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ABSTRACT 
This paper presents a network analysis approach to assess efficiency and resilience of public transport 
systems under cascading failures. Results of the two case studies of the RESOLUTE project (i.e., 
Florence, Italy and the Attika region, Greece) are presented. Failures can be of different types 
(accidents, infrastructure collapses, attacks, etc.) and can lead to impacts with different severities. The 
key element of cascading failures is time: as time passes by, more locations or connections of the 
network can be affected consecutively, as well as change their own condition. The proposed network 
analysis approach simulates failure propagation and evaluates the associated impacts on the transport 
system. Analogously to the analysis of road networks proposed in the literature, the network average 
efficiency and the relative size of the largest connected component have been considered for the 
analysis of the two RESOLUTE case studies. The cascade is simulated as follows. The node 
betweenness – the number of shortest paths through that node (i.e. stop/station) – is the “capacity” of 
that node. The worst-case of the cascading failure is considered. The node with the highest betweenness 
is the one triggering the cascade: it is removed and the new betweenness for every remaining node is 
computed, since it changes with the new shortest paths arrangement. All the nodes with betweenness 
higher than capacity are removed and the process continues until no more nodes can be deleted, that is 
the end of the cascade. Finally, efficiency and relative size of the largest connected component are 
computed along the cascade, to compare network at the begin and the end of the cascade. Analysis is 
repeated by considering the chance to increase node capacity by a given percentage, allowing to assess 
which is the implied improvement on resilience and on efficiency supporting a more sustainable 
allocation of financial resources. 
Keywords: network analysis, resilience, networked infrastructure, urban transport system, cascading 
failure. 

1  INTRODUCTION 
This paper stems from the activities of the European H2020 project RESOLUTE (RESilience 
management guidelines and Operationalization applied to Urban Transport Environment), 
whose general aim is the operationalization of the resilience concepts into a set of guidelines 
and related software for assessing resilience in a wide variety of conditions [1]. 
     The term resilience, from its Latin root “resilire”, means – loosely speaking – the 
capability of a system to resist, rebound or spring back in response to endogenous events (e.g. 
component failures) or exogenous (natural or man-made) attacks. Resilience means different 
things to different scientific and professional communities and is being addressed under 
different names; indeed, it came to define a set of properties of a much broader socio-
technical framework to cope with infrastructure threats and disruptions including 
preparedness, response, recovery and adaptation. Thus, different tools are needed to analyse 
and support decisions for anticipation, prevention, mitigation and restoration, depending on 
different types of disruptions [2]–[4]. 
     This paper is focused on Urban Transport Systems (UTSs) using tools from network 
science to analyse resilience, namely the levels of flexibility and capacity to ensure the 
persistence of key functions even in the presence of cascading failures.  
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     Methods of representation and attacks strategies come from several different communities 
like water distribution systems [5], transportation system [6], optimization [7], internet [8] 
and engineering design [9]. Coherently with the aim of RESOLUTE to provide a toolbox of 
wide utilization, a topological approach has been adopted in this paper, based on the 
description of a UTS, possible targeted attacks and cascading failures, using graph theory. 
This approach offers the benefit of not requiring a huge amount of data – typically the only 
information about the interconnections is needed to create the graph associated to the UTS 
infrastructure and still they can provide fundamental insights about the structural weakness 
of a transport network.  
     In this paper, we analyse the urban UTSs of Florence (Italy) and Attika region (Greece), 
the use cases of the RESOLUTE project. An attack simulation is considered, based on a 
cascading failure starting from the node with the highest betweenness value.  
     The structure of this paper is as follows: Section 2 presents the main elements of the graph 
theory and network-based centrality measures. Section 3 shows how the previous modelling 
tools can be used to model a UTS and some possible disruption events. Section 4 introduces 
the issues of modelling the cascading event and computing the ensuing dynamic network 
evolution. Section 5 describes the two-real life UTSs used in this paper. Finally, Section 6 
describes the computational results obtained for the two UTSs in the context of cascading 
failure analysis. 

