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ABSTRACT 
Urban bus transport is an important mode of public transportation in developing countries and accounts 
for the major share of daily commuter demand in growing cities. However, many of these systems are 
not optimized and suffer from delays, cancellations and over-crowding, leading to losses. In recent 
times, intelligent transport systems (ITS) have been deployed to improve the bus operations. However, 
the ITS deployed in developing nations have been limited to monitoring daily operations, largely due 
to their dynamic and unpredictive demand pattern. Bus transport operators need new ITS solutions for 
schedule optimization and fleet management to improve the efficiency and profitability. Simulation 
driven optimization of operational parameters is one of the methods to propose the advantages of 
integrating ITS solutions with the bus operations. The primary data utilized for analysis includes both 
the static and dynamic sources. The static data consists of route, schedule, vehicle and historical ticket 
information. Whereas the dynamic data includes GPS traces and Automatic Vehicle Location System 
(AVLS) information. The simulation consists of models of bus operations as well as the passenger 
ridership. Each of these are inter-dependent and directly impact the measurable performance indicators 
for the transport operators (for example, passenger load factor, departure headways, vehicle utilization 
and earnings). Therefore, the goal of the proposed simulator is to optimize these measurable key 
performance indicators (KPI) through their iterative schedule evaluation. In this paper, the methods 
used to model bus transportation are investigated and the impact on measurable performance indicators 
are evaluated. The simulator can not only be used to optimize the schedule, but also to evaluate 
passenger load and bus fleet utilization scenarios. In addition to evaluation of schedule for typical urban 
scenario, the conditions in developing countries and application difficulties are discussed. In summary, 
the results indicate that demand driven scheduling results in cost savings and efficiency improvement. 
Keywords:  discrete event simulation, bus transport, schedule optimization. 

1  INTRODUCTION 
Public transportation infrastructure in developing countries is a crucial requirement towards 
sustaining rapid growth and workforce migration to urban areas due to industrialization. 
Meanwhile smaller developing cities have fewer resources to implement modern and 
efficient modes of public transport. Pojani and Stead [1] report that they also suffer from 
lower modal shares of public transport, urban congestion and low levels of service as 
compared to cities in the developed world. In recent times, intelligent transport systems (ITS) 
based solutions have been introduced as technological interventions to improve the levels of 
service through integration of public information systems (PIS), automatic vehicle location 
systems (AVLS), electronic ticketing systems (ETM) and scheduling tools, etc. While they 
serve as means to monitor and control bus operations, the data accumulated over period have 
not been effectively utilized for optimization. One of the challenges for the effective use of 
this data has been the non-availability of tools and methodologies to transform it to 
measurable performance indicators. Simulation driven optimization is a novel approach 
to utilize accumulated operational ITS data and is the primary subject of this paper. 
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1.1  Literature survey 

