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Abstract 

Water demand, which is perhaps the main process governing water 
distribution systems (WDS), is affected by natural variability. The 
inherent uncertainty of demand is not negligible. Thus, uncertain demand 
should be modelled as a stochastic process or described using statistical tools. 
The stochastic modelling of water demand requires knowledge of the statistical 
features of the demand time series at different spatial and temporal scales. With 
this aim, this paper presents a stochastic description of demand and discusses in 
which measure its statistical properties depend on the level of spatial and 
temporal aggregation. The analytical equations, expressing the dependency of 
the statistical moments of demand signals on the sampling time resolution and on 
the number of served users, namely the ‘scaling laws’, are theoretically derived 
and discussed. These relationships have reference to the mean-variance scaling 
or Taylor’s power law. The scaling laws are also validated using real water 
demand data of residential users. Through the scaling laws the statistical 
properties of the overall demand at each node of the WDS can be derived and the 
direct simulation of overall nodal demands can be done, reducing, among other 
things, the computational time in modelling or performing Monte Carlo sampling 
of these systems. 
Keywords: water distribution systems, water demand, stochastic processes, 
correlation, variance, scaling. 

1 Introduction 

Recent studies on uncertainty in water distribution systems (WDS) indicate that 
nodal demands are the most significant inputs in hydraulic and water quality 
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models [1]. Thus, for a correct and realistic design and management, as well as 
simulation and performance assessment of WDS it is essential to have accurate 
values of water demand. The accurate knowledge of temporal and spatial 
variability of nodal demand is a fundamental pre-requisite for a risk-based 
approach in designing and managing WDS. The demand for water is influenced 
by various factors, from geographic, climatic and socioeconomic conditions, to 
cultural habits. Water demand uncertainty is made of both aleatory or inherent 
uncertainty, due to the natural and unpredictable variability of demand in space 
and time, and epistemic or internal uncertainty, due to a lack of knowledge about 
it. In particular, Hutton et al. [2] distinguish epistemic uncertainty in two types: 
the first one concerns the nature of the demand patterns, and what we do not 
know about this inherent variability when modelling WDN in both time and 
space. This uncertainty is defined as ‘two-dimensional’ uncertainty since it is 
composed by both aleatory and epistemic uncertainty. It may be constrained with 
extended and expensive spatial and temporal data collection or through the 
employment of descriptive/predictive water demand models. The second type of 
epistemic uncertainty takes the spatial allocation of water demand into account 
when modelling WDS [3].  
     Dealing with aleatory ‘two-dimensional’ uncertainty when modelling WDS, 
requires not only a complete statistical characterization of demand variability, 
but also the determination of the correlation among the different users and 
groups of users. In fact, statistical correlation of residential indoor water 
demands was proved to be not negligible [4] and to affect the hydraulic 
performance of WDS as well as its cost to achieve a desired level of reliability 
[5]. Li et al. [6] studied the spatial correlation of demand series generated by  
Poisson Rectangular Pulse (PRP) models. They verified that while time averaged 
demands that follow a homogeneous PRP process are uncorrelated, demands that 
follow a non-homogenous PRP process are correlated, and that this correlation 
increases with spatial and temporal aggregation. A similar conclusion about the 
correlation was achieved by Moughton et al. [7] from field measurements. After 
analysing the spatial and temporal features of water demand data for different 
spatial aggregation scales and sampled with different temporal resolutions, 
Magini et al. [8] summarized the aleatory uncertainty in mean-variance scaling 
relationships. The authors derived the ‘scaling laws’ for the first and second 
order moments, pointing out the role of the space–time correlation and how the 
level of spatial aggregation affects the statistical properties of the water demand 
series.  
     This work addresses the need to understand in which measure the statistical 
parameters of water demand signals depend on the number of aggregated users 
and on the temporal resolution in which they are estimated. It intends to describe 
these dependencies through the ‘scaling laws’, in order to derive the statistical 
properties of the total demand of a group of users from the features (mean, 
variance and correlation) of the demand process of a single-user. Special 
attention will be paid to the scaling of cross-correlation. Being part of the first 
author’s PhD research, which aims the development of descriptive and predictive 
models for water demand that provide insight into peak demands, extreme events 
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and correlations at different spatial and temporal scales, these models will, in 
future stages, be incorporated in decision models for design purposes and 
scenario evaluations. Through this approach, we hope to develop more realistic 
and reliable WDS design and management solutions. 