2  BACKGROUND INFO 

2.1  Basic concepts in graph theory 

Let us denote a graph with 𝐺 ൌ  ሺ𝑉, 𝐸ሻ, where 𝑉 ൌ ሼ1,2, . . . , 𝑛ሽ is the set of nodes and 𝐸 is 
the set of edges. Each edge of 𝐺 is represented by a pair of nodes ሺ𝑖, 𝑗ሻ with 𝑖 ്  𝑗, and 𝑖, 𝑗 ∈
 𝑉 and 𝑖, 𝑗 ൌ  1, . . , 𝑛. If ሺ𝑖, 𝑗ሻ ∈  𝐸, 𝑖 and 𝑗 are called adjacent, or neighbours. Anyone of the 
edges having 𝑖 as one of its nodes is called incident on 𝑖. We distinguish between simple-
graph, that allows only one edge between two nodes, and multi-graph, that allow multiple 
edges between the two nodes. However, in case of a multi-graph it is not possible to identify 
an edge only by its nodes, but it is necessary to use specific attributes, that characterize and 
distinguish each edge by another edge, represented by the same pair of nodes. 
     The number of neighbour of a node 𝑖, denoted by 𝑑, is called node degree. We denote 
with δሺGሻ and ΔሺGሻ the minimum and the maximum degree of the nodes of G, respectively. 
     The adjacency relationship between the nodes of G is represented through a non-negative 
𝑛 𝑥 𝑛 matrix 𝐴, called Adjacency Matrix of G. The entry 𝐴, ൌ1 if 𝑖 and 𝑗 are adjacent nodes, 
and 0 otherwise. The adjacency matrix can be used also for multi-graph and graph with loops, 
by storing the number of edges between two vertices in the corresponding matrix element, 
and by allowing nonzero diagonal elements. 
     If all the nodes of 𝐺 are pairwise adjacent, then G is called complete. A graph 𝐺 is 
undirected if ሺ𝑖, 𝑗ሻ and ሺ𝑗, 𝑖ሻ represent the same edge, and it is simple if it is undirected, 
without self-loops (edges starting from a node and ending on the same node) and only one 
edge can exist between each pair of nodes ሺ𝑖, 𝑗ሻ, with 𝑖 ്  𝑗. Undirected graphs have the 
properties that 𝐴, ൌ 𝐴,=1 if 𝑖 ്  𝑗 ∀ 𝑖, 𝑗 ∈ 𝑉. Simple graphs have the properties that 𝐴,=0, 
∀ 𝑖 ∈ 𝑉. 
     A path from 𝑖 to 𝑗 is a sequence of distinct adjacent nodes starting from 𝑖 and ending to 𝑗. 
The shortest path between 𝑖 and 𝑗 is the one related to the shortest list of adjacent nodes from 
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𝑖 to 𝑗, and it is usually named distance 𝑑ሺ𝑖, 𝑗ሻ. The largest distance among each possible pair 
of nodes in G is named diameter. 
     A connected graph is a graph where a path exists between each pair of nodes 𝑖, 𝑗 ∈  𝑉, 
otherwise is called disconnected. The length of a path is the number of edges of that path. If 
𝑖, 𝑗 ∈  𝑉, a geodesic between i and j is a path of the shortest length that connect 𝑖 and 𝑗. The 
length of a geodesic between i and j, is called distance 𝑑,. The maximum distance 𝐷ሺ𝐺ሻ 
between any two vertices in G is called the diameter of 𝐺. 

2.2  Network-based centrality measures 

In computer science and network science, a network can be defined as a graph in which nodes 
and/or edges have attributes (e.g. names). Networks from different domains share some 
properties that can be measured by a set of indices, called centrality measures [10], which 
can take specific ranges of values in correspondence of each specific domain.  
     Historically the first and conceptually simplest measure is degree centrality based on the 
idea that important nodes are those with the largest number of links to other nodes in the 
graph. The degree centrality of a node 𝑖 is def.ined as  

𝐷ሺ𝑖ሻ ൌ 𝑑. (1)

The degree can be interpreted in terms of the immediate risk of a node for catching whatever 
is flowing through the network (such as a virus, or some information). 
     Another important centrality measures is the betweenness centrality [11] that quantifies 
the number of times a node acts as a bridge along the shortest path between two other nodes. 
The betweenness can be represented as 

𝐵ሺ𝑖ሻ ൌ
1

𝑛ሺ𝑛 െ 1ሻ


𝜎ሺ𝑖ሻ
𝜎ஷ,ஷ

, (2)

where 𝜎 is the total number of shortest paths from the node 𝑗 to node 𝑘 and 𝜎ሺ𝑖ሻ is the 

number of those paths that pass through 𝑖.  