In research literature, there have been several efforts to simulate and optimize the public bus 
transportation routes using ITS data. In De La Mota and Huerta-Barrientos [2], the authors 
employ complex networks concept to simulate and evaluate Mexico City’s public transport 
networks including bus services. The results indicate that public transportation network in 
Mexico City have features of complex networks whose structure is irregular, distributed and 
dynamically evolving in time. The objective was to understand the accessibility, resilience to 
removal of transport nodes using Gephi software tool described in Bastian et al. [3]. While 
this approach is useful for network wide optimization of transport routes, it does not address 
the specific problem of bus transport schedule simulation and optimization. 
     Hawas [4] reports a micro-simulation approach to estimate bus route and network travel 
times. This model not only simulates the vehicular flow, but also the bus operations including 
different dispatch frequencies and passenger boarding-alighting patterns. Regression models 
were used to predict both route and overall network travel times. However, does not apply to 
evaluating the response of passenger boarding-alighting patterns with load factor. Further, 
Ibarra-Rojas et al. [5] also discussed the research in use of simulation for planning, control. 
     Song et al. [6] propose a simulation-based approach for sustainable transportation systems 
evaluation and optimization. The paper proposes optimal combination of transportation 
planning and operation strategies (e.g. congestion pricing) that minimize generalized costs 
of multimodal traveling. However, this work makes use of a separate traffic simulation tool 
VISUM before passing the results to the optimization module. The iterative micro-simulation 
for all possible permutations of operational strategy, policy till convergence conditions are 
achieved is unsuitable for city wide transport optimization due to exponential increase in 
computational requirement. Agent-based simulation model is an alternate approach to 
analyse the system behaviour based on each passenger’s travel choice as an autonomous and 
independent entity. In Hajinasab et al. [7], authors propose a multi agent simulation model 
for decision making in urban transport planning. This model accounts for the influence of 
cost, time, convenience and social norm. However, it does not validate the simulated travels 
with actual operational data. Table 1 summarizes the related work, gap, novelty of this work. 
     Iliopoulou and Kepaptsoglou [8] have presented a detailed literature review of usage of 
ITS data from public transportation for planning and decision making. Especially from the 
tactical planning perspective, the availability of AVLS and ETM data helps improve  
the OD demand estimation and thereby timetable design. In Gkiotsalitis and Cats [9], 
dispatch headways are computed through solution of a quadratic optimization problem 
considering the demand, headway and travel time variations for different times of the day, 
operational costs, vehicle capacity and fleet constraints. Further Wang et al. [10] consider the 
waiting time minimization problem for large scale data set of passenger boarding times in 
order to generate optimal dispatch schedules. In Yan et al. [11] a reliable schedule design 
problem is considered accounting for the travel time variance and driver behaviour. A robust 
optimization model is solved to minimize the schedule deviation and variance. Table 2 
summarizes the comparison of state-of-art surveyed and the contribution of the current work. 
     In this paper, the use of data gathered from ITS services deployed in the network to 
generate optimized schedule along with the measurable KPIs directly relevant to transport 
administrators is proposed. Hence, the results can be validated, and future scenario evaluated 
reliably by the transport operators. In future, this system can be extended to include 
extraneous events and their impact on transport services, for example: breakdown of bus. 
This paper is structured as follows: In Section 2, the background of the issues under  
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Table 1:  Literature survey of simulation methods to optimize bus transport. 

Approach Major outcome Gap in the state of art 
Key novelty in our 
proposal

Complex network 
simulation of 
transport plan De 
La Mota et al. [2] 

Analysis of patterns 
of structural 
vulnerability, 
service accessibility 
passenger mobility.

Model does not 
consider the 
congestion, ridership 
data. Hence limited to 
network analysis.

Detailed model of each 
route with operator data of 
trip time, ridership for 
schedule optimization is 
applied.

Micro-simulation 
to estimate route, 
trip-time Hawas 
[4] 

Simulated 
hypothetical route 
network with 
different trip 
patterns. 

Effect of route design 
and bus frequencies on 
bus ridership is not 
captured in this model.

Route model developed 
from mobility, ridership 
data from ITS; so closely 
simulates real scenario. 

Evaluation 
framework for 
transport strategy 
Song et al. [6] 

Simulation and 
optimization of 
multi-modal 
transport strategy.

Authors mention the 
computation 
complexity of this 
method is too high.

Bus schedule is optimized 
from operator KPI view on 
a route-wise basis to reduce 
computational load. 

Multi-agent 
traveller model 
Hajinasab et al. 
[7] 

Decision making for 
traveller agent using 
utility functions of 
generalized cost

Considers the trip 
assignment only, but 
neglects the schedule, 
operational issue.

Considers ticket data-based 
passenger boarding – 
alighting model to optimize 
and simulate schedules. 

Table 2:  Literature survey of ITS data-based bus transport schedule optimization methods. 

Approach Major outcome Gap in the state of art 
Key novelty in our 
proposal 

Sequential 
Quadratic 
Programming 
Gkiotsalitis and 
Cats [9] 

Optimal dispatch 
headway for high 
frequency service 
using GTFS, 
AVLS, APC data 

Does not consider 
variations in fleet 
size, or day-to-day 
variations of ridership 
needing short turn 
trips, interlining of 
services.

