planning, strategic and 
operation levels with respect to long, medium and short term forecast. 
     The main contribution of this paper is related to the design and development 
of two specific decision support functionalities of the ICeWater project’s 
Decision Support System, namely: 

 the identification of typical urban water demand patterns 
 the related forecast in the short term (today or tomorrow). 

 

     The approach has been developed and validated on historical urban water 
demand data retrieved from the SCADA of Metropolitana Milanese in Milan, the 
Italian pilot of the ICeWater project. The approach is aimed at analyzing a huge 
amount of time-series (water consumption over time, at hourly, and even lower, 

64  Urban Water II

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 139, © 2014 WIT Press



level) and then cluster them to identify typical consumption patterns and derive 
reliable predictive models. 
     The approach has been designed to be also applied “as is” on AMR data 
related to individual customers, thus showing characteristics of a Big Data 
Analytics application. With respect to this, preliminary work is ongoing, 
following the installation of AMRs in the pilot site.  
     As result, a reliable short term demand forecasting model has been obtained 
for urban water demand in Milan, enabling the optimization of caption, 
treatment, storage and distribution by using energy (in particular for pumping) 
when it is less expensive during the day. A recent work [7] reports that forecasts 
led to a 3.1% reduction of energy consumption and a 5.2% reduction of energy 
costs at a WDN in The Netherlands. 
     The proposed pattern-discovery-based approach provides a reliable prediction 
depending on the hourly urban water demand acquired by SCADA in the first 
hours of the day and does not require any “on-line updating” and is not affected 
by the “time-lag” effect, usually occurring in more classical approaches (e.g., 
ARIMA).  
     The rest of the paper is organized as follows: section 2 describes the available 
data and the methodologies applied; in section 3 the proposed approach is 
illustrated; section 4 reports the obtained results. Some conclusions are finally 
provided. 

2 Material and methods 

The data considered in this study has been retrieved from the SCADA system of 
the WDN in Milan which is managed by Metropolitana Milanese (MM). MM is 
one of the two case studies of the EU-FP7-ICT project ICeWater; this highly 
interconnected WDN is shown in Figure 1. 
     Historical urban water demand data was retrieved for the period 01 March 
2011 to 31 March 2012. Data was organized as a time series dataset, where each 
entry into the dataset consists of 24 measurements, which are the hourly volume 
of water delivered by MM over the day. 
     It is important to note that MM is characterized by a really low leakage level. 
This avoids frequent and significant distortions into the daily urban water 
demand time series data making more reliable the identification of typical daily 
consumption patterns. 
     As a first step, preliminary preprocessing on the retrieved data has been 
performed, aimed at identifying anomalous values and replacing missing values. 
Nonetheless, this procedure affected only a very limited portion of data due to 
the reliability of the SCADA system. 

2.1 Time series clustering for pattern identification 

A specific survey on clustering of time series data has been proposed in [8], 
where the basics of time series clustering are presented, including general-
purpose clustering algorithms which are commonly used, criteria for evaluating 
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Figure 1: The WDN in Milan, Italy, managed by Metropolitana Milanese. 

performance, and similarity/dissimilarity measures used to compare two time 
series. These considerations are general and affect even more recent studies 
related to the clustering of time series data stream [9, 10]. 
     Furthermore, three different strategies are possible, by working: 

 Directly with the raw data (usually in time domain, but even in 
frequency domain); 

 Indirectly with features extracted by the raw data; 
 Indirectly with models built from the raw data. 

 

     The raw-data-based strategy is different from clustering of static data in 
replacing the distance/similarity measure with an appropriate one for time series. 
     The feature-based strategy converts a raw time series data either into a feature 
vector of lower dimension and then applies a conventional clustering algorithm 
to the extracted feature vectors. 
     The model-based strategy is similar to the feature-based one, converting raw 
time series data into a number of model parameters to consequently apply a 
conventional clustering algorithm to these parameters. 
     In a most recent and interesting work about a novel clustering method on time 
series data [11], a more accurate distinction between the different types of 
similarity that could be evaluated among time series is proposed: 

 Type 1: similarity in time. The goal is to cluster together series that vary 
in a similar way on each time step. 

