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Abstract

In this paper we propose the concept of entropy of the timetable to evaluate the
mass transit system. This concept simplifies the problem of the synchronisation
of the timetable. Additionally, we show how to use the concept of the entropy for
evaluation. We first describe the importance of the synchronised periodic railway
timetable, and also the conditions for the synchronisation of the timetable. We next
present a difficulty encountered when we synchronise the timetable completely
everywhere in the transit network. This difficulty is attributed to the restriction of
train headway in the synchronisation of the timetable. Then we must simplify the
problem of synchronisation of the timetable by removing some constraints. Lastly,
we indicate that using the concept of the entropy is useful for solving the complex
problem.

Keywords: entropy, synchronisation of timetable, periodic timetable, evaluate mass
transit system.

1 Introduction

In mass transit systems such as railway networks, there are a large amount of
passengers, and OD-pair passengers travelling in a huge number of combinations.
Even in the demand of the same OD-pair, it is common that there are various
times when the passengers wish to start and end their travelling. In order to strictly
manage all such demands for the travelling, a huge number of trains need to
operate. However the capacity of the tracks is limited, and the number of trains
required exceeds this capacity. In addition, the number of passengers on each
train often becomes too small to operate a train efficiently. Vuchic [1] analysed
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the topology of the railway network in the mega cities from the point of view of
solving the capacity shortage of the infrastructure.

Actually, many mass transit systems are managed by a small number of service
routes. The number of service routes is small when compared with the number of
varieties for demand. By limiting the number of service routes, the passengers of
various OD-pairs have to board trains together. Moreover, most of the passengers
must select a scheduled train which is permitted by the passenger for travelling.
That is, the passengers are limited in their behaviour for travelling by the timetable
of trains.

However, the operator can manage the huge demand for travelling by limiting
the number of service routes and trains, in the case that the capacity of the trains
is large enough and the schedule of trains is appropriate. Furthermore, decreasing
the number of trains leads to avoiding excess capacity on the tracks. It is ideal
that many passengers can travel at the time they desire and have fewer detours
caused by the provided transit service. Whereas, by limiting the service route,
many passengers will have to change trains at some junctions to arrive at their
destination. Therefore, it is important to decrease the waiting time at junctions as
much as possible for passengers. This requirement causes an additional constraint
for the timetabling problem. Adding this “connection constraint” causes the
solution for timetabling problems to become more difficult to find. If a disruption
occurs in the railway network with a completely synchronised timetable, the
propagation of disruption becomes a serious problem [2].

In this paper, we consider the synchronisation of the timetable. First we
will show some examples of the synchronisation of the timetable and the tight
constraints for synchronisation. Secondly we will consider the case that the
timetable is synchronised with little incompletion. Then we propose to use
the concept of the entropy of the information theory to evaluate the level of
synchronisation.

2 Synchronisation of timetable
In this section we describe the synchronisation of the timetable.
2.1 Definition
The synchronised timetable is the state in which the scheduled transfer time to the
succeeding trains is not to long.
It is desirable to realise the synchronisation of the timetable at most of the
junctions.
2.2 Importance of the synchronised timetable
When the timetable of the transit network is synchronised, we can reduce the

stagnant time of the passengers who transfer trains at junctions. Reducing the
stagnant time at the junctions means reducing the unnecessary time for the
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passengers. Moreover the travelling time of the passengers is reduced. This is
desirable for the passengers, and it is a great pleasure, not only the passengers
but also for the operators of the transit systems. The reason for this is because the
operators can manage the demands of passengers well, while using less rolling
stock and less crew.

2.3 Example at a junction

We introduce the example of the timetable at Bern in Switzerland and we show
that the timetable of “Inter City” and “Inter Ragio” at Bern is synchronised.

2.3.1 Synchronisation at Bern

The departure and arrival times at Bern station is as shown in Figure 1. The arrows
towards the circumference from the interior of the circle show the arrival times of
the trains. The arrows towards from the circumference of the circle to the outside
show the departure times of the trains. The arrows with dashed tails describe the
trains from/to east area (e.g. Ziirich, Olten and Luzern). The arrows with solid
tails describe the trains from/to south and west area (e.g. Spiez and Lausanne). All
passenger transfer trains are described with different types of arrows.