Iterative simulation to 
determine the heuristic 
optimized schedule. 
Not limited to high 
frequency service, 
supports short trips. 

Big data 
analysis of 
passenger 
smart-card 
records 
Wang et al. [10]

Granular spatio–
temporal traffic, 
demand 
optimized 
schedule 

Needs high resolution 
passenger entry–exit 
data as pre-requisite. 
Models waiting time 
of passengers. 

Considers granular 
demand model from 
ETM transaction data. 
Waiting time info. at 
stops is not essential 
for this model. 

Monte Carlo 
simulation to 
solve robust 
optimization 
Yan et al. [11] 

Optimized 
schedule with trip 
time variance, 
driver behaviour 

Considers driver 
behaviour control on 
driving speed to 
adjust trips times. 
This method would 
have safety concerns. 

Considers bus arrival 
time variance at each 
intermediate stop along 
with end-to-end trip 
time data. More 
granular than previous 
work.
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consideration is presented. In Section 3, the proposed approach as well as measurable KPIs 
are discussed. The data models and simulation challenges are discussed in Section 4. The 
evaluation results for an example scenario are presented in Section 5. Finally, conclusion and 
future research perspectives are outlined in Section 6. 

2  BACKGROUND  
In this section, typical issues faced by urban bus transport operators in developing countries, 
especially regarding the planning and scheduling of vehicles are described. 

2.1  Challenges for schedule optimization in developing cities 

2.1.1  Lack of standardization across data sources and formats 
Public transport operators in developing cities are implementing ITS solutions at various 
technological stages. However, there is no common data specification for monitoring, control 
of these operations. Therefore, analytics driven optimization solution deployed on existing 
information infrastructure need to support a wide variety of formats and compensate for 
information loss during processing data. This leads to a major bottle neck towards scaling 
and global optimization of the route network. In our proposed approach as well, the mapping 
of operator data to simulator’s custom format (see Fig. 1) is a challenge and needs to be 
addressed on a case-by-case basis. This issue is surveyed in detail under the data quality 
considerations topic of Iliopoulou and Kepaptsoglou [8]. 
 

 

Figure 1:  Overview of the bus simulator data processing architecture. 

2.1.2  Deviation from planned operations 
The timetable is generated to satisfy the time–location sensitive demand patterns estimated 
from the origin destination (OD) demand matrix. In practice, time varying on-road 
congestion (peak and non-peak hours) is one of the chief causes of the schedule divergence. 
In Ceder et al. [12], the authors propose to minimize the deviation from the desired passenger 
load while maintaining even headway to improve utilization. The trip time variability is high 
without a clear peak, off-peak hour and thus conventional modes of vehicle allocation as per 
predictable demand is not effective as mentioned in WRI report [13]. At present, operators 
resort to periodic schedule adjustment based on past observations leading to unsatisfactory 
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results. Therefore, development of congestion resilient timetable, that balances the need of 
passengers and the operator remains a major issue. Two potential solutions are considered: 

i. Dynamically alter the bus transport timetable as per the actual trip times in real time 
ii. Re-optimize the schedules based on trip times estimated from historical GPS data 

Method i can control the desired output, however, needs fundamental change in operations 
that is not supported by the static schedule. However, this method is suitable to be 
implemented as the demand responsive public transport especially on Bus Rapid Transport. 
     The Method ii is suitable for fixed routes with variable trip times. However, it may be 
noted that it is not only the end-to-end trip time, which is impacted, but also the arrival time 
at each of the intermediate stops during the trip that gets changed due to the impact of 
congestion. 
     In this paper, the Method ii. is considered when historical GPS information is available. 

2.1.3  Insufficient enforcement of regulations 
Service delays, cancellations are also caused due to human factors such as driver behaviour 
(route violations, disrupting the vehicle to server communication) and passenger behaviours 
(boarding/alighting at non-designated locations). In these situations, often the trip related data 
collected is error prone and makes the optimization of schedule inaccurate. Appropriate 
enforcement of regulations by public transport authorities can make the operations more 
predictable and hence lead to the efficiency improvement, such as those implemented in 
developed countries. This issue is surveyed in detail under Operational planning topic of 
Iliopoulou and Kepaptsoglou [8] and treated as an optimization parameter in Yan et al. [11]. 

