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Abstract 

Routing on urban road networks for emergency cars is an application of 
Dijkstra’s algorithm with relevance in everyday-life. Since distances in urban 
transport are rather short it is computationally possible to calculate many paths 
and compare them afterwards. This paper uses Dijkstra’s k-shortest path 
algorithm in order to calculate shortest and fastest paths and finally finding an 
ordering of alternatives for multi-criteria routing. The solutions are displayed in 
criterion space and the Pareto front is identified. Routes are ranked according to 
the normalized weighted-sum method. Obviously, the more alternatives there are 
the more possibilities for the emergency car to circumscribe traffic jams. 
Therefore ‘close alternative routes’ are taken into accounts that share a certain 
fraction of nodes with one Pareto optimal route. To those bundles of routes a 
ranking is assigned that may serve as recommended action for the driver. 
Keywords: routing, Dijkstra’s algorithm, weighted-sum method. 

1 Introduction 

In contrast to ‘dynamic routing’ of modern navigation systems where the current 
position of the traveller during his journey is continuously fed back to calculate a 
current best route, in ‘static routing’ a route between origin and destination (O/D 
relation) on a transportation network is calculated once, typically before the trip.  
     Usually those routings are performed for private cars but also routing 
strategies for emergency cars exist (Woelki et al. [1]). Although the results of the 
present paper are easily generalizable to private transport, here the focus is on 
routing for emergency cars. One example of a platform providing static routing 
is Google Maps (Google [2]), a very famous route planning software. The cores 
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of all those systems are so-called shortest path algorithms (Delling et al. [3]) that 
have a long tradition since Dijkstra’s initial work (Dijkstra [4]) in 1959. His 
famous paper shows how the optimal path for a given O/D relation can be found 
with regard to a certain weight function (typically the length) associated with the 
edges of the graph. Google Maps provides for a given O/D relation up to three 
different ‘reasonable’ routings which are ‘substantially different’ (Abraham 
[5]).   However, which route is the best in practice cannot be stated generally 
since it depends on different factors, such as length of the route, travel time, cost, 
personal preferences of street types, etc. The theory of optimizing such a variety 
of quantities is known as multi-objective optimization (Martins [6)].  
     In the context of optimization, so-called Pareto-optima are of special 
importance. If one considers the case of two criteria, those are routes for which 
one cannot find a second route in which the one quantity is smaller and the 
second quantity is the same or smaller. Each Pareto-optimal route may dominate 
other routes. This is the case for all routes in which both quantities are not 
smaller than the two quantities in the corresponding Pareto optimum. For recent 
investigations on multi-criteria Pareto search, see Müller-Hannemann and 
Schnee [7]. The authors of Climaco and Martins [8] attacked the problem in the 
following way: In order to find the optimal routes with regard to two quantities 
that shall be minimised, find the k-shortest paths for the first quantity until the 
route appears in which the second quantity takes its minimal value. Then, from 
those k paths, identify the Pareto-optimal routes. This is mainly the technique 
applied here. Surely, in a bi-criteria minimization problem, a Pareto optimum is 
a priori better than all the routes that it dominates. However it might be that a 
dominated route appears to be better than another Pareto optimal route. 
Therefore the following paper considers the whole set of routes and tries to find 
a performance order (ranking) of those routes. 

2 Problem definition and overview 

The problem addressed in this paper is the following: An emergency car should 
take an optimal route from its fire station to a destination. In Germany, 
emergency cars have to reach their destination within a legal time of 8 minutes. 
Therefore, in the following one special route is considered in which the travel 
time is close to this limit of 480 seconds. In calculating the travel times on each 
edge (street section) it is assumed that the velocity equals the speed limit. 
Therefore, in reality the travel times for the various routes may differ from those 
of the present paper. The driver should try to minimize the risk of unforeseen 
events that prevent him from reaching the destination within the legal time. The 
idea is that the longer the path is, the higher the probability for unforeseen events 
and the higher becomes the risk. Hence, it should be tried to minimize path 
length and travel time at the same time. Section 3 presents simulation results for 
minimization of either travel time or path length. Section 4 considers bi-criteria 
optimization methods that give an optimal route with regard to both, travel time 
and path length, and presents a ranking of alternatives. So, if there is some 
reason for the fireman not the take the optimal route, he can choose from a 
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selection of alternative routes. The worst that can happen is that the emergency 
car is blocked for example in traffic jam and there is no option for a rescue alley. 
Therefore, routes are desirable that have close alternative routes that share a 
number of nodes with the original route, so that obstacles can be surrounded 
spontaneously. Close alternatives should itself be efficient with regard to travel 
time and path length which gives rise to a ranking of whole bundles of routes, 
see Section 5. 