2 Theoretical framework on scaling laws 

In order to understand the effects of spatial aggregation and sampling intervals 
on the statistical properties of demand, it is useful to develop analytical 
expressions for the moments (mean, variance, cross-covariance and cross-
correlation coefficient) of demand time series, measured with a fixed sampling 
frequency, of ݊ aggregated users as a function of the moments of the single-user 
series sampled at a different rate. These expressions are referred to as “Scaling 
Laws”, and can be expressed as: 
 

ሾ்݉ሺ݊ሻሿܧ ൌ ሾ݉ሿܧ · ݊ఈ · ݂ሺܶሻ (1) 
 

where ܧሾ்݉ሺ݊ሻሿ is the expected value of the moment ݉ for ݊ users from signals 
measured with a sampling rate T; ܧሾ݉ሿ  is the expected value of the moment ݉ 
for the single-user; ߙ is the exponent of the scaling law; and ݂ሺܶሻ is a function 
that expresses the influence of the sampling rate. 
     The development of the scaling laws is based on the assumption that the 
demand can be described by a homogeneous and stationary process, which 
implies that the ݊ aggregated users are of the same type (residential, commercial, 
industrial, etc.), and that the statistical properties of demand, mean and variance, 
can be assumed constant in time. The scaling laws for the mean, variance, and 
lag1 covariance were derived by Magini et al. [8] and validated with synthetic 
and real demand data. They can be also expressed in the form of the Taylor’s 
power law [9], which is, as mean-variance/covariance relationships.  Regarding 
the mean demand, results show a linear increase with the number of users, 
without any influence of the sampling time interval. Concerning the variance of 
demand, a non-linear increase with the number of users was verified. Theory 
shows that the exponent of the scaling law for the variance depends on the 
spatial correlation that exists between the single-user demands: if demands are 
uncorrelated in space, the scaling law is linear, if they are perfectly correlated in 
space, the scaling law is quadratic. In this case, the sampling time interval plays 
a significant role, and the expected value of the variance for ݊ aggregated users, 
neglecting the narrowness of the sample, can be written as: 
 

ሾ்ߪ
ଶሺ݊ሻሿ ൌ  ሺ݊ · ଶሿߪሾܧ ൅ ݊ · ሺ݊ െ 1ሻ · ሿሻݒ݋ሾܿܧ ·  ሺܶሻ (2)ߛ

 

where ܧሾ்ߪ
ଶሺ݊ሻሿ is the expected value of the variance for ݊ users, for the 

sampling time interval ܶ; ܧሾߪଶሿ is the expected variance of the single-user, for a 
certain sampling time interval; ߙ is the exponent of the scaling law; ܧሾܿݒ݋ሿ the 
expected value of the cross-covariance between the single-user demands, for a 
certain sampling time interval; and ߛሺݐሻ is the variance function proposed by 
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VanMarcke [10] which expresses the influence of the sampling time interval. The 
variance function itself can be approximated by [10]: 
 

ሺܶሻߛ ؆ ቈ1 ൅ ൬
ܶ
ߠ
൰
௠

቉

ିଵ ௠ൗ

 (3) 