We recognise that there are two groups of arrivals and departures. One group
of arrows touches the circumference near the top the circle. The other one touches
the circumference near the bottom the circle.

Within each group, the transfer time for trains within the same group is less
than 20 minutes. Furthermore, the transfer time between the two groups is never
more than 4 minutes. This shows that the passengers can transfer trains in the same
group of this figure. Thus we can say that the timetable at Bern is synchronised.

2.4 A case of the cyclic route

We consider the synchronisation of the timetable of the cyclic route. And we
assume that the period of the integrated timetable is h and the necessary time
travelling round this circuit is r.

If equation (1) is satisfied, we can say the timetable is synchronised everywhere
in the cyclic route.

JkeNT.h>5>0st.r+6=Fk-h. (1)

N describes the set of nonnegative integers. In addition, we can say that the
timetable is synchronised enough when the transfer time at each junction is similar
to or less than d.

2.4.1 Example

Take the circuit of the railway network that consists, for example, of the links:
Bern — Visp — Lausanne — Bern. When travelling on this circuit, we must transfer
at Bern, Visp and Lausanne when we pass.
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Figure 1: Configuration of connection at Bern.

There exists the trains operated by the timetable as in Table 1 every hour. The
period of the clockwise route is i, = 60 and the necessary time is 7. = 229. The
period of the anticlockwise route is h,. = 60 and the necessary time is r,. = 230
similarly. The maximum transfer time on the clockwise route is 11 minutes, and
on the anticlockwise route it is 10 minutes.

Table 1: Transfer timetable of circuit.

Clockwise
Bern — Visp — Lausanne — Bern
0:07 1:02/1:06 2:40/2:50 3:56/(0:07)

Anti-clockwise

Bern — Lausanne — Visp — Bern
0:04 1:10/1:20 2:53/2:57 3:54/(0:04)

Then § and k satisfy the conditional expression (1) are as in Table 2. And the
transfer time in each direction is equal to §. Thus we can say that the timetable of
this example is synchronised.
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Table 2: Values: ¢ and k.

Direction 6 k

Clockwise 11 4
Anti-clockwise | 10 4

Figure 2: Example of a network.

2.5 A case of multiple merging

We consider the synchronisation of timetable when merging a route with another
continuously.

2.5.1 Topology of network
We consider the configuration of railway network as in Figure 2. Two routes which
are R;_1 and R;fl, come into S;. And one route which is R;, goes out from .S;.

2.5.2 Timetable
We assume the timetable is as follows.
e Trains running on R; are operated by the periodic timetable T;.
e Headway of R; is h;.
e Arrival time to .S; of a train running on R;_1 iS a;_1.
e Departure time from S; of a train running on R; is d;.
Let 7; be the set of d;. Let cfz be the departure time of the train connecting from
a;_1 at S;, L.e.

d; = arg mein»(di —a;-1), 2)
;= in(d; — a
d'; = arg min (d;i —a;_4)- 3)

Each predecessor train connects with a distinct successor train when the following
conditions are satisfied,
0<di—ai-1 < hi, 4)

0<d;—ai1< hi_,. o)
From the definition of cfz and d’ i» the following conditions are satisfied,

cZ,;—hi—a,;_l <O$c§i—ai_1 <]’Li, (6)
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di—hi —al_; <0=di —a,_; < hs. 7)

Furthermore the following conditions of headway are satisfied:
hi < hi1, (8)
hi < hi_y. 9

Then we consider the headway as a sequence indexed by ¢, h; as the monotonically
decreasing sequence.

2.5.3 Conclusion of the case of multiple merging

It is necessary that the headway of the later successor is small enough to
synchronise with the predecessor. In other words, when the synchronisations are
iterated many times, the headway of the later successor becomes too small.

3 Entropy of timetable

It often happens that the perfect synchronisation of the timetable is difficult. It is
especially difficult in the case when some routes arrive and depart by a different
headway to each other at the junction.