66  Urban Water II

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 139, © 2014 WIT Press



 Type 2: similarity in shape. The goal is to cluster together time series 
having common shape features. 

 Type 3: similarity in change. The goal is to cluster together time series 
that vary similarly from time step to time step. 

 

     The identification of consumption patterns proposed in ICeWater is to 
provide managers with a reliable analytical tool which does not require any 
specific skills or competences on data analysis. The approach has been designed 
to address the WDN needs for a more accurate customer profiling, the 
identification of typical and periodic behaviors, the continuous monitoring of 
water consumption patterns and variations along time and customers (space). 

2.2 Support Vector Machines for regression 

Support Vector Machines (SVM) [12] is a well known machine learning strategy 
to (semi-)automatically discover, from an available set of data, a general 
relationship between the values of some variables of interest (features) and one 
target variable, by minimizing the prediction error. The regression model learned 
via SVM is expressed as a function of a subset of data (namely, support vectors). 
     SVMs had a sound orientation towards real-world applications; initial work 
focused on OCR (optical character recognition) and in a short period of time, SV 
classifiers became competitive with the best available systems for both OCR and 
object recognition tasks. A comprehensive tutorial on SV classifiers was 
published in [13]. But also in regression and time series prediction applications, 
excellent performances were soon obtained [14] containing a more in-depth 
overview of SVM regression. Additionally, [15] and [16] provide further details 
on kernels in the context of classification. 

3 The proposed approach 

The proposed approach is “completely data-driven”: the idea is that variability in 
urban water demand, due to different consumption behaviors in seasons, days of 
the week, and hours of the days, is all hidden into the data and that can be 
extracted and characterized through machine learning. As already mentioned, the 
approach consists of two consecutive phases: 

 the former is devoted to clustering together daily demand patterns, 
represented by the volume of water delivered at each hour, in order to 
identify the most typical patterns in consumption; 

 the latter aims at identifying a prediction model, based on the Support 
Vector Regression, able to predict, at one time, the urban water demand 
at each (remaining) hour of the day, given the hourly consumption very 
early in the morning as acquired through SCADA. 

 

     Clustering techniques capturing similarity in shape (i.e., by using triangle 
similarity) and considering only the raw time series data without any other 
information (e.g., day of the week, season or weather data) are used for 
identifying typical daily consumption patterns. All the time series to analyze are 
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defined in the same time window (i.e., a day) and thus have the equal length (i.e., 
24 data points in the case of hourly consumption data). 
     As a result of this step, a limited set of typical daily urban water demand 
patterns is identified where a “stereotype” (e.g., the mean daily urban water 
pattern) is defined for each cluster. 
     At the end of this step, a possible relationship between each stereotype/cluster 
and the time of its occurrence (e.g., period of the year and/or type of day) is 
considered in order to provide some “semantics” about the water usage behavior 
associated to each stereotype. It is suitable to take into account at least one year 
in order to capture possible seasonality. Semantics is retrieved by visualizing the 
distribution of the identified patterns over the days, within the analysed period, 
in order to evaluate possible seasonality, surprising periods, and daily/weekly 
habits. 
     Successively, each cluster is considered as a dataset and is used to learn a 
SVM regression model able to predict the urban water demand at a specific hour 
depending on the first m hourly data acquired through SCADA. As result, a pool 
of SVM regression model is generated for each cluster. 
     This procedure is summarized, with respect to a specific cluster, in Figure 2. 
 

 

Figure 2: Learning predictive models: one pool of SVM regression model for 
each typical pattern identified; one SVM regression model for each 
hour. 

     The pools of SVM regression models are stored; the most suitable pool is 
identified and retrieved, then the correspondent models are used to predict the 
hourly water demand data given the first m values acquired through SCADA. 
     Figure 3 shows this procedure by using only the first 6 hourly values as input 
of all the models in the selected pool. 
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Figure 3: Applying predictive models learned: the most suitable pool of SVM 
regression models is selected (i.e., depending on the period of the 
year and type of the day) and each model is used to forecast urban 
water demand at each hour. 