3  PROPOSED APPROACH 
In this section, the proposed approach for simulation of bus transport schedule is described. 

3.1  Bus transport model 

Fig. 1 shows the overview of the bus schedule simulator with its data processing pipeline. 
The operator data is available in various formats as there is no common implementation 
standard. Therefore, either through database API or through individual data files (CSV 
format), the information is gathered and converted to simulator’s custom format. The 
simulation model creates trips for a regular working day from a start time (say, 06:00 am) to 
end time (say, 10:00 pm) as per the route data received. Within this time frame, all trips 
(forward trips as well as return trips) are generated. Bus instances are generated with discrete 
event simulation and based on the vehicle circulation. The vehicles are placed at the 
geographical coordinates of the first stop, so in this model the deadhead trip from origin depot 
to the initial stop of the route is not considered. The states through which the vehicle goes 
through during the trip are shown in Fig. 1. 
     The main states are briefly described: 

i. Halt: If the bus is at the initial stop of the trip, it is held until the scheduled departure 
time of the trip. In the current implementation, new candidate trips are generated at 
periodic micro-intervals and later checked to satisfy the KPI threshold conditions. 
The trip is accepted and evaluated only if the KPI threshold conditions are satisfied. 

ii. Load, Unload: If the position considered is not at the initial or final stop, the bus 
will load and unload passengers at each stop based on the travel pattern. At the first 
stop, the bus will only load passengers and at the last stop, the bus will only unload. 
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The time it takes to load, unload passengers is currently kept constant, however it 
can be extended to include observed stopping AVLS times on that route.  

iii. Move: After loading and unloading, the bus is moving from one stop to another. The 
time this takes is drawn from the historical distribution of travel times for that time 
slot. The distribution is generated by processing the historical GPS traces. 

3.2  Passenger load model 

Passengers are modelled through a boarding-alighting count model at each bus stop on the 
route for a regularly repeating pre-defined interval. It may be generated from the expected 
loading levels, or through historical ticket data on that route. Through these models, both 
historical as well as future growth scenarios can be simulated: 

i. Waiting: Passenger waits till the next scheduled bus arrives at that stop. The 
passenger boarding alighting count is derived from the OD matrix of the travellers 
computed at the resolution of the simulator’s pre-defined interval. 

ii. Boarding: When the bus arrives at the stop, the waiting passenger count is reduced 
due to boarding, which is limited by the capacity and on-board count existing in the 
arriving bus. Since the simulator allows for the configuration of vehicle model and 
seating capacity, the on-board passenger count cannot be more than the bus capacity. 

iii. Traveling: The passengers travel in the vehicle as per their chosen origin and 
destination stops. However, in current model each passenger’s trip is not traced  
and only the boarding-alighting behaviour is modelled. The total on board count 
over each traversed link during the trip is recorded. This provides granular analysis. 

iv. Alighting: Once the passenger disembarks from the bus, the model removes the 
instance from further processing. The on-board count of passengers is appropriately 
updated to reflect the change. All passengers are forced to alight at the end. 

     Apart from the above defined simulator inputs, model of passenger and vehicles, the 
software needs parameters to configure KPI thresholds (shown in Table 3). Simulator output 
is generated in the JavaScript Object Notation (JSON) format which is a lightweight 
representation of storing and transporting data. It can be easily parsed to generate statistics 
for dashboard representation. The output file consists of fields such vehicle number, arrival  
 

Table 3:  Simulator configuration parameters. 

Parameter name Parameter value
maxNumOfBus Integer value indicating the fleet allocated on the route 
firstTripStart Time offset in minutes from 00:00 hrs – start time of first trip 
lastTripDeparture Time offset in minutes from 00:00 hrs – end time of last trip 
busCapacity Maximum number of seated passengers in the vehicle 
maxOverCapacity Maximum number of standing passengers in the vehicle 
haltTime Minimum time in minutes for which the bus waits 
minTotalPassengerCount KPI threshold: Minimum count of passengers
minAvgOccupancy KPI threshold: minimum acceptable average bus occupancy 

minInterval 
KPI threshold: Minimum interval for insertion of trip at start 
point (minutes)

maxInterval 
KPI threshold: Maximum interval for insertion of trip at start 
point (minutes)
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and departure time at each intermediate stop, boarding, alighting passenger counts and 
occupancies of each link on the trip. These can be easily processed through the visualizer. 