We suppose the useful concept which is the entropy of the timetable. The
concept of the entropy of the information theory is useful to evaluate the
convenience of the timetable of transport networks [3]. Using the concept of the
entropy, we can measure the level of synchronisation of the timetable.

3.1 Definition

3.1.1 Shannon’s entropy of the information theory
Let X be a discrete random variable on a finite set X = {z1,...,2,}, with
probability distribution function p(z) := Pr(X = z). The entropy H(X) of
X is defined as

H(X) == p(x)-logp(x). (10)

zeX

The convention 0log 0 = 0 is adopted in the definition. The logarithm is usually
taken to the base 2, in which case the entropy is measured in “bits”.

3.1.2 Probability distribution function of the timetable
Let T = {T7r1,Tra,...,Tr,} be the set of trains for travelling between the
specific origin and the specific destination. Let b; be the number of passengers
boarding on the train T'r;.

We define the probability distribution function p; as

b;
Pi==——"
ZTTJ' eT b]

If the passengers have to transfer the trains at the intermediate stations, T'r; is a
“train set” [3].

Y
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R2

1 /\ Ri
)

R2

Figure 3: Example of the junction.

3.2 Properties of the entropy

As the passengers are equally distributed on each train, the entropy increases.

3.3 Examples

We consider the junction of the crossing two routes as shown in Figure 3.

3.3.1 Timetable
Each route is operated by the periodic timetable at regular intervals.

We denote f; as the number of trains per hour of the route R;. We consider the
timetable of each frequency at J, that is shown in Table 3. This timetable expresses
the arrival and departure of the jth train at the column (5) in the cases of some
frequencies: 12, 10, 6, 5, 4, 3 and 2.

3.3.2 Passengers
We consider some cases in which we calculate the entropies. All passengers travel
to J by the train running on the route R; and transfer to the train on the route Ro
at J.
We assume the behaviour of the passengers as follows:
(1) Each passenger takes the train on the route R; by which the passenger is
able to ensure the transfer time at .J is 1 to 6 minutes.
(2) All passengers come to the origin station according to a uniform distribution.
(3) The number of passengers is large enough.
The above condition (1) says that “the limit of transfer time” is 6 minutes.

3.3.3 In the case of high frequency

We consider the case of f; < fs. If the headway of the route Ry exceeds the limit
of transfer time, all trains on the route R connect to the trains of Ry in 6 minutes.
Hence the entropy is

H =log f1. (12)
Thus, we consider the case of fo < 10 in the following.

WIT Transactions on The Built Environment, Vol 146, © 2015 WIT Press
www.witpress.com, ISSN 1743-3509 (on-line)



516 Urban Transport XXI

Table 3: Timetable of J.

fi Hm @ 3 @ G ;G D B O qo Jan da2
fi=12 arr. |59 04 09 14 19 24 29 34 39 44 49 54
dep. | 00 05 10 15 20 25 30 35 40 45 50 55
£ =10 arr. |59 05 11 17 23 29 35 41 47 53 - -
dep. | 00 06 12 18 24 30 36 42 48 54 - -
fi=6 arr. |59 09 19 29 39 49 - - - - - -
dep. [ 00 10 20 30 40 50 - - - - - -
fi=5 arr. | 59 11 23 35 47 - - - - - - -
dep. | 00 12 24 36 48 - - - - - - -
fi=d arr. | 59 14 29 44 - - - - - - - -
dep. | 00 15 30 45 - - - - - - - -
fi=3 arr. | 59 19 39 - - - - - - - - -
dep. | 00 20 40 - - - - - - - - -
fi=2 arr. | 59 29 - - - - - - - - - -
dep. | 00 30 - - - - - - - - - -

3.3.4 The case: numbers of frequencies are relatively prime
We consider the pairs of relatively prime numbers that consist of the combination
of 3, 4 and 5. The probabilities and the entropies of the example are shown in
Table 4.