 

where ݉ is a model index parameter and ߠ is the scale of fluctuation of the 
stochastic process. The scale of fluctuation characterizes the correlation structure 
of the demand process, and can be considered constant when the process is 
stationary. Large values of the scale of fluctuation are related to long-memory 
processes, while small values of this parameter refer to no-memory processes. 
     The expected value of the cross-covariance between the demands of ݊௔ 
aggregated users of group A and ݊௕ aggregated users of group B can be given 
by: 
 

,஺஻,்ሺ݊௔ݒ݋ܥൣܧ ݊௕ሻ൧ ൌ ݊௔ · ݊௕ · ௔௕,்൧ߩൣܧ · ௔,்൧ߪൣܧ ·  ௕,்൧ (4)ߪൣܧ
 

where, ߩൣܧ௔௕,்൧ is the expected Pearson cross-correlation coefficient between the 
single-user demands of the two groups; and ߪ௔ and ߪ௕ are the standard deviations 
of the single-user demands of group ܣ and ܤ, respectively. The expected value 
of the cross-covariance increases accordingly to the product between the 
numbers of users of each group. In the particular case in which both groups have 
the same statistical properties, i.e., they belong to the same process, and 
assuming that ݊௔ ൌ ݊௕, the scaling law of the cross-covariance becomes 
quadratic. 
     The expected value of the Pearson cross-correlation coefficient between the 
demands of ݊௔ aggregated users of group A and ݊௕ aggregated users of group B, 
can be given by: 
 

,஺஻,்ሺ݊௔ߩൣܧ ݊௕ሻ൧ ൌ
,஺஻,்ሺ݊௔ݒ݋ܥൣܧ ݊௕ሻ൧

஺,்ሺ݊௔ሻ൧ߪൣܧ · ஻,்ሺ݊஻ሻ൧ߪൣܧ

ൌ
݊௔ · ݊௕ · ௔௕,்൧ߩൣܧ

ට݊௔൫1 ൅ ௔,்൧ߩൣܧ · ሾ݊௔ െ 1ሿ൯ · ට݊௕൫1 ൅ ௕,்൧ߩൣܧ · ሾ݊௕ െ 1ሿ൯
 

(5) 

 

     This equation represents the scaling law for the Pearson cross-correlation 
coefficient. It shows that this coefficient depends separately on the spatial 
aggregation levels of each group, ݊௔ and ݊௕, and not only on their product as 
happens for the covariance. In order to take the different sampling rates into 
account, a function ݂ሺܶሻ could be considered in equations (4) and (5). If 
݊௔ ൌ ݊௕ ൌ ݊ and if there is no difference in the sampling time intervals equation 
(5) becomes: 

஺஻ሺ݊ሻሿߩሾܧ ൌ
݊ · ௔௕ሿߩሾܧ

ටൣ1 ൅ ሺ݊ െ 1ሻ · ௔ሿ൧ൣ1ߩሾܧ ൅ ሺ݊ െ 1ሻ · ௕ሿ൧ߩሾܧ
 

(6) 
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     From equation (5) it is possible to observe that the expected value 
,஺஻ሺ݊௔ߩሾܧ ݊௕ሻሿ increases with the number of users, ݊௔ and ݊௕, reaching the 
following limit value: 
 

,஺஻,௟௜௠ሺ݊௔ߩൣܧ ݊௕ሻ൧ ൌ ݈݅݉
௡ೌ՜ஶ
௡್՜ஶ

,஺஻ሺ݊௔ߩሾܧ ݊௕ሻሿ ൌ
௔௕ሿߩሾܧ

ඥሺܧሾߩ௔ሿ ڄ ௕ሿሻߩሾܧ
 (7) 

 

     Since by definition ߩൣܧ஺஻,௟௜௠൧ ൑ 1, the maximum value that the expected 
value of the cross-correlation coefficient between the single-user demands of 
group ܣ and ܤ can assume is: 
 