4  DATA MODELS AND ASSUMPTIONS 
In this section, the method of generating model of the link speeds from GPS data as well as 
the passenger ridership from ticket data is described along with key assumptions. 

4.1  Link speed model 

A route consists of N stops and N-1 intermediate links interconnecting the successive stops. 
From the GPS trace, it is possible to deduce the expected arrival and departure times for each  
trip. With this information on the travel time variability, a vector of average speeds at that 
link in the corresponding time period (say, hourly) can be derived. While instantaneous speed 
of the vehicle is a function of vehicular flow rate through given road dimensions, the 
representation of vehicular travel time is simplified by proposed approach. In the absence of 
GPS data, the AVLS information can be used to generate the average vehicular speed 
between origin and destination. The link speed model for the network under consideration 
represents the route transport capacity and determines the spatio–temporal variations in trips. 

4.2  Passenger ridership model 

The E-Ticket data is uploaded to the cloud server from the on-board device. This data consists 
of the origin, destination stop of the passenger, time of ticket issue and number of passengers. 
If the count of boarding-alighting passenger at every stop at every period is grouped from 
above information, a basic model of the ridership is obtained. This model can also be 
generated through the Automatic Passenger Count (APC) systems. It can also be enhanced 
with additional information for every ticket that indicates the travelled route length. From the 
Fig. 2, the spatial and temporal variations of the boarding, alighting passenger count across 
time and as per the stops. These patterns change for each route based on the relative 
positioning of trip generations and attractions (for example, residential areas and 
workplaces). 
     The presence of substantial peaks in certain space–time zones show localized demand that 
are best served by short turn routes. Fig. 3 shows the same information with heatmap 
representation over the matrix. The sudden increase in ridership in a segment of the route  
 

 
(a) 

 
(b)

Figure 2:  Spatio–temporal passenger ridership model. (a) Boarding; (b) Alighting pattern. 
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(a) 

 
(b) 

Figure 3:  Passenger ridership heat map. (a) Boarding pattern; (b) Alighting pattern. 

indicated by boarding and alighting locations in the middle hours of the day indicate the need 
for short turn routes to balance the overall load factor and fleet requirement. 

5  RESULTS AND DISCUSSION  
Synthetic ridership of a developing city based on historical pattern, operator’s schedule as in 
WRI report [14] is generated. The existing schedule of the operator is fixed frequency that 
results in a mismatch between the passenger demand and bus availability leading to uneven 
load distribution. From Figs 2 and 3, it is evident that during peak hours there is sudden 
increase in the passengers riding between Stop 1 and Stop 4. Two strategies to generate 
schedules are presented. (i) Full route trips and (ii) Mixture of full and short trips. 

5.1  Full route trips schedule  

Fig. 4 shows the result of the simulated, optimized schedule with all end-to-end trip 
schedules. These trips consider the presence of a bus dispatch depot at both ends of the route. 
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However, when the load levels between each pairs of OD stations are considered, it is seen 
that high passenger boarding demand is limited to certain stations and not uniformly 
distributed. The trips that satisfy the KPI (Avg. load factor >= 0.5) are selected and plotted. 
In total, there are 91 trips (48 forward trips, 43 reverse trips) with avg. load factor (0.66) and 
8 vehicles are utilized. In the Fig. 4, each unique vehicle is depicted as separate colour and 
width of each line is proportional to the load factor of the trip. The details of hourly dispatch 
frequency and average load factor are plotted in Fig. 5. It can be clearly seen that each 
accepted trip schedule is experiencing an acceptable load factor (0.5 to 0.8). 
 

 

Figure 4:  Time–space chart of the optimized schedule with full trip operations. 