We describe the combined row of Table 4. As an example, “k — [” of the first
column means the transfer from R;, whose frequency is k per hour, to Ry, whose

frequency is [ per hour. “Trgi)” in the row of “Predecessor” denotes the ith train of

[T3R2]

Ry.“T rgj ) in the row of “Successor” denotes the jth train of Rs. in the row

of “Successor” denotes that the Trgz) above has no successor train of Ry satisfies
the passengers behaviour. The values in the row of p; denote the probabilities of
the train set TTY) and Tréj ). The value of the column “H” denotes the entropy of
the timetable in the case of the transfer k — .
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Table 4: Entropies (relatively prime).

fi = fo H
Predecessor Trg1> Trg1> Tré1> Trfl1> Trél)
5—4 ) ) 0.722
Successor | — Tr{? - 77 - - -
Di 2 L 0 0 0
Predecessor Tr§1> Tré1> Tré1> Trf) Trél)
5—+3 ) ) 0.971
Successor | — Tr{? - - - Tr{?
pi 2 0 0 3 0
Predecessor Trg1> Trg1> Tré1> Trfl1>
45 ) ) 0.811
Successor | — Tr{? - - - Tr{?
1 3
Predecessor Trg1> Trg1> Tré1> Trfl1>
43 ) ) 0.811
Successor | — Tr{? - 77 - -
Di 3 1 0 0
Predecessor Trg1> Trg1> Tré1>
3—+5 . ) 0.918
Successor | — 77?77 -
2 1
Di 3 3 0
Predecessor Trg1> Trg1> Tré1>
34 ) ) 0.918
Successor | — Tr{? - - Tr{®
1 2

3.3.5 The case: numbers of frequencies are not relatively prime.
We consider the case that the numbers of frequencies per hour are not relatively
prime. Let f. be the greatest common divisor of f; and fo. The departure time of
every (fi/ fo)th train on the route R; is the same as the departure time of a train on
the other route. Therefore the probability of every (f;/f.)th train is not zero.

We consider the pairs of not relatively prime numbers that consist of the
combination of 4, 6 and 10. The probabilities and the entropies of the example
is shown in Table 5 and has the same notation as Table 4.
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Table 5: Entropies (not relatively prime).

fi—= fo H

Predecessor Trg1> Trg1> Tré1> Trfl1> Trél)

Successor | — Tr{? - TP - - Tr{? -
10—+ 6 ) B ) 1.995

Predecessor Trél) Tr(71) Trél) Trél) TT%)

Successor | — T — 7Y - - T -
) 2 1 2
Dpi 10 10 0 10 0

Predecessor Tr§1> Tré1> Tré1> Trf) Trél)

Successor | — Tr{? - - T - -
10—+ 4 5 3 1.971

Predecessor Tré1> Tr(71> Tré” Tré” Tr%)

Successor | — Tr{? - T i i
3 2
pi 10 0 o 0 0

Predecessor Trg1> Trg1> Tré1> Trfl1> Trél)

Successor | — Tr{? - TP - - 1r? T
6—4 ) B ) ) 1.918
pi| % 8 0 & G

Predecessor Tré1>

Successor -

Di 0

Predecessor Trg1> Trg1> Tré1> Tnil)

4 -6 2 2 2 2 2.000
Successor | — T'rg N T'r‘i(,, RN T'r‘fk RN T'r‘((5 )

ST
ST
ST
ST

Di

3.4 Conclusion of the entropy

We considered the case of the travelling path with transfers at intermediate
junctions. Then we obtained the following result. The entropy of the timetable
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is inversely proportional to the amount of transfer time which the passengers need
to travel by the timetable. As a consequence, the timetable in which the entropy is
large, is synchronised well.

4 Conclusions

In this paper we describe the ways to implement the making of a synchronised
timetable. One way of implementing it is the case of the cyclic route. The other is
in the case with multiple merging.

However, sometimes we cannot make a timetable which is completely
synchronised. In this case we substitute a timetable which is roughly synchronised.
Therefore we proposed a method for evaluating the level of synchronisation in the
timetable. The way used is the concept of the entropy of the information theory. We
show that the concept of the entropy is one of the most useful methods to measure
the level of synchronisation of the timetable.

In conclusion, the concept of the entropy is a useful and simple method to
evaluate the quality of the synchronised timetable. Furthermore, calculating the
entropy is the easiest way to evaluate the quality of the transit system.
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