௔௕,௠௔௫൧ߩൣܧ ൌ ඥሺܧሾߩ௔ሿ ڄ  ௕ሿሻ (8)ߩሾܧ
 

     From equation (6) it is possible to observe that the cross-correlation 
coefficient between the ݊ aggregated users of group ܣ and the ݊ aggregated 
users of group ܤ depends on both the cross-correlations in each group and the 
cross-correlation between the groups. Therefore, it seems interesting to 
investigate the way in which these two aspects, one at a time, affect its expected 
value as the number of aggregated users increases. In order to do so let us first 
considered a fixed value of  ߩ௔௕ and the values of ߩ௔ and ߩ௕ vary. Figure 1 
shows graphically the results for ߩ௔௕ ൌ 0.1 and different pairs of ߩ௔ and ߩ௕. 
 

 

Figure 1: Scaling laws of ܧሾߩ஺஻ሺ݊ሻሿ, for different values of  ߩ௔ ·  .௕ߩ

     As expected, all the curves have a common starting point, since  ߩ௔௕ is fixed. 
According to equation (7) a gradual flattening of the curves and a reduction of 
the shape ratio ߩ஺஻,௟௜௠/ߩ௔௕ can be noticed when the product ߩ௔ ·  .௕ increasesߩ
Let us now consider a different case in which ߩ௔ and ߩ௕ are fixed and ߩ௔௕varies. 
The results are shown graphically in figure 2. The curves have now different 
starting points and equal shape ratios ߩ஺஻,௟௜௠/ߩ௔௕. Increasing ߩ௔௕ produces only 
an upward shift of the curves, extending their transient. 
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Figure 2: Scaling laws of ܧሾߩ஺஻ሺ݊ሻሿ, for different values of  ܧሾߩ௔௕ሿ. 

     In the particular case in which both groups of users have the same statistical 
properties, i.e., they belong to the same process, and assuming ݊௔ ൌ ݊௕ ൌ ݊, the 
scaling law for the cross-correlation coefficient, considering no differences in the 
sampling time intervals, is: 
 

஺஻ሺ݊ሻሿߩሾܧ ൌ
݊ · ሿߩሾܧ

1 ൅ ሺ݊ െ 1ሻ · ሿߩሾܧ
 (9) 

 

     From equation (9) it is clear that the cross-correlation coefficient ܧሾߩ஺஻ሺ݊ሻሿ 
increases with the number of aggregated users, tending to one. This limit value is 
reached as sooner as the correlation ܧሾߩሿ between the single-user demands is 
higher. 

3 Validation of the analytical expressions 

In order to have a practical understanding of the developed analytical 
expressions, the scaling laws were derived for samples of real residential demand 
data. The real demand data consist in measurements taken from 82 residences in 
Latina, during 2 years. For each residence the different days in which data were 
measured can be considered as different realizations of the same process, 
allowing the artificial extend of the number of users to 300, while preserving 
their homogeneity. The demand series were divided into 1 hour periods to 
guarantee the stationarity of the process. The single-user demands were 
aggregated in groups of ݊ ൌ 10, 20,… ,150 users, for different averaging time 
intervals, ranging from 1 second to 1 hour. The scaling laws for the variance, 
cross-covariance and cross-correlation coefficient were obtained for different 
sampling time intervals. 
     Figure 3 represents the variance of the demand series at the peak hour (8-9h), 
for different levels of spatial aggregation, and obtained at different sampling 
intervals.  
     As expected the exponents of the scaling laws for the variance lie between 1 
and 2. The variance decreases with the sampling interval. The exponent of the 
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Figure 3: Scaling Law for the variance for different sampling intervals, at 
peak hour. 

scaling law increases with the sampling time, indicating that the correlation 
between demands increased. 
     The scaling laws obtained for the cross-covariance are close to quadratic. 
     The cross-correlation coefficient between demands increases with spatial 
aggregation and with the sampling interval. As an example, the scaling laws for 
the Pearson cross-correlation coefficient derived from the Latina data at different 
sampling intervals are illustrated in figure 4. 
 