 
(a) 

 
(b) 

Figure 5:  Key characteristics of: (a) Hourly dispatch frequency; and (b) Average load factor. 

     Advantages of proposed end-to-end trip schedule: 

i. This strategy is easier to be implemented in practice by operator and reduces the risk 
of dead-head trips where the passengers are not boarded. 

ii. End-to-end trip schedules are easily interpretable by the operator and differs from 
existing trip schedule only in the operating strategy (skipped stops, departure time). 

     Shortcomings of proposed end-to-end trip schedule: 

i. Scheduling new end-to-end bidirectional trips when the load is limited to certain 
route segments is considered inefficient and leads to increase in the operational cost. 
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ii. Uneven load dependent dispatch frequencies are harder to understand for the 
passengers in the absence of real time tracking and passenger information systems. 

5.2  Mixture of full and short trips schedule 

Fig. 6 shows the result of the simulated optimized schedule with both end-to-end trip 
schedules as well as the short route trip schedule. In this case, for the same ridership, the 
number of end-to-end trips reduces to 88, with insertion of 14 short trips. The average loading 
factor also marginally reduces to 0.62 that indicates lower in bus crowding. The details of 
hourly dispatch frequency and average load factor are plotted in the Fig. 7. It can be clearly 
seen that each accepted trip schedule is experiencing an acceptable load factor (0.5 to 0.8). 
     Advantages of the proposed mixed trip schedule include the improvement of fleet 
utilization for high-demand segment, achieved by insertion of short turn trips in-line with the 
full route trips, which improves vehicle reuse. 
 

 

Figure 6:  Time–space chart of the optimized schedule with full and short trip operations. 

 
(a) 

 
(b) 

Figure 7:  Key characteristics of (a) hourly dispatch frequency and (b) average load factor. 

     Shortcomings of the proposed mixed trip schedule include challenge to optimize 
placement of depots. Since the placement of depots in most cases are closer to the end points 
of the route, it is not possible to serve short trips in the interior segments of the route without 
return of vehicles to the depot. 
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5.3  Discussion of results  

The basic advantage of simulation driven schedule optimization is the ability to perform 
scenario-based analysis (What-If analysis). Table 4 shows an example of comparison 
between two operational strategies with the same number of vehicles in the fleet. It can be 
observed that for the load scenario considered, introduction of short trips can reduce the 
average load factor. 

Table 4:  Summary of generated schedules. 

Schedule type Fleet count Number of trips simulated Avg. load factor 
Full route 8 Forward – 48, reverse – 43 0.66 

Mixture of full and short 8 
Forward – 47, reverse – 45 
including 14 short trips

0.62 

The short trips are approximately 46% shorter than the full trips and hence save substantial operational cost through 
improvement of vehicle utilization. 

     Currently, this simulator is used in the operational context of the public transport and 
needs repeatable results, for which the following assumptions based on Dalle [15] are made: 

i. Usage of platform-independent solution: Computing platform and programming
language can influence the execution sequence and therefore use of platform
independent programming language is important for reproducibility. In the current
work, JAVA is the programming language which is platform independent. The next
level of independence to be considered in future is the adoption of a simulation
framework (for example, Petri Nets).

ii. Ensure the availability of the computing solution: Distribution of simulation software
to users using pre-configured virtual machine (appliance) is a preferred mode
considering the complexity of configuring simulation parameters, inputs such as
route details and operator data formats.

 However, the current simulator has the following limitations: 

i. User defined constraint optimization: Some operators specify special constraints
related to usage of crew, vehicles and the flexibility of resource sharing. While it is
difficult to design a general simulator including all such cases, the transport operator
expects simulation results that adhere to these actual conditions. Hence simulator
needs to be extensible.

ii. Primary survey data-based optimization: While AFCS information provides the
historical ridership information, operators rely on primary data surveys of potential
passengers. Our current simulator does not assume availability of such data source
for schedule optimization.