3 Routing results 

Figure 1 shows the scenario considered in this paper: A routing from 
Feuerwehrstraße 1 in Brunswick, the location of the fire station from where the 
emergency cars start, to a destination in Weststadt. Displayed are only the Pareto 
optimal routes. Red: ‘shortest’ (Pareto #1), yellow points: Pareto #2. Orange: 
‘fastest’ (Pareto #4), Blue and cyan points correspond to a Pareto optimum 
(Pareto #3) appearing in both sets. The screenshot is taken from Google Earth 
[9]. The paths are obtained from k-shortest path routing and k-fastest path 
routing, as is presented in the following.  

3.1 The k-shortest path and k-fastest path routing 

The set of paths is composed of the 1000 shortest and the 1000 fastest paths 
(k=1000 in both cases). Both routings complement well one another since it turns 
out, that there is only a small overlap of 110 routes among the best 1000 paths in 
each variant. 
 
 

 

Figure 1: The four different Pareto optimal routes. 
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     Figure 2 shows the 1890 solutions in criterion space.  The four Pareto optima 
are visualized as squares in the colour according to Figure 1. Further the 
dominated paths are depicted with colouring according to their weight. The 
fastest route (orange square) has coordinates (304s, 5019m). The shortest path 
corresponds to (432s, 4497m). This Pareto optimum is depicted as the red 
square. The points representing the 1000 fastest paths are limited to the right by a 
travel time of around 370 seconds, corresponding to the slowest of those paths 
with (368s, 5920m). Accordingly, the points from shortest path routing are 
limited from above by around 4900 meters, corresponding to the furthest of the 
1000 shortest paths with coordinates (460s, 4918m). Therefore, there is a 
rectangular region that contains no solutions. The Pareto optimum at (332s, 
4606m), depicted as a blue square is covered by both, fastest and shortest path 
routing. It is at the same time the 48th fastest route and the 12th shortest route.  
 

 

Figure 2: Route results in criterion space. 

4 Bi-criteria optimization 

Having a set of routes at hand, along with their travel times and path lengths, one 
can decide which one is optimal. Further, a natural ranking from best to worst is 
obtained. As initial set of paths, the routes among the k-shortest and k-fastest 
paths are considered. A classic example of multi-criteria optimization is the 
normalized weighted sum method (Marler and Arora [10]) which is applied to 
the routing problem in the following. With each of the routes r one associates a 
total weight 
 

ܹ ൌ 0.5 ⋅
ܮ െ ܮ
௫ܮ െ ܮ

 0.5 ⋅ ܶ െ ܶ

ܶ௫ െ ܶ
	. 

 
 

Here, Lmin is the length of the shortest path, Lmax the length of the k-shortest path 
(in this paper, this is the 1000th shortest path) and Tmin is the travel time of the 
fastest path, while Tmax is the travel time of the k-fastest path.  

594  Urban Transport XXI

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 146, © 2015 WIT Press



     This choice takes path length and travel time equally into account. The values 
of Wr (for r=1, 2, …, k) give a natural ranking of alternatives with W1 
representing the optimal path.  
     In Figure 2 the four Pareto optima are visualized as squares in the colour 
according to Figure 1. Further, the dominated paths are depicted with colouring 
according to their weight. 
     Table 1 shows the rankings of the four Pareto optima. The first column labels 
the routes according to their length. One sees that the weighted sum method 
favours the fastest path (304s, 5019m. The other two Pareto optima are ranked 
304th and 755th and thus are included in the 16% to 40% of favoured paths. 

Table 1:  Results for the four Pareto optima. 
 

Pareto # Travel time/s Path length/m Ranking 
1 432 4497 755 
2 409 4533 304 
3 332 4606 2 
4 304 5019 1 

 
 