3  MODELLING OF A UTS AND DISRUPTION EVENTS USING GRAPH THEORY 

3.1  Modelling of a UTS  

The main elements of a UTS can be easily mapped into elements of a graph, basically nodes 
and edges [12], [13]. Nodes represent locations of interest on the transportation network, such 
as towns, bus/rail stops, road intersections, etc. while edges represent connections/links 
between locations, such as roads, rail lines, bus line sections, etc. A simple graph that 
represents the situation is in Fig. 1(a)). This graph represents each station by a node, a link 
between nodes indicates that there is at least one route that services the two corresponding 
stations consecutively. No multiple links are allowed.  
     Extending this notion, one may either introduce multiple edges between nodes depending 
on the number of services between them (Fig. 1(b)). This is the way we use to describe UTS, 
that allows us to model multiple “routes” between two station (nodes) of the graph. 

 

Urban Transport XXIV  179

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 182, © 2019 WIT Press



 

Figure 1:    A piece of public transport map, in which Stations A–F are served by two lines 
(the black solid and red dashed line, respectively). Such map is represented 
using: (a) a simple-graph; and (b) multi-graph. 

3.2  Modelling of UTS’s disruption events using graph theory 

It is important to define the possible mapping of disruption events into graph modifications. 
Disruptions can be of different types (accidents, infrastructure collapses and attacks, etc.) and 
their impact can lead to impacts of different severity: injuries, fatalities. Common disruptions, 
such as a road link blocked, a rail service interruption, a strike, etc., have an impact of lower 
severity. These events will increase the travel time for passengers and lead to cancelled trips, 
generating social and/or economic costs (also considering the – possibly relevant – costs for 
restoring the service level and for repairing or rebuilding the infrastructure). 
     In the following, a relevant real-world event towards graph modifications is considered: 
the closure of a station/stop. The simulation of such closure is done by disabling the 
station/stop (removal of the corresponding node in the graph) but maintaining all the paths 
passing through it (Fig. 2). However, since it is no more possible to change transportation 
line/route at that station, overall connectivity and paths in the graph will change. Let 𝐺 ൌ൏
𝑉, 𝐸  denote the original graph associated to the UTS and 𝑘 ∈ 𝑉 the target node (i.e. the 
station/stop to close). The resulting graph after this event is 𝐺ᇱ ൌ൏ 𝑉ᇱ, 𝐸ᇱ  where: 𝑉ᇱ ൌ
𝑉\ሼ�̅�ሽ and 

𝐸ᇱ ൌ 𝐸 ∖ ሼሺ𝑢, �̅�ሻ ∨ ሺ�̅�, 𝑢ሻ, 𝑢 ∈ 𝑉ሽ ∪ ሼሺ𝑢, 𝑤ሻ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ሺ𝑢, �̅�ሻ ∈ 𝐸 ∧ ሺ�̅�, 𝑤ሻ ∈ 𝐸ሽ. (3)

 

 

Figure 2:    A piece of UTS. (a) Before; and (b) After the closure of the station C, as 
described in eqn (1). 

180  Urban Transport XXIV

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 182, © 2019 WIT Press



4  CASCADING FAILURES CAUSED FROM A STATION CLOSURE 
A cascading failure is a domino effect which originates when the failure of a given node 
triggers subsequent failures of one or several other nodes, which in turn trigger their own 
failures [7], [14]. Thus, the number of failed or stressed nodes increases, propagating 
throughout the network. Example of cascading failures in the real world is, for example, 
wide-scale power outage or the previous current global economic crisis. 
     A simple model for cascading failures on a UTS assumes that each node i is characterized 
by certain load 𝐿, that describes some quantity able to describe the importance of the node 
in the network. Example of these quantities can be the centrality measures [7]. In particular, 
a common choice is to use the value of the betweenness centrality 𝐵 (see Section 2.2).  
     Each node i is characterized by a given capacity 𝜓, which is the maximum load that can 
be handled by that node. A natural assumption is that the capacity assigned to a node is 
proportional to the load that it is expected to handle, since cost constraints prohibit 
indiscriminately increasing a node’s capacity  