6  CONCLUSIONS 
In this paper, new schedule simulator for target bus routes is proposed to improve the trip 
time reliability, bus ridership load levels and operational headways. From the results it can 
be concluded that, this method is effective in producing schedules that can be validated by 
the operators experience as well as reduces the effort in optimizing the timetable for future 
scenario. The bus schedules once published are active over long periods (weeks or months) 
and the passenger load models derived from ticket data needs further validation incorporating 
long term effects that capture the seasonal variations and impact of special events (such as 
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sports). Further, the impact of disruptions that lead to schedule change or cancellations need 
to be incorporated. In this research, our target has been those routes which directly connect a 
pair of source and destination stops. In future, additional operational strategies such as multi-
route schedule, circular and special vehicles (electric bus etc.) would be incorporated.  

REFERENCES 
[1] Pojani, D. & Stead, D., Sustainable urban transport in the developing world: Beyond 

megacities. Sustainability, 7, pp. 7784–7805, 2015. 
[2] De La Mota, I.F. & Huerta-Barrientos, A., Simulation-optimization of the Mexico City 

public transportation network: A complex network analysis framework. Applied 
Simulation and Optimization, 2, pp. 43–79, 2017. 

[3] Bastian, M., Heymann, S. & Jacomy, M., Gephi: An open source software for 
exploring and manipulating networks. Presented at International AAAI Conference on 
Weblogs and Social Media, 2009.  

[4] Hawas, Y.E., Simulation-based regression models to estimate bus routes and network 
travel times. Journal of Public Transportation, 16(4), 2013. 

[5] Ibarra-Rojas, O.J., Delgado, F., Giesen, R. & Muñoz, J.C., Planning, operation, and 
control of bus transport systems: A literature review. Transportation Research Part B, 
77, pp. 38–75, 2015. 

[6] Song, M., Mogeng, Y. & Xiqun, C., A simulation-based approach for sustainable 
transportation systems evaluation and optimization: Theory, systematic framework 
and applications. Procedia – Social and Behavioral Sciences, 96, pp. 2274–2286, 
2013.  

[7] Hajinasab, B., Davidsson, P., Persson, J.A. & Holmgren J., Towards an agent-based 
model of passenger transportation. Multi-Agent Based Simulation XVI. MABS 2015. 
Lecture Notes in Computer Science, 9568. Springer, Cham, 2016. 

[8] Iliopoulou, C. & Kepaptsoglou, K., Combining ITS and optimization in public 
transportation planning: state of the art and future research paths. European Transport 
Research Review, 11, 2019. 

[9] Gkiotsalitis, K. & Cats, O., Reliable frequency determination: Incorporating 
information on service uncertainty when setting dispatching headways. Transportation 
Research Part C: Emerging Technologies, 88, pp. 187–207, 2018. 

[10] Wang, Y., Zhang, D., Hu, L., Yang, Y. & Lee, L.H., A data-driven and optimal bus 
scheduling model with time-dependent traffic and demand. IEEE Transactions on 
Intelligent Transportation Systems, 18(9), pp. 2443–2452, 2017. 

[11] Yan, Y., Meng, Q., Wang, S. & Guo, X., Robust optimization model of schedule 
design for a fixed bus route. Transportation Research Part C: Emerging Technologies, 
25, pp. 113–121, 2012. 

[12] Ceder, A., Hassold, S. & Dano, B., Approaching even-load and even-headway transit 
timetables using different bus sizes. Public Transport, 5(3), pp. 193–217, 2013. 

[13] WRI, Bus Karo 2.0 – Case Studies from India, Online. https://wricitieshub.org/online-
publications/11-recent-trends-urban-bus-transport-india. Accessed on: 3 Jun. 2019. 

[14] EMBARQ, Data collection and analysis for public transport. Report for the World 
Resources Institute (WRI). https://wricitieshub.org/sites/default/files/Data%20 
collection%20and%20analysis%20for%20public%20transport.pdf. Accessed on: 3 
Jun. 2019. 

[15]  Dalle, O., On reproducibility and traceability of simulations. Proceedings of the 2012 
Winter Simulation Conference (WSC), pp. 1–12, 2012.  

108  Urban Transport XXV

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 186, © 2019 WIT Press