5 Classification of routes 

In this section, the four Pareto routes are considered as the basic route options 
and all the other routes will be brought in relation to those Pareto routes. 
Obviously one could also choose other routes that serve as strategic alternatives: 
Completely disjoint routes for instance that only agree in start and target nodes 
and that correspond to different strategic options as motorway, Main Street, etc. 
However, for simplicity and for the sake of generality it is stuck to the Pareto 
optima here. 
     The concept used to identify a bundle of close alternatives is the following: A 
route ‘belongs to’ the set of close alternatives to Pareto route #n, if the 
percentage of shared nodes with Pareto route #n is higher than the percentages of 
shared nodes with the other Pareto routes. 
     The four diagrams of Figure 3 show for each of the four Pareto optima all 
routes that belong to the respective Pareto route. Top left: 406 routes belonging 
to Pareto route #1 (21% of all routes), top right: 367 routes belonging to Pareto 
route #2 (19%), bottom left: 245 routes belonging to Pareto route #3 (13%), 
bottom right: 872 routes belonging to Pareto route #4 (46%). One sees that the 
Pareto routes #1 to #3 are located in the same region of the criterion space and 
that the fastest route (Pareto route #4) is located in a different region. This is a 
consequence of the fact, that route #4 is maximally disjointed from the others, 
especially from route #1 (see Table 2).  
     For the Pareto optima #3 and #4 Figure 3 shows that they dominate all routes 
that belong to them (and those paths have both larger travel time and larger path 
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length which is typically associated with small detours from the main route). 
However for Pareto optima #1 and #2 (which agree by around 80%, see Table 2) 
there are also paths that they do not dominate (those are the paths ‘to the left’ of 
Pareto #1 and Pareto #2). In fact those routes are dominated by Pareto #3. They 
obviously have larger path lengths but smaller travel times.  
 

Table 2:  Percentage of the number of common nodes between two Pareto 
routes. 

Pareto # 1 2 3 4 
1 100% 86% 47% 26% 
2 82% 100% 51% 24% 
3 41% 47% 100% 49% 
4 22% 22% 49% 100% 

 
 

 

 

Figure 3: Routes that belong to one of the four Pareto routes. 

     So, an explanation would be that those routes make a detour over the faster 
Pareto route #3 (the part of this route that is not covered by Pareto routes #1 and 
#2, see Figure 1) but share more nodes with Pareto route #1 or #2. 
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     In order to decide for given number of alternatives ap and average weight wp 
which bundle of routes belonging to Pareto optimum p is better than another, the 
normalized weighted sum method is applied again. The formula for weights that 
naturally define an increasing ranking is rewritten as 
 

ܩ ൌ 0.5 ⋅
െܽ െ 872
െ245  872

 0.5 ⋅
ݓ െ 0.7052

0.7557 െ 0.7052
	. 

 
Note that maximizing the number of close alternatives is equivalent to 
minimizing its negative. Results are shown in Table 3. 

Table 3:  Comparison of bundles of close alternatives and generalized ranking. 

Pareto # #close alternatives av. weight gen. weight gen. ranking 
1 406 0.7557 0.872 4 
2 367 0.7328 0.676 3 
3 245 0.7052 0.5 2 
4 872 0.7160 0.108 1 

 
 
     One sees that for the present O/D relation the ranking is in line with the 
ranking given in Table 1. The fastest path Pareto #4 (the orange route in Figure 
1) is favoured, since it has the smallest generalized weight G4. Second favourite 
is Pareto #3 (the blue route in Figure 1) and so on. 

6 Summary and outlook 

A strategy for static routing of emergency cars on an urban road network was 
presented. It was argued that it is desirable to minimize both, travel time and 
path length simultaneously. The argument for minimizing path length as well is 
that larger paths have higher probability for unforeseen events especially traffic 
jams or other obstacles for the emergency car. To this aim, many different routes 
have been obtained to which the normalized weighted sum method was applied 
and a ranking of routes with regard to their desirability has been obtained. In 
order for the emergency car to be able to circumscribe obstacles it has been 
pointed out that desirable routes have many close alternative routes. Since those 
routes each have a weight that shall be minimized, one arrives at another bi-
criteria optimization problem. This has been solved once again with the 
normalized weighted sum method. The final result of this paper is a ranking of 
bundles of routes according to their desirability considering their average weight 
with respect to travel time and path length and the amount of alternatives. This 
ranking serves as a recommended action for the driver. 
     While this paper made some technical simplifications, future work could 
generalize upon the present work. For example, one could exclude loops from 
the k-shortest path routing to discard absurd routes. Further it was assumed that 
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emergency cars drive always exactly at the speed limit, here it would be 
interesting to take realistic velocities into account.  
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     For future research it would be interesting to generalize the results of the 
present paper to the case of multiple objectives. In Woelki et al. [1] also 
the number of lanes was considered. This could be included in the normalized 
weighted sum method as well. Furthermore in [1] a number of criteria are 
mentioned that have relevance to emergency routing, for example if there are 
guarded level crossings. Obviously all those routes in which the emergency car 
has to pass a guarded railway crossing have to be deleted from the set of routes. 