 

Figure 4: Pearson cross-correlation coefficient of the data of Latina for 
different sampling intervals, at peak hour. 
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     It is clear that the cross-correlation increases with the number of users and 
tends to one. The sampling interval influences the scaling law by shifting it 
upwards as the sampling time increases.  
     The theoretical scaling laws seem to provide a good fit for the Latina data, at 
all the considered sampling time intervals.   

4 Variance function and scale of fluctuation 

In order to verify the effect of the sampling time interval on the variance of 
demand, the variance was calculated at different sampling time intervals and for 
different groups of aggregated users. For each level of spatial aggregation, and 
each hour of the day, the index parameter ݉ and the scale of fluctuation ߠ 
needed to be estimated. Two approaches were used to so. In the first approach 
the theoretical definition of the scale of fluctuation was used: 
 

ߠ ൌ න ሺ߬ሻ݀߬ߩ
ାஶ

ିஶ
 (10) 

 

where ߩሺ߬ሻ is the auto-correlation function. An approximated value for the scale 
of fluctuation was obtained through the numerical integration of the auto-
correlation function. Figure 5 represents the auto-correlation function for 10 
aggregated users at the peak hour (8-9h). 
     In the second approach it was assumed that the index parameter ݉ is constant 
and equal to one, and the scale of fluctuation was obtained from the variance 
function that provided the best fit to the real demand data.  
 

 

Figure 5: Auto-correlation function for 10 aggregated users, at the peak hour. 

     The variance of the demand data from Latina at different sampling time 
intervals and for different numbers of aggregated users are represented in 
figures 6 and 7. In figure 6 the scale of fluctuation obtained through the auto-
correlation function is used to obtain the scaling law. In figure 7 the scale of 
fluctuation obtained through the second approach is used instead. 
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Figure 6: Variance versus sampling time, with the scale of fluctuation 
obtained from the auto-correlation function, at peak hour. 

 

Figure 7: Variance versus sampling time, with the scale of fluctuation 
obtained from the variance function, with ݉ ൌ 1, at peak hour. 

     The variance of demand decreases significantly with the increase of the 
sampling time. The theoretical expression used to describe this effect, based on 
the variance function provides a good fit to the real demand data from Latina. 
     The scale of fluctuation varies through the day depending on the demand in 
each hour: the scale of fluctuation increases with the mean demand. Thus, at the 
peak hour longer memory signals are observed.  
     The scales of fluctuation obtained through both approaches differ 
considerably.  
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5 Conclusions 

The scaling laws were derived analytically and for real demand data. A good 
agreement is found between the theoretical expressions and the real demand data. 
Results show that the variance increases with spatial aggregation according to an 
exponent that varies between 1 and 2. In theory, for spatially uncorrelated 
demands the scaling laws is linear and for perfectly correlated demands the 
scaling law is quadratic. The variance suffers a reduction in function of the 
sampling time interval, since for longer observation intervals peak values are 
flattened out. The exponent of the scaling law for the variance increases with the 
sampling time, reflecting the expected increase in the correlation. The reduction 
of the punctual variance with the sampling time can be expressed through the 
variance function once the scale of fluctuation is obtained. 
     The scaling law for the cross-covariance between two groups of users 
increases according to the product between the numbers of users in each group. 
The cross-correlation coefficient depends separately on the number of users in 
each group, and increases towards a limit value equal to one. This limit is 
achieved sooner for larger sampling intervals, since the starting cross-correlation 
coefficient between single-user demands itself is higher. This fact is easy to 
understand whereas for larger observation times there is a greater probability of 
having simultaneous uses. 
     Nodal demand loads are a key factor for an accurate simulation of WDS. A 
realistic description of demand that reflects its uncertainty can only be done in 
statistical terms. Moreover, the achieved results show that the assessment of the 
spatial and temporal scaling effects on the statistical properties of demand cannot 
be neglected. 
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