𝜓 ൌ ሺ1  𝛼ሻ ∙ 𝐿ሺ0ሻ   ∀𝑖 ∈ 𝑉, (4) 

where 𝛼  0 is a tolerance parameter which quantifies the excess load that a given node can 
handle, and 𝑉 is the set of the nodes of the original graph.  
     Cascading failures are initiated when a heavily loaded node is lost for some reason, and 
the load on that node must be redistributed to other nodes in the network. The removal of the 
node simulates the loss of the node. The redistribution of the load to the other nodes in the 
network require the re-computation of the load value 𝐿ሺ𝑡  1ሻ for each node 𝑖. This re-
computation can radically alter the values of the loads on the network. Certain nodes can 
have a load smaller than their previous value, and some others can have a higher one. In 
particular, if a node 𝑖 has a new load 𝐿ሺ𝑡  1ሻ  𝜓, then this node also fails. These failures 
can, in turn, trigger more failures, thus leading to a cascade. The process iterates until no 
more nodes must be removed from the network, that means when existing an iteration 𝑡̅, for 
which 

𝐿ሺ𝑡̅  1ሻ  𝜓   ∀𝑖 ∈  𝑉௧̅, (5) 

where 𝑉௧ is the set of the nodes of the network, at iteration 𝑡̅, with 𝑉௧̅ ⊆. . . , ⊆ 𝑉.  
     Two different parameters are considered to measure the effectiveness of a network and its 
resilience at the begin and at the end of the cascade. The first is the size of the largest 
connected component (S) [12], [14] defined as 

𝑆 ൌ
𝑁ᇱ

𝑁
, (6) 

where N’ and N are, respectively, the number of nodes in the largest connected component at 
the end and at the begin of cascade. The second is the network efficiency (E) [15], defined 
as 

𝐸 ൌ
1

𝑛ሺ𝑛 െ 1ሻ


1
𝑑 

,∈,ஷ

, (7)

where 𝑑, ൌ 𝑑ሺ𝑖, 𝑗ሻ represent the shortest path between a node 𝑖 and 𝑗, named distance. 
Normalization by n(n-1) ensures that 𝐸  1, and 1 represent a complete graph.  
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     Logically, capacity could be increased with the aim to contrast cascades of failures in the 
network. Thus, the parameter α, can be used in the algorithm to increase the capacity of every 
node from its “baseline” value to twice, according to a given step. This fact allows for 
computing E and S for different configurations of the node capacities. 

5  CASE STUDIES 
Two real-world case studies have been considered in this paper, that are the test cases 
considered in RESOLUTE. 
     The first one is the public bus transportation in Florence. This city is one of the biggest 
towns in central Italy, with a population of about 400.000 inhabitants and a surface of about 
100 kmଶ. Fig. 3(a) shows the corresponding graph, consisting of 999 nodes and 3226 edges. 
To improve the visualization, we did not draw multiple edges between two nodes.  
     The second UTS considered is bigger than the first one and consists of the public 
transportation network of the Attika region. This region is located on the eastern edge of 
Central Greece and covers about 3.808 kmଶ. In addition to Athens, it contains within its area 
the cities of Piraeus, Eleusis, Megara, Laurium, and Marathon, as well as a small part of the 
Peloponnese peninsula and some islands. About 3,750,000 people live in the region, of whom 
more than 95% are inhabitants of the Athens metropolitan area.  
     The public transportation network of the Attika region includes bus, tramway and subway. 
Fig. 3(b) shows the corresponding graph, consisting of 7681 nodes and 18128 edges. Again, 
to improve the visualization, we did not draw multiple edges between two nodes.  
     These two UTS are modelled through a directed multi-graph, because more than one 
route/line may connect two stations. 
     Both the network result connected, and therefore their value of 𝑆 is 1. The value of 𝐸 for 
the Florence’s UTS is whereas the value of E is 0.044, whereas for the Attika’s UTS is 0.023. 

6  EXPERIMENTAL RESULTS: SIMULATION OF CASCADING FAILURE 
To simulate a possible capacity cascade for the two networks, we simulate the closure of the 
station with the highest value of betweenness. So, we remove this node according to the 
mechanism described in Section 3.2. The re-computation of the betweenness for each node 
 

 

Figure 3:    (a) The graph associated to the PTN of Florence. The black points correspond to 
the node(stops) of the network, whereas the red line represent the edges (links); 
(b) The graph associated to the PTN of the Attika region. 