4 Results 

In this section the main results obtained are presented. Figure 4 shows the 6 
typical daily urban water demand patterns (stereotypes) identified on the data 
from MM’s SCADA system, computed as the average of time series in the 
correspondent cluster. 
 

 

Figure 4: Typical patterns identified in the urban water demand data of the 
WDN in Milan. 
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     As every time series in a cluster is related to a specific day, it has been 
possible to make some considerations about each cluster (and correspondent 
stereotype) by looking at the distribution of the clusters over the analysed time 
period.   
     In particular, three different periods of the year have been identified (namely, 
Spring-Summer, Fall-Winter and Summer-break) and 2 different types of day for 
each time period (namely, working-days and holiday-weekends).  
     It is really easy to note that major differences regarding the peaks in 
consumption in the morning, as well in the evening, both for period of the year 
and type of day. In particular, the peak in the morning is always delayed by 
about 1 hour for each period of the year. Moreover, the stereotypes named 
“Summer-break – working-days” is a really specific daily urban water demand 
pattern, more “flat” and “low” and it is associated to the 15 days in the middle of 
August, when usually citizens have their summer holidays and leave Milan. 
     The identified clusters have been then used for training the SVM regression 
models by using the first 6 values of hourly consumption as input features. One 
SVM has been trained for each hour of the day (from the 7th to the 24th), that is 
the target variable, and for each cluster. Forecasting performances have been 
evaluated through leave-one-out validation, in order to estimate the reliability of 
the predictions on new coming time series data. Several possible configurations 
for each SVM regression model have been taken into account, using both 
Polynomial and Radial Basis Function (RBF) kernels. 
     As a reliability index, the (absolute) percentage error has been computed in 
correspondence with each hour (i.e., | actual – predicted | / actual ). This value is 
then averaged on all the hours to predict and the result has been used to select the 
most reliable SVM configurations. 
     Table 1 reports the average error and its standard deviation for the best and 
the worst forecasts, on each cluster. Finally, the following figures show the best 
and the worst forecasts for each cluster. 
 

Table 1:  (Absolute) percentage error for the best and the worst forecasts in 
each cluster; mean and standard deviation of the error over the day. 

Best Worst 

Mean StdDev Mean StdDev 

Cluster 1 0.79% 0.59% 6.11% 2.95% 

Cluster 2 1.57% 1.18% 14.33% 11.68% 

Cluster 3 0.84% 0.66% 8.48% 3.53% 

Cluster 4 1.71% 2.56% 12.84% 7.53% 

Cluster 5 1.31% 0.93% 7.85% 13.26% 

Cluster 6 1.10% 0.85% 6.54% 3.46% 
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Figure 5: Best forecast for each cluster (leave-one-out validation). 

 

 

 

 

Figure 6: Worst forecasts for each cluster (leave-one-out validation). 
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5 Conclusions 

The approach presented in this paper, developed within the EU-FP7-ICT project 
ICeWater, proposes a predictive analytics solution for short term water demand 
forecast. The promising results obtained by its application on real data retrieved 
from the SCADA system of Metropolitana Milanese, the WDN in Milan and one 
of the two use cases of ICeWater, proved that the proposed combination of time 
series data clustering and Support Vector Machine regression is effective in 
implementing a completely data-driven approach to identifying typical 
consumption patterns and performing reliable predictions in the very short term 
(today or tomorrow). 
     While typical consumption patterns’ identification, in particular when applied 
at an individual customers level, enables a better segmentation of the users and 
supports the definition of demand management strategies for improving water 
and costs savings per se, it also permits a highly reliable forecast of the water 
demand which can be used to effectively optimize pumping scheduling and 
storage, reducing energy costs for caption, treatment, storage and distribution. 
     The approach has been designed to be applicable even on AMRs data; a study 
about that is currently ongoing. The availability of these ICT solutions will 
largely intensify the requirement of Big Data solutions, for data management as 
well as analytics. The proposed approach has been developed to be scalable and 
runnable on parallel/distributed architectures, qualifying itself as a Big Data 
Analytics approach for supporting smart water in modern cities. 
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