182  Urban Transport XXIV

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 182, © 2019 WIT Press



permits to identify the new failing nodes in the cascade (i.e. nodes with the capacity lower 
than the current load). These nodes are removed, and the process iterated until no more nodes 
fail, as described in Section 4.  
     Fig. 4 summarizes the value of E and S computed during the cascade, setting the capacity 
of the nodes as described in eqn (4), with α ൌ 0. The black and red curves represent the 
Florence’s UTS, and the Attika’s UTS, respectively.  
     In the first case (Florence’s UTS) we note a decrease of the value of 𝑆 and 𝐸, that pass 
from 1 no 0.35, and from 0.044 to 0.007, respectively, and the length of the cascade is 17. 
Also, in the second case (Attika’s UTS) we note a decrease of the value of 𝑆 and 𝐸, that pass 
from 1 to 0.32 and from 0.023 to 0.002, respectively, and the length of the cascade is 37.  
     Fig. 5(a) and (b) show the value of S and E, respectively, obtained at the end of the cascate, 
for different values of α, between 0 and 1, for the Florence’s UTS. The baseline values (α ൌ
0) of 𝑆 and 𝐸 are 0.23 and 0.0046, respectively. These values remain substantially constant 
between α ൌ 0 to α ൌ 0.4. Then we have a significant increase of their values passing from 
α ൌ 0.4 to α ൌ 0.5. Finally, they became stable when α is 0.6 or higher. In this range of α-
values, we can observe that the values of E and S result substantially unaltered at the end of 
the cascade. In conclusion, the increase of 𝐸 and 𝑆 result correlated each other, and with 
respect to the increase of α for the Florence UTS: a specific value of α exists after that the 
damages of the cascading failure (decrease of E and S) result to be completely mitigated. 
     Quite different results have been obtained for the UTS of the Attika region (Fig. 6). A 
general increase of the value of E and S can be observed with α increasing. The baseline 
values of S and E are 0.34 and 0.0021, respectively. For α  0 the value of E and S, obtained 
at the end of the cascade, result greater than their baseline values. Both these quantities 
increase significantly when the capacity of each node pass from α ൌ 0.3 to α ൌ 0.4. 
However, increasing the value of α does not imply always an increase of E and S. More in 
details, we can observe a significant decrease of the value of S and E between α ൌ 0.6 to α ൌ
0.7, and there is any value of α ∈ ሾ0,1ሿ, after that the damages of the cascading failure 
(decrease of E and S) result to be completely mitigated. 
     Therefore, there is in any case a substantial difference between the two UTSs: for the 
Florence’s UTS it is possible almost completely mitigate the damage of the cascade 
increasing the capacity of the nodes of about 50% (α ൌ 0.5), whereas for the Attika’s it is 
 

 

Figure 4:    Values of S (a), E (b), during the cascade, with 𝛼 ൌ 0. The black curves refer to 
the Florence’s UTS. The black curves refer to the Attika’s UTS. 
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Figure 5:    Value of S (a) and E (b) at the end of the cascade for different values of alpha, 
for the Florence’s UTS. 

 

Figure 6:    Value of S (a) and E (b) at the end of the cascade for different values of alpha, 
for the Attika’s UTS. 

only possible to quite mitigate the damage of about 40% (α ൌ 0.4ሻ. For this last UTS an 
increase of the capacity of the nodes does not imply lower damages of the network caused 
by the cascading failure, necessarily 

a) b) 

a) b) 
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7  CONCLUSIONS 
With respect to network analysis, the experimental results obtained on the two public 
transportation networks of the RESOLUTE project have demonstrated that a set of analytical 
functionalities can be used to identify critical components (nodes as well as edges) and 
evaluate, dynamically, the new setting induced by a disruption event as well as the simulation 
of cascading effects. 
     The capability to interact with and analyse graphs, dynamically and efficiently, is a core 
contribution to support decision-making activities in the UTS resilience management.  
     Finally, a computational framework of modelling and analysing cascading failures has 
been developed and preliminarily validated on the two UTS. To avoid the inherent 
computational intractability of exact computation of graph-based resilience measures two 
heuristic resilience metrics have been validated. 
     The main output is a series of two measures, namely the average network efficiency (E) 
and the relative size of the largest connected component (S), with respect to the capacity of 
nodes (i.e. stops/stations) and when the triggering failure is associated to the removal of the 
node with the highest betweenness.  
     The re-computation of the load for each node (i.e. the betweenness) permits to identify 
the new failing nodes in the cascade (i.e. nodes with the capacity lower than the current load). 
These nodes are removed, and the process iterated until no more nodes fail. The functionality 
has been evaluated following the aforementioned schema and proved to be useful in 
supporting more effective planning strategies. More specifically, this analysis permits to 
better understand how the UTS behaves under a cascading effect situation and may also 
support in planning capacity of nodes (stop/stations) to better respond to the cascade. 
However, it may also be used to evaluate cascading effects in “real” situations, where the 
triggering event can be the removal of one – or even more – node different from the one 
having highest betweenness and where the load is computed according to some weights on 
the edges of the graph, for instance, the number of lines, vehicles or passengers passing 
through them.  

ACKNOWLEDGEMENTS 
This work has been supported by the RESOLUTE project (www.RESOLUTE-eu.org) and 
has been funded within the European Commission’s H2020 Programme under contract 
number 653460. This paper expresses the opinions of the authors and not necessarily those 
of the European Commission. The European Commission is not liable for any use that may 
be made of the information contained in this paper 

REFERENCES 
[1] Bellini, E. et al., Towards resilience operationalization in urban transport system: The 

RESOLUTE project approach. 26th Eur Saf Reliab Conf ESREL 2016, p. 345 2017. 
[2] Ferreira, P. & Simoes, A., Conceptual Framework, Resolute-Eu.Org (2016). 
[3] Gaitanidou, E. & Tsami, M., Ermg Adaptation To Uts, Resolute-Eu.Org (2016). 
[4] Archetti, F., Candelieri, A. Giordani I. & Arosio, G., Application Framework, 

Resolute-Eu.Org (2017). 
[5] Soldi, D., Candelieri, A. & Archetti, F., Resilience and vulnerability in urban water 

distribution networks through network theory and hydraulic simulation. Procedia 
Engineering, 119, pp. 1259–1268, 2015. DOI: 10.1016/j.proeng.2015.08.990. 

[6] Berdica, K., An introduction to road vulnerability: What has been done, is done and 
should be done. Transport Policy, 9(2), pp. 117–127, 2002. DOI: 10.1016/s0967-
070x(02)00011-2. 

Urban Transport XXIV  185

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 182, © 2019 WIT Press



[7] Ash, J., & Newth, D., Optimizing complex networks for resilience against cascading 
failure. Physica A: Statistical Mechanics and its Applications, 380, pp. 673–683, 2007. 
DOI: 10.1016/j.physa.2006.12.058. 

[8] Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S., Resilience of the Internet to 
random breakdowns. Physical Review Letters, 85(21), pp. 4626–4628, 2000. DOI: 
10.1103/physrevlett.85.4626. 

[9] Agarwal, J., Blockley, D. & Woodman, N., Vulnerability of structural systems. 
Structural Safety, 25(3), pp. 263–286, 2003. DOI: 10.1016/s0167-4730(02)00068-1. 

[10] Albert, R. & Barabási, A.-L., Statistical mechanics of complex networks. Reviews Of 
Modern Physics, 74, pp. 47–97, 2002. DOI: 10.1103/RevModPhys.74.47. 

[11] Freeman, L.C., A set of measures of centrality based on betweenness. Sociometry, 
40(1), pp. 35–41, 1997. DOI: 10.2307/3033543. 

[12] Berche, B., Von Ferber, C., Holovatch, T. & Holovatch, Y., Public transport networks 
under random failure and directed attack. Dynamic Socio-Economic System, 2, pp. 42–
54, 2010. 

[13] Von Ferber, C., Holovatch, T., Holovatch, Y. & Palchykov, V., Public transport 
networks: Empirical analysis and modeling. European Physical Journal B, 68(2), pp. 
261–275, 2009. 

[14] Zou, Z., Xiao, Y. & Gao, J., Robustness analysis of urban transit network based on 
complex networks theory. Kybernetes, 42(3), pp. 383–399, 2013. DOI: 
10.1108/03684921311323644. 

[15] Latora, V. & Marchiori, M., A measure of centrality based on network efficiency. New 
Journal of Physics, 9(6), p. 188, 2007. DOI: 10.1088/1367-2630/9/6/188. 

186  Urban Transport XXIV

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 182, © 2019 WIT Press




